The present invention relates to an internal combustion engine that promotes combustion of an air fuel mixture utilizing an electromagnetic wave.
Conventionally, there is known an internal combustion engine that promotes combustion of an air fuel mixture utilizing an electromagnetic wave. For example, Patent Document 1 discloses an internal combustion engine of this kind.
The internal combustion engine disclosed in Patent Document lincludes an ignition device that causes a plasma discharge to occur by emitting a microwave in a combustion chamber before and/or after ignition of an air fuel mixture. The ignition device generates local plasma by a discharge at an ignition plug so that the plasma is generated in a high pressure field, thereby growing the plasma by the microwave. The local plasma is generated at a discharge gap between a tip end part of an anode terminal and a ground terminal part.
Meanwhile, in a conventional internal combustion engine, it has not been considered how to effectively emit an electromagnetic wave to a combustion chamber from an emission antenna.
The present invention has been made in view of the above described circumstances, and it is an object of the present invention, in an internal combustion engine that promotes combustion of an air fuel mixture in a combustion chamber utilizing an electromagnetic wave, to effectively emit the electromagnetic wave to the combustion chamber from an emission antenna.
In accordance with a first aspect of the present invention, there is provided an internal combustion engine including: an internal combustion engine main body formed with a combustion chamber; and an electromagnetic wave emission device that emits an electromagnetic wave to the combustion chamber from an emission antenna, the internal combustion engine promoting combustion of an air fuel mixture by way of the electromagnetic wave emitted to the combustion chamber. The emission antenna is provided in an insulating member and extends along the partitioning surface. The insulating member is provided on a partitioning surface that partitions the combustion chamber. An electrically-grounded ground conductor is provided in the insulating member on a side opposite to the combustion chamber with respect to the emission antenna.
In accordance with a second aspect of the present invention, there is provided an internal combustion engine including: an internal combustion engine main body formed with a combustion chamber; and an electromagnetic wave emission device that emits an electromagnetic wave to the combustion chamber from an emission antenna, wherein the internal combustion engine promotes combustion of an air fuel mixture by way of the electromagnetic wave emitted to the combustion chamber. The emission antenna is provided in an insulating member provided on a partitioning surface that partitions the combustion chamber and is formed in a helical shape. An electrically-grounded ground conductor is provided in the insulating member on a side opposite to the combustion chamber with respect to the emission antenna.
According to the present invention, since the ground conductor is provided in the insulating member, it is possible to effectively emit the electromagnetic wave to the combustion chamber from the emission antenna.
In the following, a detailed description will be given of embodiments of the present invention with reference to drawings. It should be noted that the following embodiments are merely preferable examples, and do not limit the scope of the present invention, applied field thereof, or application thereof.
The present embodiment is directed to an internal combustion engine 10 according to the present invention. The internal combustion engine 10 is a reciprocating type internal combustion engine in which pistons 23 reciprocate. The internal combustion engine 10 includes an internal combustion engine main body 11, an ignition device 12, an electromagnetic wave emission device 13, and a control device 35. In the internal combustion engine 10, a combustion cycle is repeatedly carried out in which an air fuel mixture is ignited and combusted by the ignition device 12.
<Internal Combustion Engine Main Body>
As shown in
The cylinder head 22 is placed on the cylinder block 21, and a gasket 18 intervenes between the cylinder block 21 and the cylinder head 22. The cylinder head 22 constitutes a partitioning member that partitions a combustion chamber 20 having a circular cross section, along with the cylinder 24, the piston 23, and the gasket 18. A diameter of the combustion chamber 20 is, for example, approximately equal to a half wavelength of a microwave emitted to the combustion chamber 20 by the electromagnetic wave emission device 13.
The cylinder head 22 is provided with one ignition plug 40 that constitutes a part of the ignition device 12 for each cylinder 24. As shown in
The cylinder head 22 is formed with intake ports 25 and exhaust ports 26 for each cylinder 24. Each intake port 25 is provided with an intake valve 27 for opening and closing an intake side opening 25a of the intake port 25, and an injector 29 for injecting fuel. On the other hand, each exhaust port 26 is provided with an exhaust valve 28 for opening and closing an exhaust side opening 26a of the exhaust port 26. The internal combustion engine 10 is designed such that the intake ports 25 form a strong tumble flow in the combustion chamber 20.
<Ignition Device>
The ignition device 12 is provided for each combustion chamber 20. As shown in
The ignition coil 14 is connected to a direct current power supply (not shown). The ignition coil 14, upon receiving an ignition signal from the control device 35, boosts a voltage applied from the direct current power supply, and outputs the boosted high voltage pulse to the central electrode 40a of the ignition plug 40. The ignition plug 40, when the high voltage pulse is applied to the central electrode 40a, causes an insulation breakdown and a spark discharge to occur at the discharge gap. Along a discharge path of the spark discharge, discharge plasma is generated. The central electrode 40a is applied with a negative voltage as the high voltage pulse.
The ignition device 12 may include a plasma enlarging part that enlarges the discharge plasma by supplying the discharge plasma with electric energy. The plasma enlarging part enlarges the spark discharge, for example, by supplying the spark discharge with energy of a high frequency such as a microwave. By means of the plasma enlarging part, it is possible to improve stability of ignition even with a lean air fuel mixture. The electromagnetic wave emission device 13 may be utilized as the plasma enlarging part.
<Electromagnetic Wave Emission Device>
As shown in
The electromagnetic wave generation device 31, upon receiving an electromagnetic wave drive signal from the control device 35, repeatedly outputs a microwave pulse at a predetermined duty cycle. The electromagnetic wave drive signal is a pulse signal. The electromagnetic wave generation device 31 repeatedly outputs the microwave pulse during a period of time of the pulse width of the electromagnetic wave drive signal. In the electromagnetic wave generation device 31, a semiconductor oscillator generates the microwave pulse. In place of the semiconductor oscillator, any other oscillator such as a magnetron may be employed.
The electromagnetic wave switch 32 includes an input terminal and a plurality of output terminals provided for the respective emission antennae 16. The input terminal is connected to the electromagnetic wave generation device 31. Each output terminal is connected to the corresponding emission antenna 16. The electromagnetic wave switch 32 sequentially switches a supply destination of the microwave outputted from the electromagnetic wave generation device 31 from among the plurality of the emission antennae 16 under a control of the control device 35.
As shown in
Along with the emission antenna 16, a ground conductor 111 in a plate-like shape is embedded in the insulating member 100. The ground conductor 111 is grounded in a manner of being electrically connected to the cylinder head 22 or the like. The ground conductor 111 is formed, for example, in a C-letter shape. The ground conductor 111 and the emission antenna 16 are provided inside of the insulating member 100 and are spaced apart from each other. The ground conductor 111 is provided along the emission antenna 16.
A length in a circumference direction (a length of a center circumferential line extending between an inner circumference and an outer circumference) of the emission antenna 16 is configured to be equal to a half wavelength of the microwave emitted from the emission antenna 16. The emission antenna 16 is electrically connected to the output terminal of the electromagnetic wave switch 32 via a transmission line 33 of the microwave which is embedded in the cylinder head 22. The transmission line 33 is inserted in an opening of the C-letter shaped ground conductor 111 and is electrically connected to the emission antenna 16.
In the internal combustion engine main body 11, a plurality of receiving antennae 52a and 52b are provided on the partitioning member that partitions the combustion chamber 20, and are adapted to resonate with the microwave emitted to the combustion chamber 20 from the electromagnetic wave emission device 13. According to the present embodiment, as shown in
The receiving antennae 52a and 52b are each provided on an area close to an outer circumference of the top part of the piston 23. From among the two receiving antennae 52a and 52b, a first receiving antenna 52a locates in the vicinity of the outer circumference of the piston 23, and a second receiving antenna 52b locates inside of the first receiving antenna 52a. Here, the area close to the outer circumference of the top part of the piston 23″ is intended to mean an area outward of a center line extending between a center and the outer circumference of the top part of the piston 23. Hereinafter, a period when a flame passes through the area close to the outer circumference of the top surface of the piston 23 is referred to as a “latter half flame propagation period”.
The receiving antennae 52a and 52b are provided on an insulation layer 56 formed on the top surface of the piston 23. The receiving antennae 52a and 52b are electrically insulated from the piston 23 by the insulation layer 56, and are provided in an electrically floating state.
<Operation of Control Device>
An operation of the control device 35 will be described hereinafter. During one combustion cycle for each combustion chamber 20, the control device 35 performs a first operation of instructing the ignition device 12 to ignite the air fuel mixture, and a second operation of instructing the electromagnetic wave emission device 13 to emit the microwave after the ignition of the air fuel mixture.
More particularly, the control device 35 performs the first operation at an ignition timing at which the piston 23 locates immediately before the compression top dead center. The control device 35 outputs the ignition signal as the first operation.
The ignition device 12, upon receiving the ignition signal, causes a spark discharge to occur at the discharge gap of the ignition plug 40, as described above. The spark discharge ignites the air fuel mixture. When the air fuel mixture is ignited, the flame spreads from an ignition location of the air fuel mixture at a central part of the combustion chamber 20 toward a wall surface of the cylinder 24.
The control device 35 performs the second operation after the ignition of the air fuel mixture, for example, at a start timing of the latter half flame propagation period. The control device 35 outputs the electromagnetic wave drive signal as the second operation.
The electromagnetic wave generation device 13, upon receiving the electromagnetic wave drive signal, repeatedly emits the microwave pulse from the emission antenna 16, as described above. The microwave pulse is repeatedly emitted over the latter half flame propagation period. An output timing and a pulse width of the electromagnetic wave drive signal are configured such that the microwave pulse is repeatedly emitted over the period in which the flame passes through the area close to the outer circumference of the top surface of the piston 23.
The microwave pulse resonates with each receiving antenna 52. In the area close to the outer circumference of the combustion chamber 20, on which the two receiving antennae 52 are provided, a strong electric field region having an electric field relatively strong in intensity in the combustion chamber 20 is formed over the latter half flame propagation period. The flame, while passing through the strong electric field region, receives energy of the microwave and increases in propagation speed.
In a case in which the microwave energy is high, microwave plasma is generated in the strong electric field region. In a region where the microwave plasma is generated, active species such as OH radicals are generated. The flame passing through the strong electric field region increases in propagation speed owing to the active species.
<Effect of Embodiment>
According to the present embodiment, since the ground conductor 111 is provided in the insulating member 100, it is possible to effectively emit the electromagnetic wave to the combustion chamber 20 from the emission antenna 16.
<Modified Example of Embodiment>
According to the modified example of the embodiment, as shown in
According to the modified example of the embodiment, a ground conductor 111 in a shape of a ring-like plate is embedded in a pillar-like shaped insulating member 100 in which the emission antenna 16 is provided. The transmission line 33 is inserted inside of the ground conductor 111. The ground conductor 111 is arranged close to the emission antenna 16. According to the modified example of the embodiment, the ground conductor 111 is provided so that energy of the microwave emitted to the combustion chamber 20 from the emission antenna 16 is increased.
The present invention is useful in relation to an internal combustion engine that promotes combustion of an air fuel mixture utilizing an electromagnetic wave.
Number | Date | Country | Kind |
---|---|---|---|
2011-175447 | Aug 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/070073 | 8/7/2012 | WO | 00 | 4/2/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/021993 | 2/14/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4043308 | Cerkanowicz | Aug 1977 | A |
4297983 | Ward | Nov 1981 | A |
4314530 | Giacchetti | Feb 1982 | A |
4416226 | Nishida | Nov 1983 | A |
4499872 | Ward | Feb 1985 | A |
4556020 | Hickling | Dec 1985 | A |
4726336 | Hoppie | Feb 1988 | A |
5027764 | Reimann | Jul 1991 | A |
5211142 | Matthews | May 1993 | A |
6581581 | Bebich | Jun 2003 | B1 |
7719476 | Ke | May 2010 | B2 |
8424501 | Storm | Apr 2013 | B2 |
8602005 | Ikeda | Dec 2013 | B2 |
20090120394 | Heise | May 2009 | A1 |
20090229581 | Ikeda | Sep 2009 | A1 |
20150337793 | Storm | Nov 2015 | A1 |
Number | Date | Country |
---|---|---|
2007-113570 | May 2007 | JP |
2009-221947 | Oct 2009 | JP |
2010-101174 | May 2010 | JP |
Number | Date | Country | |
---|---|---|---|
20140283779 A1 | Sep 2014 | US |