Information
-
Patent Grant
-
6325028
-
Patent Number
6,325,028
-
Date Filed
Friday, September 29, 200025 years ago
-
Date Issued
Tuesday, December 4, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Sughrue, Mion, Zinn, Macpeak & Seas, PLLC
-
CPC
-
US Classifications
Field of Search
US
- 123 9012
- 123 9013
- 123 9015
- 123 9016
- 123 9048
- 123 9049
-
International Classifications
-
Abstract
In an internal combustion engine having a hydraulic system for valve variable actuation and a hydraulic braking device for slowing down the valve during the final portion of its closing travel, this hydraulic braking device is arranged so as to be substantially insensitive to variations in viscosity of the fluid resulting from variations of the temperature.
Description
The present invention relates to internal combustion engines of the type comprising:
at least one intake valve and at least one exhaust valve for each cylinder, each provided with respective spring means biasing the valve to a closed position, for controlling communication between respective intake and exhaust conduits and a combustion chamber,
a cam shaft for actuating the intake and exhaust valves of the engine cylinders by means of respective tappets, each intake valve and each exhaust valve being driven by a cam of said cam shaft,
wherein at least one of said tappets drives the respective intake or exhaust valve, against the action of said biasing spring means, with the interposition of hydraulic means including a pressure fluid chamber,
said pressure fluid chamber being able to be connected through a solenoid valve to an outlet channel, for uncoupling the valve from the respective tappet and cause a quick closing of the valve, under the action of the respective biasing spring means,
said hydraulic means further comprising a piston associated with a stem of the valve and slidably mounted within a guiding bush, said piston facing a variable volume chamber defined thereby inside the guiding bush, said variable volume chamber being in communication with the pressure fluid chamber by means of an end aperture of said guiding bush, said piston having an end appendage adapted to be inserted into said end aperture during the final portion of the travel of the piston corresponding to closing of the valve, in order to reduce the communication passage between said variable volume chamber and said pressure fluid chamber, so as to slow down the travel of the valve in proximity of its closed position.
An engine of the above indicated type is disclosed for example in European patent application EP-A0 803 642 of the same Applicant.
The above-described system provides a variable control of the opening of the intake and/or exhaust valves without altering the mechanical parts which drive the displacement of the valves. As a matter of fact, while in a conventional timing system the movement of each intake or exhaust valve is only determined by the geometry of the mechanical parts which drive the valve (cam, tappet, and rocker arm, if any) in the above described known system the solenoid valve controlling the pressure chamber associated with a given valve can be driven so as to open at any moment this is desired (typically this solenoid valve is controlled by electronic control means depending upon one or more parameters of operation of the engine), so as to empty the above mentioned chamber from fluid under pressure (usually the lubrication oil of the engine) and cause quick closing of the intake or exhaust valve, under the action of the respective biasing spring means, even during a stage in which the respective cam would tend to keep the valve opened.
As already indicated above, the known solution provides that with the valve there is associated a piston slidably mounted within a guiding bush. The piston faces a variable volume chamber defined thereby inside the guiding bush and communicating with the pressure fluid chamber through an end aperture of the guiding bush. In order to slow down the travel of the valve in proximity of its closed position, so as to avoid damages due to an impact of the valve against its seat at a too great speed when the pressure chamber is emptied in order to uncouple the valve from the respective tappet, the above mentioned piston has a tubular end appendage adapted to be inserted into the above mentioned end aperture during the final portion of the closing travel of the valve, in order to restrict the communication passage between the variable volume chamber and the pressure fluid chamber, so as to brake the valve in proximity of its closed position.
Studies and tests conducted by the Applicant however have shown that the braking effect obtained thereby can become excessive if fluid under pressure (typically the lubrication oil of the engine) has a high viscosity due to a low value of its temperature. Thus, for example, when the ambient temperature is low, such as in the order of −10° C., and the engine has not reached a condition of normal operation following a cold start, the viscosity of the oil may be such as to render the time required for closing the valve too long. For example, lubrication oil which in normal operative conditions may have a kinematic viscosity in the order of 15 centistokes, may arrive to have a viscosity of 4,000 centistokes at a temperature of −20° C.
In order to overcome this drawback, the invention provides an engine of the type indicated at the beginning of the present description, characterised in that said tubular end appendage has at its front a diametrical slot intercepting the inner cavity of said tubular end appendage and opening both on the front end and on the two opposite sides of this end tubular appendage, and in that the wall of said end tubular appendage has a radial hole opening on one side on the inner cavity of the tubular appendage and on the other side on the lateral wall of the appendage, this hole including a radially inner portion having a predetermined reduced diameter.
The provision of the above mentioned diametrical slot causes a gradual reduction of the cross-section of the oil flowing area during the closing travel of the valve and hance a smooth and progressive braking action. Furthermore, the above-mentioned portion of reduced diameter of the above mentioned radial hole is precisely chosen in such a way as to determine the required approaching speed of the valve to its seat. As a matter of fact, once the above mentioned diametrical slot comes out of communication with the variable volume chamber during the final portion of the valve travel, the above mentioned hole of predetermined diameter constitutes the prevailing path for the oil to escape from the variable volume chamber (apart from the very narrow coupling clearance between the piston and the bush).
The above-described measures dramatically reduce the sensitivity of the device to variations of temperature of the fluid. All the other conditions being the same, for a determined geometry of the hole of reduced diameter, there is a specific viscosity value of the fluid above which the fluid flow from turbulent becomes laminar. In the former case the viscosity does not affect the flow rate, whereas in the latter case the viscosity strongly affects the fluid flow rate. The geometrical shape for which the above mentioned transition occurs at the highest values of viscosity is a circular hole of short length. It is just to reduce the length of the hole as much as possible that in the invention the portion of the hole with reduced diameter is followed by a hole portion of a sufficiently enlarged diameter.
Therefore, the present invention keeps the approaching speed of the valve to its seat as much uniform as possible when the temperature, and hence the fluid viscosity, varies, since by the above-mentioned measures, the fluid motion is always substantially of turbulent type.
Therefore, the present invention efficiently solves the above mentioned problems, while insuring a narrow variability of the closing timing of the valve within a large thermal range, so that the engine can be controlled efficiently in any condition of operation.
Further features and advantages of the invention will become apparent from the description which follows with reference to the annexed drawings, given purely by way of non-limiting example, in which:
FIG. 1
is a cross-sectional view of a head of an internal combustion engine according to an embodiment known from European patent application EP-A-0 803 642 of the same Applicant,
FIG. 2
is a cross-sectional view at an enlarged scale of a detail of
FIG. 1
, modified according to the present invention,
FIG. 3
shows a detail of
FIG. 2
at a further enlarged scale, and
FIG. 4
shows a perspective view of a detail of FIG.
3
.
With reference to
FIG. 1
, the internal combustion engine described in previous European application EP-A-0 803 642 of the same Applicant is a multi-cylinder engine, such as an engine having five cylinders in line, comprising a cylinder head
1
. The head
1
comprises, for each cylinder, a cavity
2
formed in the bottom surface
3
of the head
1
, defining the combustion chamber, in which two intake conduits
4
,
5
and two exhaust conduits
6
open. The communication of the two intake conduits
4
,
6
with the combustion chamber
2
is controlled by two intake valves
7
, of a conventional mushroom-shaped type, each comprising a stem
8
slidably mounted within the body of the head
1
. Each valve
7
is biased towards its closed position by springs
9
interposed between an inner surface of the head
1
and an end cup element
10
of the valve. The opening of the intake valves
7
is controlled, in a way which will be described in the following, by a camshaft
11
rotatably mounted around an axis
12
within supports of the head
1
and comprising a plurality of cams
14
for actuating the valves.
Each cam
14
for controlling an intake valve
7
co-operates with the plate
15
of a tappet
16
slidably mounted along an axis
17
substantially directed at 90° with respect to the axis of valve
7
, within a bush
18
carried by a body
19
of a pre-assembled sub-unit
20
incorporating all the electric and hydraulic devices associated with the actuation of the intake valves, according to what is described in detail in the following. The tappet
16
is able to apply a force to stem
8
of valve
7
, so as to cause opening of the latter against the action of spring means
9
, by means of fluid under pressure (typically oil coming from the engine lubrication circuit) which is present in a chamber C and a piston
21
slidably mounted in a cylindrical body constituted by a bush
22
which is also carried by the body
19
of the sub-unit
20
. Also in the known solution shown in
FIG. 1
, the chamber of fluid under pressure C associated with each intake valve
7
can be put in communication with an outlet channel
23
through a solenoid valve
24
. The solenoid valve
24
, which can be of any known type adapted for the operation illustrated herein, is controlled by electronic control means, diagrammatically indicated by
25
, depending upon signals S indicative of parameters of operation of the engine, such as the position of the accelerator pedal, and the rotational speed of the engine. When the solenoid valve
24
is opened, the chamber C comes in communication with channel
23
, so that the fluid under pressure which is present in chamber C flows into this channel thus providing uncoupling of the tappet
16
of the respective intake valve
7
, which therefore comes back quickly to its closed position, under the action of the biasing springs
9
. By controlling the communication between chamber C and the outlet channel
23
, it is thus possible to vary at will the timing and length of the opening travel of each intake valve
7
.
The outlet channels
23
of the various solenoid valves
24
all open on a common longitudinal channel
26
communicating with two pressure accumulators
27
, only one of which is visible in FIG.
1
. All the tappets
16
with the associated bushes
18
, the pistons
21
with the associated bushes
22
, the solenoid valves
24
and the associated channels
23
,
26
are carried and formed in the above mentioned body
19
of the reassembled subassembly
20
, for an advantageously quicker and easier assembly of the engine.
The exhaust valves
27
associated with each cylinder are controlled, in the embodiment shown in
FIG. 1
, in a conventional manner by a camshaft
28
through respective tappets
29
.
FIG. 2
shows at an engaged scale the body
19
of the pre-assembled unit
20
modified according to the present invention.
FIG. 2
shows in detail the structure of piston
21
. Piston
21
, in a way known per se, has a tubular body slidably mounted within the bush
22
and defining within this bush a variable volume chamber
34
which communicates with the chamber C of fluid under pressure through an end central aperture
35
formed in bush
22
. The opposite end of the piston
21
is fitted over an end portion
36
of a stem
37
associated to stem
8
of the valve
7
(FIG.
1
). During normal operation, when the cam
14
drives the aperture of valve
7
, it causes the movement of the tappet
16
determining a transfer of fluid under pressure from chamber C to chamber
34
and the resulting aperture of valve
7
against the action of spring
9
. The chamber C communicates with an annular chamber
30
through radial holes
71
formed in bush
18
. The annular chamber
70
communicates with the cylinders which are associated with the two valves
7
. According to the known art, a quick closing of the valve can be obtained by emptying the chamber C from oil under pressure by opening the solenoid valve
24
. In this case, the valve
7
returns rapidly to its closed position due to the action of spring
9
. In order to avoid a too strong impact of the valve
7
against its seat, in proximity of its fully closed position, valve
7
is slowed down. This result is obtained, also according to the prior art, by braking hydraulic means constituted by an end central appendage
38
provided on the tubular piston
21
and adapted to be inserted into the aperture
35
of bush
22
during the final portion of the closing travel of the valve. During the closing travel, the piston
21
is moved upwardly (with reference to
FIG. 3
) and the variable volume chamber
34
decreases in its volume, so that oil under pressure is pushed towards chamber C. When the end appendage
38
of piston
21
enters into aperture
35
, a return flow of oil under pressure from chamber
34
to chamber C occurs, in the case of the prior art, through a small clearance (not visible in the drawing) between appendage
38
and the wall of the aperture
35
. The oil flow is thus greatly slowed down and the valve travel is accordingly also slowed down. Also according to the prior art, with the cylinder
21
there is also associated a one-way valve comprising a ball shutter
39
forced inside the tubular body of piston
21
by a spring
40
towards a position obstructing an end central hole
41
of piston
21
, which extends from inner cavity of piston
21
and opens on the end facing chamber C. The inner chamber of piston
21
also communicates with lateral passages
42
which open on the end annular surface of piston
21
which surrounds the appendage
38
and faces chamber
34
. As already indicated, the above-described structure is also known. The function of shutter
39
is the following. During the closing travel of the valve
7
, the shutter
39
is kept in its closed position by spring
40
and by the oil pressure in chamber
34
when the appendage
38
is inside aperture
35
and the operation of the device is that described already above. When chamber C is emptied from oil under pressure through the solenoid valve
20
, the valve
7
rapidly returns to its closed position due to the action of springs
9
, but is slowed down immediately before reaching its fully closed position, due to the engagement of appendage
38
into aperture
35
, so as to avoid a strong impact of the valve against its seat. When the valve is instead opened, to provide a quick transmission of the force applied by cam
14
through tappet
16
to piston
21
the shutter
39
is moved to its opened position, against the action of spring
40
, due to the force applied by fluid under pressure coming from chamber C. The opening of shutter
39
causes pressure to be communicated through the hole
41
and the lateral holes
42
directly to the end annular surface of piston
21
which faces the chamber
34
, so that a high force is applied to piston
21
even when the appendage
38
is still inside the aperture
35
.
As indicated at the beginning of the present description, in the above described known solutions, there is the problem that the time required for closing valve
7
may become too long, due to the action of the braking hydraulic means described above (aperture
35
and appendage
38
) if the lubrication oil has a very high viscosity, such as in the case of a cold start of the engine with a very low ambient temperature.
In order to overcome this drawback, this end appendage
38
of the piston
22
has a diametrical slot
43
(see
FIGS. 3
,
4
) which intercepts the hole
41
and opens both on the end front surface of the end appendage
38
, and on the two opposite sides of this appendage. The connecting aperture
35
comprises a cylindrical hole which opens on the end of appendage
38
by means of a conical mouth
35
a
. In the illustrated example, the diametrical slot
43
has a height greater than that of the conical mouth
35
a
. Due to the presence of slot
43
, during the final portion of the closing travel of the valve, the variable volume chamber
34
can communicate with the pressure chamber C through said slot
43
as long as the lower edge of the slot (designated by
43
a
) is located below (with reference to
FIG. 3
) the upper plane
44
of the variable volume chamber
34
. As already indicated in the foregoing, a gradual reduction is thus obtained of the cross-section of the oil flowing area during the closing travel of the valve and hance a smooth and progressive braking action is achieved.
According to the invention, the hole of the end appendage
38
has a radial passage including an end portion constituted by a hole of predetermined reduced diameter
45
which opens on the hole
41
of appendage
38
. The hole
45
is followed by a hole of enlarged diameter
46
opening on the variable volume chamber
34
. The diameter of hole
45
is precisely chosen in such a way as to determine the required approaching speed of the valve to its seat. Indeed, once the diametrical slot
43
has been completely covered by the wall of hole
35
of bush
22
, the hole of reduced diameter
45
constitutes the single path for the oil to escape from chamber
34
, apart from the very narrow coupling clearance between the end appendage
38
and the hole
35
formed in bush
22
. In particular, due to this latter measure, as already indicated above, a great reduction is obtained of the sensitivity of the device to variations of temperature of the fluid. As also already indicated above, the provision of a hole of reduced diameter
45
, further having also a small length (obtained by providing the hole
46
of enlarged diameter) enables the value of viscosity of the fluid above which transition from turbulent motion to laminar motion occurs to be particularly high. In this manner, the variations in viscosity of the fluid caused by the temperature do not affect the characteristics of the fluid flow, which always remains substantially turbulent. Therefore, the braking action remains substantially uniform both with cold engine and with warm engine. It is thus avoided to have an excessive braking action at low temperatures, which would cause a too low closing movement of the valve, or to have a too weack braking action in conditions of warm engine, which would cause problems of mechanical resistance of the parts and intolerable noise.
Naturally, while the principle of the invention remains the same, the details of construction and the embodiments may widely vary with respect to what has been described and illustrated purely by way of example, without departing from the scope of the present invention.
Claims
- 1. Internal combustion engine, comprising:at least one intake valve and at least one exhaust valve for each cylinder, each provided with respective spring means biasing the valve to its closed position, for controlling communication between respective intake and exhaust conduits and a combustion chamber, a cam shaft for actuating the intake and exhaust valves of the engine cylinders by means of respective tappets, each intake valve and each exhaust valve being driven by a cam of said cam shaft, wherein at least one of said tappets drives the respective intake or exhaust valve, against the action of said biasing spring means, with the interposition of hydraulic means including a pressure fluid chamber, said pressure fluid chamber being adapted to be connected through a solenoid valve to an outlet channel, in order to uncouple the valve from the respective tappet and cause quick closing of the valve, under the action of the respective biasing spring means, said hydraulic means further comprising a piston associated with the stem of the valve and slidably mounted within a guiding bush, said piston facing a variable volume chamber defined thereby inside the guiding bush, said variable volume chamber being in communication with the pressure fluid chamber through a connecting aperture formed at one end of said guiding bush, said piston having a tubular end appendage adapted to be inserted into said connecting aperture during the final portion of the travel of the piston corresponding to closing of the valve, in order to restrict the connecting aperture between said variable volume chamber and said pressure fluid chamber, so as to slow down the travel of the valve in proximity of its closed position, wherein said tubular end appendage has at its front end a diametrical slot intercepting an inner cavity of the tubular appendage and opening both on the end and on two opposite sides of said appendage, and wherein a wall of said tubular end appendage has a radial hole opening at one end on the inner cavity of the tubular appendage, and the other end on a lateral wall of the appendage, this hole including a radially inner portion having predetermined reduced diameter.
- 2. Internal combustion engine according to claim 1, wherein said radial hole has a radially outer portion of enlarged diameter with respect to said portion of reduced predetermined diameter.
- 3. Internal combustion engine according to claim 1, wherein said radial hole has a circular crosssection.
- 4. Internal combustion engine according to claim 1, wherein said diametrical slot has two planar parallel and facing walls and a bottom wall orthogonal thereto.
- 5. Internal combustion engine according to claim 1, wherein in the end position of said piston corresponding to the fully closed condition of the valve, the ends of said diametrical slot are fully covered by the wall of said aperture in which the end appendage is slidable.
Priority Claims (1)
| Number |
Date |
Country |
Kind |
| TO99A0859 |
Oct 1999 |
IT |
|
US Referenced Citations (10)