The invention relates to heat engines and more specifically to positive displacement internal combustion engines, and is particularly concerned with rotary engines i.e. engines, in which piston executes rotary/oscillating motion. The invention provides the optimal, “canonical” form for the two stroke rotary engine of unique strength and compactness.
Existing successful heat engines are steam turbines, gas turbines and positive displacement engines (reciprocating piston and rotary Wankel) utilizing various thermodynamic cycles (Diesel (or rather Sabathe), Otto and Stirling cycle). These engines, although now having been developed for more than century (almost 2 centuries in the case of Stirling), still stop short from fulfilling the requirements imposed on prime movers by modern economy. Thus steam turbines require huge steam boilers and steam condensers and are troublesome to exploit, therefore their applications are restricted to power plants and propulsion of ships and some other heavy machinery. Gas turbines, thermal efficiency of which can achieve even 65% in large units destined for power generation and industrial applications (e.g. in most recent large turbines built by GE, which in fact are compound heat machines with large heat exchanger), usually, particularly in small units, display much poorer figure than positive displacement engines, are more complicated technologically and more expensive, and therefore are unlikely to earn as dominant position as Diesels enjoy today due to these and other well-known inherent drawbacks and limitations. Thus positive displacement engines still have important advantages over turbines that render them irreplaceable for most applications.
Most common positive displacement engine in use (and in fact most common heat engine), Diesel engine, achieves maximum overall efficiency of slightly beyond 50% (large stationary or marine units, which again are compound heat machines comprising Diesel engine, turbocharger, supercharging air cooler and auxiliary power turbine), and average Diesel efficiency is merely ˜40%, a poor figure in comparison with 70-75% originally assumed by its inventor in late 19th century. Thermal efficiency of Diesel cycle rises with the compression ratio, but this method for improving overall efficiency of real Diesel engines is obstructed by friction loses rapidly rising with loads of engine's mechanism. Moreover, conventional connecting rod—crank mechanism's strength becomes a concern in highly loaded Diesel engines.
Another well-known positive displacement heat engine is the (external combustion) Stirling engine. This engine is closest to the ideal Carnot engine in terms of thermal efficiency, and another important advantage over known internal combustion engines is its capability to utilize various sources of thermal energy. However, Stirling engine is expensive to manufacture and troublesome to maintain, and this renders it considerably inferior to internal combustion engine in most applications, and prevents from earning wide acceptance.
There are many non-conventional designs of heat engines (most of them focusing on transforming gas force into driving torque of rotating shaft), e.g. rotary engines like Wankel, recently patented quasi turbine (see U.S. Pat. Nos. 6,164,263 and 6,899,075), spherical engines (see U.S. Pat. Nos. 6,325,038, and 6,941,900, and Russian patent 2,227,211) and oscillating pivotal engine (see www.PivotalEngine.com). However, so far none of those non-conventional engines, with Wankel-type engine being the only exception of economically (but certainly not conceptually) marginal importance, was successful, and probably none of them has any chance to even go beyond the stage of prototyping. Technically, this is due to the fact that the answer to the principal question any new engine is obliged to answer: “Does the new engine do its work better than conventional one?” is decidedly negative for all those non-conventional designs, including Wankel's. Even the answer to the more general question: “Does the new engine do its work in any aspect better than conventional one?” is negative for almost all non-conventional engines. (In the case of the Wankel engine, the answer to this more general question is positive, but superiority of Wankel over conventional engines in certain aspects (great power/weight and power/volume ratios, kinetic simplicity and smoothness of operation) is overshadowed by its inherent drawbacks (weak structure, inability to cope with large outputs, inferior efficiency, weakness of sealing, inherent inability to incorporate high compression ratios)). Conceptually, this is mainly due to the fact that those new engine designs (e.g. quasi turbine) focus on certain isolated aspects of heat engine while ignoring some other aspects (e.g. sealing, mechanical strength and reliability).
For example, recently patented positive displacement rotary engine, quasi-turbine, is complex both kinetically and structurally, its moving elements of complicated shapes are likely to be subjected to excessive thermal stresses and renders the engine weak structurally and more difficult to seal than Wankel engine; thus the engine is unlikely to do well the job of heat engine (it would be better as pump or compressor). Some other rotary engines (e.g. satellite engine, see publication WO9618024) use toothed wheels to transfer the pistons movement to rotary motion of engine's shaft. This not only makes these engines complex but also unreliable, as engine's elements that meet along a line are not well suited to bear shock loads met with in internal combustion engines.
Fuel cell is a very promising source of power for many applications, but it seems improbable it will become appropriate for applications where high power density is essential in any foreseeable future.
Thus there is a need for highly efficient universal source of mechanical power, and highly efficient and clean thermodynamic processes for producing hot high pressure gases, like detonation, compression ignited combustion of homogeneous charge and very high-pressure Sabathe cycle, render positive displacement internal combustion engines a very interesting proposition, provided that efficient way for converting thermal energy into useful mechanical power is incorporated. It is to be stressed that lack of such effective method for converting thermal energy into driving torque is an important obstacle to develop a practical Homogeneous Charge Compression Ignition (HCCI) and Positive Displacement Detonation (PDD) engine. The reason is that maximum gas forces themselves, as well as gradients of gas forces (understood as function of time), met with in HCCI and PDD engines (at least those utilizing stoichiometric mixture, which is the most efficient thermodynamically, and also most efficient from the point of view of power/weight and power/volume parameters) are much higher than in conventional IC engines, and conventional mechanisms are unable to cope with such extreme loads. This is one of the reasons, for which the planned “HCCI engines” are to utilize the more efficient HCCI mode of operation only while producing power at a moderate rate (and working on loan mixtures), converting into ordinary Diesel mode of operation when the power demand rises (the other reason is that IC engine working on loan mixture produces less pollutant nitrogen oxides).
It is to be stressed that none of the non-conventional engine designs in United States Patent and Trademark Office (USPTO) and European Patent Office (EPO) patent data bases offers satisfactory mechanical structure of the ICE suitable for coping with extreme loads while assuring engine's compactness and good sealing. Moreover, none of the known positive-displacement internal combustion engines approaches highly desirable structural simplicity of gas turbines.
Thus the principal objective of the present invention is to provide a high power density positive-displacement internal combustion engine of simple and extraordinarily robust structure, capable to withstand extremely high loads and thus to utilize highly efficient ultra-high pressure Diesel cycle or HCCI and PDD modes of operation without increasing specific loads of engine's elements beyond limits that are standard for ordinary piston engines and without decreasing mechanical efficiency of the engine.
Another objective of the invention is to provide a structure for a valve-less two stroke engine that guarantees good constraint for engine's piston and piston sealing elements.
Yet another objective of the invention is to provide a compact structure for the internal combustion engine with no hot load bearing sliding elements.
Another objective of the invention is to substantially increase thermal efficiency of engines by improving combustion and increasing such parameters as maximum combustion pressure without increasing specific loads of engine's parts.
Yet another objective of the invention is to provide a structure for positive displacement engines that offers substantial improvement of such important engine parameters as swept volume/total volume, power/total volume and power/weight ratio, without increasing specific loads and thus without sacrificing engine's strength and reliability.
Another objective of the invention is to provide a structure for the positive displacement engines that offer a large variety of engine's configurations (e.g. considerable variety of scavenging systems, ignition systems etc.) capable of being adjusted to various specific requirements.
Yet another objective of the invention is to provide rotary engines that have sealing almost as simple, tight and reliable as conventional ones and much simpler, tighter and much more reliable than conventional (Wankel) rotary engines.
More specifically, the objective of the invention is to provide a proper structure of rotary positive displacement engine having some specific qualities of gas turbines, namely high power density, structural simplicity combined with good driving torque smoothness, having scavenging system that makes the gas flow almost as smooth as (and similar to) that to be found in gas turbines and assuring engine's good balance thus enabling it to rotate at high speeds.
It is clear that at the core of such an engine should be a mechanism, desirably the strongest and simplest mechanism in existence, that would provide the optimal method for converting gas pressure directly into rotary movement of a solid body.
In order to find such a mechanism some initial conditions should be imposed upon it. Thus gears (toothed wheels) or other mechanisms comprising elements meeting along a line, mechanisms complex from kinetic point of view (for example comprising elements executing complex motion) loaded with extreme gas forces and rendering the engine difficult to seal are unacceptable.
Thus the general idea behind the invention is to take a solid body, as regular as possible, cut out the combustion chamber, and cut the remaining portion of the body along some surfaces (preferably planes) into a minimum number of elements of a mechanism capable of converting gas pressure directly into driving torque (that is to say executing pure rotary movement, or at least “close” to it). This would provide the simplest, strongest, most robust and compact (no vacuum inside of the engine) structure of internal combustion engine, capable of bearing extreme mechanical loads produced by high-efficiency thermodynamic processes without increasing specific loads and friction losses, and substantially improving weight/power ratio at the same time, thus displaying substantial overall efficiency improvement over existing heat engines.
The construction of the strongest mechanisms in existence presented below provides strong indications that the proper form of the engine capable to satisfy all the above-formulated requirements is the rotary/oscillating (“cat and mouse”) engine. Thus another, more specific objective of the present invention is to provide the proper form of the rotary/oscillating engine.
In the next paragraphs I present six preferred embodiments of rotary engines utilizing various variants of the flat mechanism constructed below.
a, 8b provides the kinetic scheme of the mechanism of the rotary engine producing 6 power strokes per shaft revolution.
a-9d depict the kinetic scheme of the rotary engine producing 2 power strokes per shaft revolution and some other schemes illustrating a method for balancing the engine.
a
1 explains the relationship between the kinetic scheme (being the ordinary four-bar linkage L-W-M-D) shown in
Main Geometric Constructions
I start this section with a short description of my method for achieving the strongest mechanism in existence capable of being applied in positive displacement engines. In fact the construction of these mechanisms lies at the very heart of the present invention.
The construction will be carried out in several simple steps (see
The resulting device is the desired (spatial) mechanism. It has five kinetic couples, namely (L,W), (W,M), (M,D), (D,L) and (M,L). The couples (L,W), (W,M), (M,D), (D,L) are higher rotational kinetic couples, while the couple (ML) is a lower ball joint-like kinetic couple.
In order to enable receiving mechanical energy produced inside the mechanism body, we have to make “moving” elements of the mechanism accessible from the exterior of the body L. This is achieved by equipping said body L with one or two circular bore chambers that accommodate a pin attached to the element W or D or both (
Similarly, kinetics of the “flat” mechanism is determined by the distances between the axes of rotation of the mechanism elements.
In order to determine kinetics of the spatial mechanism we join the end points of the vectors νw, νd, νmw and νmd by geodesic arcs placed in the sphere BL to obtain the ordinary spherical geodesic tetragon (
Similarly, from the kinetic point of view, the “flat” mechanism is the usual flat four-bar linkage. This can be seen by suitably joining by straight segments the intersection points of the rotation axes of the elements W, M and D determined by the vectors νw, νd, νmw and νmd with a plane perpendicular to these vectors.
Thus any kinetic pair of the presented mechanism is the rotary or spherical one, and the mechanism is capable of producing rotary movement of one of its elements from oscillating movement of another element and rotary movement of one of its elements from rotary-oscillating movement of some other elements. This feature is utilized in my engines presented in the next section.
Below I present a variety of rotary engines utilizing various variants of the flat mechanism constructed above. All the designs are based on the following three principles:
In the next three subsections I present basic designs of my rotary “turbine-like” positive displacement engine, or to be more precise, three variants of the engine, namely engines producing 2, 4 and 6 power strokes per shaft revolution, and utilizing variants of the flat mechanism. Next I present some variations on the theme. The reason for presenting this variety of “turbine-like” rotary positive displacement engines is that it is not possible to optimize various parameters of the engine at the same time, and any of the engines presented below has some advantages over the other engines. In fact, maximizing the number of power strokes per shaft revolution obstructs optimizing the engine balance, while obtaining almost perfect engine?s balance prevents the engine from producing more than 2 power strokes per shaft revolution. (Theoretically, it is possible to construct a well-balanced engine producing 6 power strokes per shaft revolution, however only at the cost of engine's simplicity).
Since Principles 2 and 3 formulated at the end of the previous section are clearly of great importance for this “turbine-like” engine, now I discuss briefly kinetics of the mechanism of the engines of the present invention.
In order to fulfill the requirement of Principle 2 let us recall that any kinetic couple of the mechanism in question is a rotary one, therefore combustion chambers of changing volume can be formed only between pairs of mechanism's elements executing oscillating movement one relative the other (these will be called oscillating kinetic couples). Moreover, it is essential that as many such pairs as possible exist in the mechanism, in order to make the engine close to continuous combustion gas turbine. In fact, upon properly choosing mechanism's geometry (see Remark 3 of the previous section and
Let us concentrate on the problem of maximizing the number of power strokes per shaft revolution and optimal phasing of power strokes.
Thus the mechanism contains 3 oscillating kinetic couples, namely (W,M), (W,D) and (D,M), and a simple computation shows that for w=m=d and l=0.16 w the engine fires (approximately) at the following angles of rotation of the shaft W: 0, 52, 115, 180, 240 and 308 degrees (these are approximately the degrees of rotation of the element W, at which the angle between the members of 3 oscillating couples of the mechanism assumes its maximum or minimum, and thus volume of one of 6 combustion chambers placed between double-acting pistons assumes its minimum). This phasing of the power strokes assures excellent smoothness of the engine driving torque.
Let us mention that there is the rule “the smaller l:w ratio the better engine's balance” (the closer the mechanism to the rigid rotating triangle, see
Now let us turn to Principle 3 i.e. the problem of balancing the engine. This is a non-trivial problem and providing its complete solution requires lengthy computations, which is beyond the scope of the present patent specification. However, the problem turns out to be analogous to that of balancing ordinary piston engine (the mechanism of which is kinetically just a special example of my mechanism) and therefore can be solved by analogous means. My solution (in its general form) is based on the following assertion, the enunciation of which is much longer than its proof
OBSERVATION 1 (see
Now let us apply this observation to the mechanism of my “turbine-like” rotary engine producing 6 power strokes per revolution of its main shaft W (see
The following simple Observation is also of some importance for solving the problem of balancing the rotary engine in question.
OBSERVATION 2 The mechanism shown in
Now I am in a position to describe my “turbine-like” rotary engine producing 6 power strokes per shaft revolution. In accordance with the character of the present patent application, I concentrate on the mechanical structure of the engine, therefore the treatment of thermodynamic aspects of the engine is much less detailed, but let us indicate that this is a HCCI two-stroke engine. Now, the engine utilizes a flat mechanism of the type described in the previous section, the kinetic scheme of which is shown in
The “hot portion” of the main rotor is placed eccentrically relative its main pin (the center of the “hot portion” is the point of contact of the members 2=W and 4=M of the engine mechanism, see
Structure of the secondary rotor 3 is slightly different from that of the main rotor 2 (
At the center of the secondary rotor there is a circular air inlet passage 35 (
Intermediate rotor 4=M (
The engine body 1 is formed from three main pieces 11, 12, and 13. The two side pieces 11 and 13 (“cold” pieces of the body) supports the main and secondary rotors in their respective bearings 112 and 133. Placed in the “cold” side piece 13 there is an air inlet port In and a fuel injector J. The central “hot” piece 12 of the body houses the intermediate rotor 4 and “hot portions” of the main and secondary rotors. There is also a “turbine-type” spiral hot gases exhaust collector GC.
As the high-pressure gas contained in the combustion chambers exerts axial forces on both the main and secondary rotors, there are thrust bearings 26 and 36 supporting the main and the secondary rotors respectively. Below I discuss another construction of the rotary engine that does not require thrust bearings.
Now a brief discussion of the engine work follows (see a transverse cross-section in
In this brief discussion I completely ignore the subtle problem of controlling this HCCI engine, as this is beyond the scope of the present patent application, the focus of which is on the mechanical aspects of the engine. The problem of controlling my rotary HCCI engines will be discussed in the presentation of another engine below. The method indicated below is applicable to the present engine.
Let us note that there is also a mechanically similar engine working on traditional Diesel cycle, the general layout of which (including the effective centrifugal forces-enhanced uniflow scavenging system) is completely analogous, with the only essential difference being a plurality of injectors adjacent to the combustion chambers (some minor structural changes are also required).
2. Rotary “Flat” Positive-Displacement Turbine-Like Engine Producing 4 Power Strokes Per Shaft Revolution (
The next design of my rotary “turbine-like” engine is aimed at improving engine's balance and making it lighter. This is achieved mainly by diminishing mass and moment of inertia of the intermediate rotor M=4, which is obtained by differently shaping said rotor. Namely, I remove the massive peripheral ring-shaped portion of the intermediate rotor and, in a sense, place it partially on the main rotor and partially on the secondary rotor. This increases mass and moment of inertia of the secondary rotor in comparison with that of the previous design, but diminishes mass and moment of inertia of the intermediate rotor by approximately double of the amount and enables the counterweight M12 (balancing the first order body force generated by the intermediate and secondary rotors in the reference system of the main rotor W=2 and the centrifugal force generated by these two rotors and the eccentric “hot portion” of the main rotor in the reference system of the engine body) to be substantially diminished, and also makes the counterweight M0 (balancing the moment of centrifugal force generated by the intermediate rotor) unnecessary (see the discussion below), which in combination contributes to the overall engine's mass reduction. The improvement of engine's balance however is achieved at the cost of diminishing by two the number of power strokes per the main rotor revolution.
Kinetics of the engine is precisely the same as that of the previous one (
Like in the previous engine, the main rotor 2 (
Again, structure of the secondary rotor 3 (
Intermediate rotor 4 (
Circular and peripheral ring shaped walls of the “hot portions” of the main and secondary rotors, double acting pistons FW1, FW2, FD1, FD2, FM1, FM2, and the central portion of the intermediate rotor 4 confine 4 combustion chambers of the engine that rotate during engine's work (
The entire mass of the intermediate rotor M is assumed to be supported in the hollow HW placed in the main rotor W. Thanks to the absence of the ring-shaped portion of the intermediate rotor, the center of gravity of the counterweight on the main rotor balancing the centrifugal force produced by the eccentrically mounted intermediate rotor can be placed in the same plane as the center of gravity of the intermediate rotor. Therefore the counterweight M0 is no longer necessary, and the counterweight M12 can be smaller than in the previous design, as already mentioned above.
The engine body is formed from three main parts. The two side pieces (“cold” pieces of the body) 11 and 12 supports the main 2 and secondary 3 rotors in their respective (radial and thrust) bearings 112 and 123. Placed in one of the “cold” side pieces (the right hand side piece in
The high-pressure gas contained in the combustion chambers exerts axial forces on both the main and secondary rotors, hence there are thrust bearings supporting both the rotors.
The discussion of the rotary engine work above almost literally applies to the present case, therefore is omitted in the interests of brevity.
3. Rotary “Flat” Positive-Displacement Turbine-Like Engine—2 Power Strokes Per Shaft Revolution (
The third design of the “turbine-like” rotary engine is aimed at further improving engine's balance and maximizing its rotary speed and hence power density, and also at disposing of thrust bearings and hot load bearing engine's components (these are the intermediate rotors in the two previously-discussed engines). The first two goals are achieved partially by further reducing mass and moment of inertia of the engine parts, the rotational speed of which varies during the engine work (secondary and intermediate rotors), and partially by choosing different geometry and kinetics of the engine mechanism. To be more precise, further reduction of mass and moment of inertia of secondary and intermediate rotors forces further reduction of the number of power strokes, but once one accepts this reduced number of power strokes it is possible to choose a different engine's mechanism that can be better balanced (
Now I once again embark on the discussion of balancing of my engine's mechanisms (
I use another observation concerning methods for balancing mechanisms.
OBSERVATION 3. Assume we are given a mechanism as described in Observation 1 above. Further assume that the mechanism can be balanced in the reference system Aj by balancing the body force generated by certain elements Ai1 and Ai2 by attaching to the element Ai1 a counterweight M1, so as the center of gravity of the system composed of the elements Ai1 and Ai2 and the counterweight M1 lies at the center of rotation O1 of the element Ai1 relative the element Aj; let O1 be the end point of a vector V based at the common origins of the reference systems A1 and Aj. Then the mechanism can be balanced in the reference system A1 by additionally attaching to the element Aj a counterweight M2 (equal to the total mass of the elements Ai1 Ai2 and the counterweight M1) at the end of the vector −V (
Again the proof of this statement is just an immediate computation.
The mechanism of the rotary engine is schematically shown in
In order to emphasize the resemblance of the problem of balancing our rotary engines to that of balancing of the ordinary piston ones I apply Observation 3 to the mechanism of the oscillating engine producing 2 power strokes per shaft revolution (I apply notation used in the discussion of kinetics of the rotary engine producing 6 power strokes per revolution and oscillating engine above). The alternative version of the oscillating engine mechanism is shown schematically in
Now I turn to the description of the rotary engine producing 2 power strokes per shaft revolution, and again I concentrate on the mechanical aspect of the design (let us indicate however that this is assumed to be a HCCI two-stroke engine,
Intermediate rotor 4 (
Auxiliary eccentric 3 pivots in a bearing placed in engine's body, and has an eccentric bearing 31 supporting the intermediate rotor at its “cold” end (via the eccentric 43). Moment of inertia of the auxiliary eccentric is small in comparison with that of the main rotor.
The engine body is formed from three main pieces 11, 12, and 13. The two side pieces 11, 13 (“cold” pieces of the body) supports the main rotor 2 and the auxiliary eccentric 3 in their respective (radial) bearings. Placed in the “cold” side-piece 13 there is an air inlet port In and a fuel injector J; thus the fuel injector is placed in close proximity to the auxiliary eccentric, and is assumed to be driven by it. The central “hot” piece 12 of the body houses intermediate rotor 4 and “hot portion” of the main rotor. There is also a “turbine-type” spiral hot gases exhaust collector GC.
The large number of combustion chambers (
As was mentioned above, the engine mechanism comprises only one “oscillating” kinetic couple, namely the main rotor-intermediate rotor couple (all the other kinetic couples are rotational ones; the rotational speed (average) of auxiliary eccentric 3 is two times the rotational speed of the main rotor, see
An important advantage that this engine shares with one of the two previous rotary ones is that only the useful (generating the driving torque) tangential component of the gas force is transferred to the engine running gear. The component of the gas force perpendicular to the axes of rotation of the rotors nullifies thanks to the symmetric placement of the combustion chambers that fire simultaneously (this feature the engine in question shares with the rotary engine producing 6 power strokes per revolution but not with the rotary engine producing 4 power strokes per shaft revolution (which is due to asymmetric structure of its main and secondary rotors)). This is an important advantage over the conventional piston engines, where the entire gas force produced at the beginning of the power stroke is transferred directly to the main and crank bearings, thus generating high loads that contribute nothing to the driving torque.
The engine, unlike the two previous ones, comprises no hot load bearing sliding components, thanks to the presence of massive “cold” pin on the intermediate rotor 4. Thus this two-stroke engine structure offers excellent constraints for the piston and sealing bars, quite unlike in the case of conventional two-stroke engines.
The construction of this rotary engine (like the two other ones) enables keeping the lubricating oil separate from the fuel and from mixing with the induction air.
Work of the engine (
4. Rotary Engine—4 Power Strokes Per Shaft Revolution (
This design provides another natural form of the rotary (or, more precisely, rotary-oscillating) 2-stroke piston engine utilizing the principal form of my flat mechanism (thus having only 3 moving elements) and producing 4 power strokes per revolution. Thus mechanism of this engine produces rotary-oscillatory motion of the “oscillator” 3 from rotary motion of the “shaft” 2.
This design incorporates new secondary ideas (mentioned in dependent claims), which are a specific configuration of the engine and specific shape of the engine parts, as well as specific scavenging system.
Thus the engine mechanism comprises 4 parts: body 1=L, “shaft” (main rotor) 2=W, oscillator (secondary rotor) 3=D and intermediate eccentric (intermediate rotor) 4=M. However the main rotor 2 and the secondary rotor 3 have precisely the same construction and the same kinetics and are mutually interchangeable. The main rotor 2 (respectively the secondary rotor 3) has main pin 2a (3a), eccentric hollow 2b (3b), double-acting piston 2c (3c) and external ring 2d (3d). The main rotor 2 (respectively the secondary rotor 3) pivots in the bearing 7 (8) and hollow 5 (6) placed in the engine body extreme part 1a (respectively 1b) and the central part 1c. There are external inlet ports 9 placed on the central part 1c of the engine body 1, and exhaust ports 10 and 11 placed on two extreme parts of the engine body 1a and 1b. There are two injectors J mounted in the extreme part 1a of the engine body similarly there are injectors J placed on the side element 1a of the engine body 1. Attached to the intermediate rotor 4 there are two double-acting pistons 4a and 4b. The intermediate rotor 4 has also two discs 4e and 4f; there are also internal inlet ports 4c and 4d placed on said discs and two counterweights 4g and 4h balancing body forces generated by the pistons 4a and 4b respectively. The piston 4a (respectively 4b) oscillates in the hollow 2b (3b) of the main rotor 2 (secondary rotor 3). Two pairs of opposed pistons 2c-4a and 3c-4b, external rings 2d and 3d, internal walls of the elements 1a and 1b of the engine body 1 and the discs 4f and 4e of the intermediate rotor 4 form the engine combustion chambers. Thus there are 4 “cylinders” C1, C2, C3, and C4 in this engine (which comprises only 3 moving parts) and the engine produces 4 power impulses for each full revolution of the shaft 2. The discs 4e and 4f bound also an air chamber AC placed in the central section 1c of the engine body 1.
Now a short description of the engine work follows. The main rotor 2 and the secondary rotor 3 rotate in the same direction (as the main rotor 2 rotates with a constant rotational speed v, the secondary rotor 3 rotates with non-constant rotational speed, the average value of which equals v) and the intermediate rotor 4 rotates and oscillates. Thus the two pairs of double-acting pistons 2c-4a and 3c-4b bound combustion chambers of changing volume inside of the hollows 2b and 3b respectively. The rotary motion of the main rotor 2 and the secondary rotor 3 governs opening and closing of exhaust ports 10 and 11 respectively. Proper phasing of opening/closing of the exhaust ports is assured by suitable geometry of the pistons 2c-4a and 3c-4b. The movement of the intermediate rotor pistons 4a (4b) relative the main rotor piston 2c (respectively the secondary rotor piston 3c) in the relevance system of the main rotor 2 (respectively secondary rotor 3) is just the oscillating movement. Opening and closing of the internal inlet ports 4c and 4d are governed by the oscillating movement (relative the intermediate rotor 4) of pistons 2c and 3c respectively. Air flows through the external inlet ports 9 and enters the air chamber AC and further enters the engine combustion chambers via internal inlet ports 4c and 4d displacing hot low-pressure gases that exit the combustion chambers through said exhaust ports 10 and 11. The engine executes ordinary 2-stroke Diesel cycle in each of its 4 combustion chambers during each revolution of its “shaft” 2.
Power can be received from either the main rotor 2 or the secondary rotor b. A flywheel should be attached to the “power-output element” to minimize rotary speed fluctuation. Alternatively the element intended for receiving power could be formed to have greater moment of inertia than the other revolving element.
This engine, like the other engines of the present patent application, features extraordinarily compact and robust structure and large swept volume/total engine volume ratio, by far exceeding in these aspects other rotary engines utilizing toothed wheels to transfer the movement from pistons to engine's shaft (see for example publication WO9618024). An important advantage of this engine (as well as those described above) over other known rotary engines, including Wankel, is that the average relative speed of the engine hot parts bounding engine's working chambers (namely the intermediate rotor 4 and both the rotors 2 and 3) is low, comparable to that of the piston relative the cylinder of conventional engines. (This is due to the fact that the rotor 4 executes the oscillating motion relative any of the rotors 2, b, and large rotational speed of the engine rotors (and hence large number of cycles per minute) can be combined with small speed of said rotor 4 relative both said rotors 2 and 3 by diminishing “stroke” (angle of oscillation) of the rotor 4 relative the rotors 2 and 3 (this in turn can be obtained by choosing suitable geometry of the engine mechanism). Therefore wear of engine's moving parts, including sealing, is comparable to that of components of conventional piston engines and much smaller that in other rotary engines. Moreover, diminishing the stroke of the engine pistons does not necessarily causes diminishing of the engine swept volume, as like in the case of the previously-described engine, a larger number of pistons may be attached to the rotor 4 and rotors 2 and 3 thus increasing the number of engine's working chambers.
5. Rotary Engine—4 Power Strokes Per Shaft Revolution (
This is just a variant of Design 4 with identical kinetics and general layout but differently shaped elements (two variants of the engine elements are depicted in FIGS. 39 and 40-41). The changes (in comparison with the Design 4) are intended to further increase the swept volume/total volume ratio, decrease “stroke” (relative movement) of the engine pistons and improve balance of the engine. Thus both the main rotor 2 and the secondary rotor 3 are equipped with two double acting pistons 2c and 3c respectively and the intermediate rotor 4 has two assemblies of double-acting pistons 4a and 4b on each of its two ends. Consequently, the engine has 8 “cylinders” (combustion chambers) but still 4 power impulses per revolution. The main rotor 2 and the secondary rotor 3 are both equipped with walls 2e and 3e respectively. There are two internal exhaust ports 2f and 3f placed on the walls 2e and 3e of the main rotor 2 and the secondary rotor 3 respectively. Outer exhaust ports 10 and 11 are placed on the two extreme parts of the engine body 1a and 1b respectively. There are external inlet ports 9 placed on the central part of the engine body 1 and internal inlet ports 4c and 4d placed on the intermediate rotor 4. The movement of the intermediate rotor pistons 4a (respectively 4b) relative the main rotor pistons 2c (respectively the secondary rotor piston 3c) in the relevance system of the main rotor 2 (respectively secondary rotor 3) is just the oscillating movement. Unlike in the engine of the previous design, where rotary movement of the main rotor 2 and secondary rotor 3 is utilized to govern the opening and closing of outlet ports, opening and closing of both the internal exhaust and inlet ports are now exclusively governed by the oscillating movements of pistons. To be more precise, opening/closing of the exhaust ports 2f (respectively 3f) is governed by pistons 4a (respectively 4b), and opening/closing of the inlet ports 4c (respectively 4d) is governed by pistons 2c (respectively 3c). Air enters the air chamber placed in the central part 1c of the engine body through the external inlet ports and then enters the engine combustion chambers via internal inlet ports 4c and 4d. Hot low-pressure gases flows through the internal exhaust ports 2f and 3f and further via external exhaust ports 10 and 11 to atmosphere. Such arrangement of the engine is required to provide adequate opening/closing moments of inlet and outlet ports for all the engine combustion chambers, since to each revolution of the main rotor 2 there corresponds one full oscillation of the intermediate rotor 4 (relative the main rotor 2), and similarly for the secondary rotor 3.
Power can be received from either the main rotor 2 or the secondary rotor 3. A flywheel should be attached to the “power-output element” to minimize rotary speed fluctuation. Alternatively the element intended for receiving power could be made to have greater moment of inertia than the other revolving element.
6. Rotary Positive Displacement Detonation Engine (
This is a rotary-oscillating 2-stroke positive displacement detonation engine with main combustion chamber common for all engine's working chambers (“cylinders”). The principal aim of the design is two-fold: for the first to provide a mechanical structure of the engine capable to cope with extremely high mechanical loads met with in detonation engines, and for the second, to provide a rational combustion system for detonation engines, particularly an effective method of diminishing maximum mechanical loads and gradients of gas forces (understood as function of time).
General layout of the engine is similar to that of the engine 3, however this design incorporates a different scavenging system (which is dictated by the presence of common centrally placed combustion chamber) and therefore some elements are differently shaped.
Kinetics of the engine's mechanism is precisely as that of the engine 3. Thus the engine comprises only three major moving parts and its mechanism produces rotary motion of the main rotor 2 and rotary-oscillating motion of the eccentric 3 from oscillating motion of the intermediate rotor 4 relative the main rotor 2, and average rotational speed of the element 3 is 2 times the rotational speed of the element 2. The intermediate eccentric 4 oscillates relative the main rotor 2 and oscillates relative the eccentric 3, and executes compound planetary-oscillating movement relative the engine body 1.
The engine produces two power impulses per each revolution of its shaft 2. There is no separate camshaft and the engine, like the engines 1-5, does not require separate scavenging pump. The engine is arranged so as to minimize mass forces and shaft's rotational speed fluctuations, and to avoid mechanical loads to be transferred by engine's hot kinetic pairs (like the pair piston-cylinder in conventional engines). Moreover, an important advantage of the engine over other rotary engines, including Wankels, is that relative speed of engine's hot parts, namely engine's pistons and “cylinders”, is comparable to that in conventional engines, and much smaller than in other rotary engines. Thanks to this feature, both the friction loses and wear of the engine parts are much smaller than in other rotary engines, thus the engine overall efficiency and durability is higher. Another important advantage of this rotary engine is its exceptionally effective scavenging/self supercharging system similar to that of the designs 1-5, which would provide the engine with exceptionally good power and torque characteristic. To be more precise, unlike in conventional engines, effectiveness of scavenging and self-supercharging of the engine with this scavenging/self supercharging system increases as rotational speed increases, thus power of the engine is progressive, i.e. rises faster than engine's rotational speed.
There is a new secondary idea behind the design, which concerns its specific combustion system, namely this is a rotary-oscillating detonation engine with main combustion chamber common for a group of (in particular all) working chambers of the engine (see a more detailed description below).
Engine's body 1 (
The main rotor 2 (see
Intermediate rotor 4 (see
Auxiliary eccentric 3 pivots in bearing 131 placed in part 13 of the engine body 1, and is equipped with eccentrically placed bearing 31 supporting pin 45 of intermediate eccentric 4, and auxiliary pin 32 with cam (not shown), which drives pushing rod 134.
Six pairs of the main rotor pistons 212 and intermediate rotor pistons 43 form twelve working chambers C1-C12 of precisely the same construction. This large number of working chambers enables to combine relatively small stroke of engine's pistons with relatively large swept volume, and small stroke considerably contributes to engine's good balance (there is the rule “the smaller stroke the better balance”).
Moment of inertia of the main rotor 2 is much larger than that of the two other engine's moving parts (namely intermediate rotor 4 and auxiliary eccentric 3), and said shaft 2 do the work of the flywheel by itself. Means for balancing the engine are the same as those used in engine 3.
It is clear from the description above and accompanying drawings that engine's hot kinetic couples are free from mechanical loads; namely all mechanical loads are transferred by “cold” kinetic couples: bearing 111 and main pin 211; bearing 221 and cylindrical body 46 of intermediate eccentric 4; pin 45 and bearing 31; and bearing 131 and auxiliary eccentric 3.
Thanks to the specific arrangement of the engine no thrust bearings are needed, like in the engine 3.
Here is a short description of engine's work. As engine's main rotor 2 rotates, intermediate rotor 4 oscillates relative main rotor 2, thus causing cyclic change of volume of working chambers C1-C12. Assembly of working chambers C1-C12 naturally divides into two groups of “concordant” working chambers, i.e. these chambers, which volume simultaneously increases and simultaneously decreases; these groups are C1, C3, C5, C7, C9, C11 and C2, C4, C6, C8, C10, C12. As volume of one group of working chambers, say C1, C3, C5, C7, C9, C11, approaches its maximum, intermediate rotor pistons 43 open gas passages 213 placed in main rotor 2, and hot low-pressure gases driven by centrifugal forces flow from said working chambers to circular gas passage 121 and exit engine's body through exhaust port 122. Next intermediate eccentric pistons 43 open air passages 222, fresh air enters mixing chamber MC through inlet port 132 and fuel is being injected into it by injector 131 thus forming the homogeneous charge, and fresh air/fuel mixture, previously prepared in the mixing chamber MC, enters the working chambers C1, C3, C5, C7, C9, C11 through said air passages 222. This is the scavenging.
At the same time homogeneous air/fuel mixture contained in the working chambers C2, C4, C6, C8, C10, C12 is being compressed below its auto-ignition point, and flows through gas passages 44 from said working chambers to main combustion chamber 41. As volume of said working chambers assumes its minimum and pressure of the air/fuel mixture contained in main combustion chamber 41 attains its maximum, ignition apparatus IA is being activated. Electric current flows through the cable, circular conductor EC and reaches ignition apparatus IA through contact IAC, and said ignition apparatus IA causes the homogeneous charge contained in main combustion chamber 41 detonates thus rapidly producing hot, very high-pressure gases. This is the compression/combustion stroke.
Next hot very high-pressure gases contained in main combustion chamber 41 flow through gas passages 44 and enter working chambers C2, C4, C6, C8, C10, C12. As engine's main rotor 2 further rotate, volume of working chambers C2, C4, C6, C8, C10, C12 rises, hot very high-pressure gases contained therein expands, thus producing useful power. This is the power stroke.
As the main rotor 2 further rotates the whole process repeats with roles of the assemblies of working chambers C2, C4, C6, C8, C10, C12 and C1, C3, C5, C7, C9, C11 periodically interchanging.
Thanks to detonation occurring only in main combustion chamber of constant volume placed entirely, inside of one engine's element of very strong structure and detonation wave not affecting engine's pistons nor bearings, and thanks to hot very high-pressure gases produced by detonation being throttled in the gas passages 44, mechanical loads of engine's parts and their gradients are being diminished.
The foregoing description discloses six preferred embodiments of the invention. One skilled in the art will readily recognize from this description and from the accompanying figures and patent claims, that many changes and modifications can be made to the preferred embodiments without departing from the true spirit, scope and nature of the inventive concepts as defined in the following patent claims.
Number | Name | Date | Kind |
---|---|---|---|
3719438 | Howard | Mar 1973 | A |
3955541 | Seybold | May 1976 | A |
3981638 | Hutterer | Sep 1976 | A |
4257752 | Fogarty | Mar 1981 | A |
4434751 | Pavincic | Mar 1984 | A |
4901694 | Sakita | Feb 1990 | A |
20100024765 | Eckhardt et al. | Feb 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20100012077 A1 | Jan 2010 | US |