The present invention relates generally to gas turbine engines, and more particularly to gas turbine engine fuel manifolds and methods of manufacturing same.
In a gas turbine engine, an annular internal fuel manifold may be provided to distribute fuel to a plurality of fuel nozzles, for injection into a combustor.
Improvements in design and methods of manufacturing such internal fuel manifolds are continuously being sought, and are thus desirable.
It is an object of the present invention to provide an improved method for manufacturing an internal fuel manifold.
In one aspect, the present invention provides a method of manufacturing an internal manifold of a gas turbine engine, the method comprising: providing a solid ring; machining at least one annular channel in the ring using a turning process, including engaging a tool bit against a surface of the rotating ring; varying a position of the tool bit relative to the surface of the ring as a function of a relative circumferential location of the tool bit around the ring in accordance with a predetermined profile, such that the channel has a cross-sectional area that varies around a circumference of the ring; and sealingly fastening a sealing member to the ring to enclose the channel and define therewith at least one circumferential conduit having a cross-sectional area that varies around the circumference of the ring.
There is also provided, in accordance with another aspect of the present invention, a method of creating a channel having a varied cross-sectional area in an internal fuel manifold ring of a gas turbine engine, the method comprising: using a turning machine to rotate the ring and to machine an annular channel in a surface of the ring using a preselected tool bit, the machining including varying a position of the tool bit relative to the surface as a function of a relative circumferential location of the tool bit around the ring in accordance with a predetermined profile, such that the channel has a cross-sectional area that varies around a circumference of the ring.
Further details of these and other aspects of the present invention will be apparent from the detailed description and figures included below.
Reference is now made to the accompanying figures depicting aspects of the present invention, in which:
Referring to
Referring now to
Although shown as defined in the outer peripheral surface 38, i.e. the surface extending substantially radially with respect to a central axis 35 of the ring 22, the stepped channel 36 can alternately be formed in a circumferential surface of the ring 22, for example in outer circumferential surface 39.
A first inner sealing member or plate 44, sized such that it fits within the secondary conduit 42 of the stepped channel 36 and is larger than the width of the primary conduit 40 (i.e. to seal it), is fixed against a first shoulder 43 formed in the stepped channel 36 between the primary and secondary nested conduits 40, 42, by way of brazing or another fastening/sealing method. The first inner sealing member 44 can be an annular ring plate, substantially extending around the full circumference of manifold ring 22. An outer sealing member or plate 46 is similarly fixed to the fuel manifold ring 22 by brazing or other similar fastening method, against a second shoulder 45 formed within the stepped channel 36 for receiving the annular outer sealing member 46 abutted therein. The outer sealing member 46 could also be brazed directly to the outer peripheral surface 38 of the manifold ring, without the need for the second shoulder 45 in the stepped channel 36. The two sealing members 44, 46 thereby divide the single stepped channel 36 into two discrete, nested fuel conduits that are sealed from one another and which can supply independent fuel supplies to the spray tip assemblies 24, i.e. primary nested fuel conduit 40 and secondary nested fuel conduit 42.
The present invention is not limited to stepped channels, nor to the specific shoulder+sealing plate configuration described in the examples therein, but rather is applicable to any suitable annular internal manifold configuration. For example,
The primary and secondary annular nested fuel conduits 40 and 42 permit circumferential distribution of the primary and secondary fuel supply around the fuel manifold ring 22. At the location of each spray tip assembly 24 mounted to the annular manifold ring 22, fuel outlet passage holes are formed, by drilling or otherwise, in the manifold ring body substantially perpendicularly to the outer peripheral surface 38, to enable fluid flow communication between the nested fuel conduits 40, 42 and the spray tip assembly 24. Specifically, primary fuel conduit outlet passage 48 permits primary fuel flow from the primary fuel conduit 40 to be fed into the primary distributor (not shown) of the spray tip assembly 24, and secondary fuel conduit outlet passage 50 permits secondary fuel flow from the secondary fuel conduit 42 to be fed into the annular secondary fuel swirling cavity (not shown) of the spray tip assembly 24.
Typically, the grooves produced by milling or routing would have a uniform cross-sectional area all around the ring. However, with a channel having a uniform cross-sectional area, fuel velocity is lost as the fuel progresses further around the ring away from the inlet point and past each successive exit point (e.g. nozzle tips). Ideally, fuel velocity inside the fuel channel should be maintained at a level sufficient to avoid excessive heat pickup and fuel coking. To that effect, the manifold preferably has grooves which, for example, have an increased cross-sectional area in proximity of the inlet, or might preferably have a continuously decreasing cross-section around the circumference away from the inlet, to maintain fuel velocity as fuel volume decreases. Traditionally, the changes in cross-sectional area require relatively complex and/or expensive operation, such as additional milling, electrochemical machining, electric discharge machining, etc.
In the present invention, the stepped channel 36 is formed by a turning process, either using a multi-diameter bit having a shoulder corresponding to the shoulder 43 between the two nested fuel conduits 40, 42, or by successive passages with either a same bit or a different bit to separately define the secondary fuel conduit 42 and the primary fuel conduit 40. Referring to
In the embodiment shown, the variation of the position of the tool bit 80 in step 86 includes varying the depth of the tool bit 80 within the ring 22 as indicated by ΔH in
In the embodiment shown, the variation of the position of the tool bit 80 in step 86 also includes varying a distance between the tool bit 80 and the central axis 34 of the machined ring surface 38 differently during at least two different passes of the tool bit 80 around the ring 22 as indicated by ΔW in
Alternately, the variation of the position of the tool bit 80 in step 86 can include only one of the height variation and the width variations described above, or any other appropriate type of position variation required.
Thus, by manufacturing the annular fuel manifold ring 22 by a turning process (e.g. using a lathe) and varying a position of the tool bit 80 with respect to the ring surface being machined, which in the embodiment shown is the outer peripheral surface 38, the channel 36 is formed easily and cost effectively with a cross-sectional area that varies, either continuously or in discrete steps, around the circumference of the ring 22. This allows for the easy creation of blockages in the flow at desired points and subsequent continuation of the channel for weight reduction and/or dynamic balancing. In a particular aspect, the channel 36 extends around at least half the circumference of the ring 22 and is machined using the above-described method to obtain a cross-sectional area progressively varying between a maximum near the inlets 31, 33 and a minimum away from the inlets 31, 33, the maximum and minimum being located at diametrically opposed, or substantially diametrically opposed, locations around the ring, such that the fuel velocity can be maintained throughout the channel 36 to avoid excessive heat pickup and fuel coking. The variable cross-sectional area channel 36 can thus be manufactured using a relatively simple and cost-effective process when compared to other types of process such as, for example, milling, electrochemical machining, electric discharge machining, etc., which reduces the manufacturing time and costs.
The above described manufacturing process can also be used to produce manifold rings having an alternative configuration. For example, referring to
The auxiliary channel 172 can be used to carry a coolant, such as for example recirculated fuel, which will draw heat from the ring 122. The coolant flow in the auxiliary channel 172 is independent of the quantity of fuel being delivered to the engine. This is particularly needed during low power operation, when less fuel flows through the conduits of the manifold, and therefore more heat is absorbed from the combustion chamber 17 by the entire manifold ring 122. This reduces fuel coking within the fuel manifold, which can occur if sufficient fuel flow is not maintained to cool the manifold ring 122. Each conduit, namely the primary fuel conduit 140, the secondary fuel conduit 142 and the auxiliary cooling conduit 172, has its own inlet feed line, such that the fuel rates and the coolant flow rate can be independently controlled. Independent control of the primary and secondary fuel flows and independent feeding of each spray tip 24 from the annular conduits providing circumferential fuel distribution also permit fuel staging, wherein specific amounts of fuel are partitioned to specific circumferential locations of the combustion chamber to enhance ignition or to control emissions.
The channel 136 is formed by a turning process to have a cross-sectional area that varies around the circumference of the ring 122 as described above, i.e. by varying a position of the tool bit relative to the surface of the ring 122 being machined as a function of the relative circumferential location of the tool bit around the ring 122. The depth of the tool bit within the ring 122 is varied as the ring 122 turns about its central axis, either in a continuous manner or in discrete steps, such that the depth of the channel 136 varies around the circumference of the ring 122, for example between a maximum depth near the inlets and a minimum depth away from the inlets. A distance between the tool bit and the central axis of the machined surface (here, surface 138) is also varied differently during at least two different passes of the tool bit around the ring 122, either in a continuous manner or in discrete steps, such that the width of the channel 136 is varied around the circumference of the ring 122, for example between a maximum width near the inlets and a minimum width away from the inlets. Alternately, only one of the depth and width of the channel 136 is varied around the circumference of the ring 122.
Referring to
The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without department from the scope of the invention disclosed. For example, the variable depth and/or variable width turning process described can be applied to multiple alternate channel configurations, whether for a single of multiple conduits, such as to have channels with a variable cross-sectional area throughout their length to better control the fuel flow therethrough. Still other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a review of this disclosure, and such modifications are intended to fall within the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
2151540 | Varga | Mar 1939 | A |
2946185 | Bayer | Jul 1960 | A |
3213523 | Boehler | Oct 1965 | A |
3472025 | Simmons et al. | Oct 1969 | A |
3877249 | Sager | Apr 1975 | A |
4100733 | Streibel et al. | Jul 1978 | A |
4322945 | Peterson et al. | Apr 1982 | A |
4404806 | Bell, III et al. | Sep 1983 | A |
4706354 | Naudet et al. | Nov 1987 | A |
4947535 | Cowles | Aug 1990 | A |
4947715 | Council, Jr. | Aug 1990 | A |
5003678 | Oganesyan | Apr 1991 | A |
5036657 | Seto et al. | Aug 1991 | A |
5253471 | Richardson | Oct 1993 | A |
5271219 | Richardson | Dec 1993 | A |
5396759 | Richardson | Mar 1995 | A |
5400968 | Sood | Mar 1995 | A |
5419115 | Butler et al. | May 1995 | A |
5423178 | Mains | Jun 1995 | A |
5570580 | Mains | Nov 1996 | A |
5579645 | Prociw et al. | Dec 1996 | A |
5598696 | Stotts | Feb 1997 | A |
5771696 | Hansel et al. | Jun 1998 | A |
5848525 | Spencer | Dec 1998 | A |
5956955 | Schmid | Sep 1999 | A |
5979205 | Uchida et al. | Nov 1999 | A |
5983642 | Parker et al. | Nov 1999 | A |
5996335 | Ebel | Dec 1999 | A |
6109038 | Sharifi et al. | Aug 2000 | A |
6141968 | Gates et al. | Nov 2000 | A |
6149075 | Moertle et al. | Nov 2000 | A |
6240732 | Allan | Jun 2001 | B1 |
6256995 | Sampath et al. | Jul 2001 | B1 |
6463739 | Mueller et al. | Oct 2002 | B1 |
6627837 | Carboneri et al. | Sep 2003 | B1 |
6761035 | Mueller | Jul 2004 | B1 |
20030014979 | Summerfield et al. | Jan 2003 | A1 |
20040123445 | Esaki et al. | Jul 2004 | A1 |
20050188699 | Prociw | Sep 2005 | A1 |
Number | Date | Country |
---|---|---|
1013153 | Jul 1977 | CA |
2307186 | May 1999 | CA |
Number | Date | Country | |
---|---|---|---|
20070204622 A1 | Sep 2007 | US |