The invention relates to an internal geared wheel pump without a filler piece.
Internal geared wheel pumps or motors without a filler piece have an intermeshing of pinion and ring gear, the teeth of which are sealingly in mutual contact both at mutual engagement in tooth spaces and, approximately diametrically opposite, at the tooth tips located opposite one another, in order thereby to delimit a suction region from a delivery region. Since, in practice, because of unavoidable manufacturing tolerances and on account of the elastic deformations occurring particularly under higher pressures, it is not possible to achieve said sealing contact particularly in that region of the intermeshings in which the tooth tips are to come to bear on one another, measures must be taken in order to ensure this sealing contact under all operating conditions.
For this purpose, in a known internal geared wheel pump of the type initially mentioned, there is provision for the ring gear to be received with radial play in a running ring and to rotate together with the latter. The circumferential surface of the ring gear has axial grooves, in which sealing elements are received radially moveably. As a result, the annular gap between the running ring and the circumferential surface of the ring gear is subdivided into circumferential portions which can be sealed off relative to one another and which are connected, in the delivery region, to a groove acted upon by pressure fluid. As a result, in the annular gap, in one or more circumferential portions, a pressure build-up is provided, which presses the ring gear into engagement with the toothing of the pinion and consequently holds the tooth tips in sealing bearing contact on one another (DE 44 21 255 C1).
In a further known internal geared wheel machine which is likewise included in the generic type initially mentioned, the sealing contact of the tooth tips of pinion and ring gear with respect to the engagement region is ensured in that the ring gear is arranged rotatably in a bearing ring moveable transversely to the axis of said ring gear, but received nonrotatably in the housing. The bearing ring is pivotable relative to the housing about a pivot axis parallel to the axis of said bearing ring. The pivot axis lies in such a way that that annular portion of the bearing ring which is assigned to the engagement-free ring gear region is moved at least approximately radially to the pinion axis by the pressure forces acting on the ring gear in the delivery space, with the result that the tooth tips are held in mutual sealing contact in the engagement-free ring gear region (DE 196 51 683 A1).
Versions of these known internal geared wheel pumps which have been implemented in practice have in each case, for ring gear and pinion, an involute toothing, in which the tooth flanks are configured as involute curves and the tooth tips have a circumferential surface deviating from the involute form, usually a circular-cylindrical surface. In this type of toothing, the teeth of pinion and ring gear come out of contact, in regions, in suction space, that is to say between full tooth engagement and the engagement-free ring gear region, and approach one another again only shortly before the engagement-free region in which the tooth tips are to come to bear sealingly against one another. In this case, jolt-like contacts of the tooth edges in the transitional region between the tooth flank and the circumferential surface of the teeth may occur, as a result of which the sealing action of the circumferential surfaces, bearing on one another, of the tooth tips is impaired and considerable running noises may occur. In order to eliminate these disadvantages, in these known internal geared wheel pumps the tooth tips are rounded, that is to say the tooth edges are set back at the transition between tooth flank and circumferential surface. However, a complete success in improving the sealing action, particularly under high pressures, has not yet been achieved as a result.
U.S. Pat. No. 4,813,853 A disclosed an internal geared wheel pump without a filler piece, with a housing and an internally toothed ring gear rotating therein and with an externally toothed pinion mounted rotatably in the housing and meshing with the ring gear, in which pump sealing contact takes place in the region of the toothed flanks. The tooth tips of ring gear and pinion are configured asymmetrically in such a way that, in the region of tooth space engagement, the contact ratio is lower on the drive side of the tooth flanks than on the sealing side of the tooth flanks. This design can be used expediently only in the case of low pressures and high throughputs. The sealing action between the teeth of ring gear and pinion is unsatisfactory.
The object of the invention is to provide an internal geared wheel pump of the type initially mentioned, in which the sealing action between the tooth tips is improved and the generation of noise is reduced.
This object is achieved, according to the invention, by means of a configuration of the generic internal geared wheel pump as described herein.
Since the tooth tips either of the pinion or of the ring gear or of both gearwheels have an asymmetrically set-back circumferential surface, the tooth tips, when they approach one another in the engagement-free ring gear region, can first meet one another in a jolt-free manner. As they continue to come to bear on one another, the tooth tip circumferential surfaces come into contact via that part of these which is set back to a lesser extent on account of the asymmetry. A satisfactory sealing off of the tooth tips against one another is thereby obtained. In this case, the set-back surface commences at the tooth flanks of ring gear and pinion which are located opposite one another during the approach and immediately before the meeting and a smooth run of the tooth tips one onto the other is thereby obtained. According to an advantageous development, that part of the asymmetric circumferential surface which lies nearer to the tooth root extends from the transition to the tooth flank as far as the tooth center line or even into that region of the circumferential surface of the tooth tip which lies on the far side of the tooth center line with respect to said transition. Consequently, approximately half the original circumferential or rounding surface not corrected according to the invention is preserved for the purpose of sealing off.
The extent of the tooth tip set-back naturally depends on the model size. It therefore expediently amounts to 0.02-0.1 times the toothing modulus m, as measured from the transition between the uncorrected circumferential or rounding surface and the tooth flank.
Further advantages and features of the invention may be gathered from the following description of exemplary embodiments with reference to the accompanying drawings in which:
The internal geared wheel pump illustrated in
During the rotation of the pinion 2 in the direction indicated by the arrow, the freed tooth space volume increases, starting from the full engagement of the pinion toothing into the ring gear toothing above the parting line A and increasing until the state evident from
The bearing ring 4 is received in a housing bore 15 of the bowl-shaped housing part 11 with a radial play of about 0.2 mm. The wall of the housing bore 15 has passing partially through it a bearing pin 16 which is pressed firmly into the bottom of the housing bore 15. The bearing pin 16 is received, with its largely semi-cylindrical part projecting beyond the wall of the housing bore 15, in an axially directed groove 17 of the bearing ring 4. The axial groove 17 is adapted to the form of the bearing pin 16 and is likewise part-cylindrical.
The bearing pin 16 engaging into the axial groove 17 forms, for the bearing ring 4, a pivot axis which runs parallel to the axes of pinion 2 and ring gear 3 and about which the bearing ring 4 is pivotable in the housing bore 15 within the available radial play. As may be gathered from
The internal geared wheel pump according to
During the rotation of the pinion 2 in the direction of rotation shown, feed medium is fed through a suction duct, not shown, into the suction space S between the toothings of the pinion 2 and of the ring gear 3. The feed medium is pressed at increased pressure out of the delivery space D through a delivery duct, not shown. The relevant construction of an internal geared wheel pump is sufficiently known and therefore does not need any special explanation.
The pressure forces, prevailing in the delivery space D, between the intermeshing toothings act along a resultant R in such a way that the ring gear 3 seeks to move away from the pinion 2, that is to say there is the tendency that the contact existing between the teeth of pinion 2 and ring gear 3 by virtue of the toothing geometry, in particular the sealing contact between the tooth tips in the engagement-free ring gear region E, is lost. However, the pivot axis of the bearing ring 4, said pivot axis being formed by the bearing pin 16 or the engagement of the latter into the axial groove 17, lies nearer to the engagement-free ring gear region E than the line of the resultant R. Since the resultant R acts on the bearing ring 4 via the ring gear 3, a torque is thus generated about the pivot axis 16, 17 counterclockwise in FIG. 1. By means of this torque, the bearing ring 4 is pivoted about the pivot axis 16, 17, with the result that the annular portion corresponding to the engagement-free ring gear region E is moved approximately radially with respect to the pinion axis and toward the latter. Consequently, in the engagement-free ring gear region E, the tooth tips of pinion 2 and ring gear 3 are moved relative to one another with a force which is proportional to the size of the resultant R. Sealing contact is thereby maintained in this toothing region in a pressure-proportional manner.
The bearing ring 4 has, at a point assigned to the vertex of the engagement-free ring gear region E, a further axial groove 18 with a rectangular cross section on its outer circumference. This axial groove 18 is assigned, in the bottom of the housing bore 15, a receiving bore 19 in which a hairpin spring 20 is held. The hairpin spring 20 projects into the axial groove 18 and loads the bearing ring 4 radially in such a way that the teeth of the ring gear 3 are pressed with their tooth tips against one another in the engagement-free ring gear region E. This loading direction corresponds largely to the direction of movement which the bearing ring 4 executes about the pivot axis 16, 17 as a result of the pivoting movement. The force of the hairpin spring 20 may be kept relatively low, since it serves merely to ensure the necessary sealing contact between the tooth tips in the engagement-free ring gear region E during the operation of starting the internal geared wheel pump, that is to say at a time when there is still no operating pressure built up in the delivery space D and therefore also no pressure forces yet take effect.
The position and direction of the resultant R are largely predeterminable and correspond essentially to those depicted in FIG. 1. The pressure build-up in the delivery space D can be influenced in a known way by means of prefilling slots on the teeth of the pinion 2 and/or ring gear 3, so that a largely identical pressure prevails, for example, over the tooth spaces of the delivery space D. In this case, the resultant R is perpendicular to the line, illustrated, unbroken, in
The embodiment according to
The operation of this embodiment corresponds to that of the embodiment according to
In
In the exemplary embodiment shown, according to
In the exemplary embodiment shown, the set-back surface 41,28 has a smooth continuous run and may in all instances be a cylindrical, in particular circular-cylindrical surface. The radius of this surface can, in principle, be selected within wide limits which are determined merely by the size of the toothing and by what extent of the set-back surface 41,28 toward the opposite tooth flank is desired. It goes without saying, in this case, that intersections (transitional lines 42,26, 45,27) which occur are rounded or smooth, so as to avoid any edges.
Only the teeth 33 of the ring gear 3 or the teeth 22 of the pinion 2 may be corrected in a corresponding way. In this last case, the transitional line 26, corresponding to the transitional line 42, from the set-back surface to the involute flank 24 lies on the involute flank shown on the right in FIG. 4.
By means of the described correction of the teeth 33,22, when the teeth 22 and 33 run toward one another, the circumferential surfaces 23,34, more precisely their transitional edges 25,36, can run onto the set-back surfaces 41,28 smoothly and in a jolt-free manner and ultimately are pressed in the way outlined above onto that part of the circumferential surface 34,23 which has remained and which ensures that the tooth tips are sealed off. In general, however, the set-back according to the invention of the tooth tips and its function are irrespective of the type of pressing of the tooth tips on one another.
The set-back of the tooth tips may take place during manufacture by subsequent grinding after the generation of the uncorrected toothing or of a DIN toothing or even during the generation of the toothing by means of a corresponding tool profile.
There may, within the scope of the invention, be a difference from the above exemplary embodiments. Thus, instead of the involute toothing, a cycloid toothing may be provided on the gearwheels. Furthermore, the internal geared wheel pump may be equipped in a known way with axial pressure plates, particularly in the case of higher operating pressures.
Number | Date | Country | Kind |
---|---|---|---|
100 52 779 | Oct 2000 | DE | national |
Applicant claims priority under 35 U.S.C. §119 of German Application No. 100 52 779.5, filed on Oct. 25, 2000. Applicants also claims priority under 35 U.S.C. §365 of PCT/DE01/03484, filed on Sep. 7, 2001. The international application under PCT article 21(2) was not published in English.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTDE01/03484 | 9/7/2001 | WO | 00 | 4/25/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0235097 | 5/2/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2389728 | Hill | Nov 1945 | A |
4813853 | Otto et al. | Mar 1989 | A |
Number | Date | Country |
---|---|---|
25 52 454 | Jun 1976 | DE |
44 21 255 | Jun 1995 | DE |
196 51 683 | Jun 1998 | DE |
198 15 421 | Oct 1999 | DE |
0 173 778 | Mar 1986 | EP |
0 736 691 | Oct 1996 | EP |
1316934 | May 1973 | GB |
2-27179 | Jan 1990 | JP |
Number | Date | Country | |
---|---|---|---|
20040091379 A1 | May 2004 | US |