The invention relates to an internal heat exchanger having a compact design, in particular an internal heat exchanger for a motor vehicle.
Internal heat exchangers are used for air conditioning systems in motor vehicles. In particular, they are used to increase the efficiency and the performance of a vehicle air conditioning system. These increases in performance and efficiency can be achieved through the implementation of a coaxial heat exchanger wherein, for example, a liquid refrigerant is guided around the outside of the suction tube. Known heat exchangers do not adequately combine efficiency of cooling with a compact design.
WO 2014/026176 discloses a suction flow enhancement for an internal heat exchanger. The flow enhancer or insert is disposed in the inner tube to divert the flow of the fluid in the inner tube towards the walls of the inner tube. The diversion of the flow toward the outer wall of the inner tube improves the efficiency of the internal heat exchanger. The flow enhancer can, for example, be an elongate member configured to divert the flow toward the outer wall of the inner tube by blocking the flow in the middle of the inner tube.
United States patent application publication 2013/0299143 A1 discloses an internal heat exchanger having a thermally conductive spiral element wound around the inner tube of the heat exchanger and disposed in an annular space between the inner tube and an outer tube of the internal heat exchanger.
It is an object of the invention to provide an internal heat exchanger having an increased efficiency and a compact design. The internal heat exchanger includes an inner tube and a sleeve. The inner tube can also be referred to as a suction tube. The sleeve or outer tube surrounds a portion of the inner tube and is coaxial thereto. The sleeve has a spiral profile on its inner side of the sleeve wall. The spiral profile of the sleeve has a first spiral groove running clockwise and a second spiral groove running counterclockwise. The first and the second spiral grooves mutually intersect at cross-points. The cross-points generate additional turbulence and flow resistance. The spiral profile of the outer tube is in contact with the outer wall of the inner tube and thus a fluid flowing through the spiral profile is in fluid contact engagement with the outer wall of the inner tube to facilitate the heat transfer.
In order to further increase heat transfer, an insert or flow enhancer can be arranged in the inner tube. The insert diverts suction flow, that is, the fluid flowing through the inner tube, towards the walls of the inner tube. This diversion of the suction flow towards the walls of the inner tube increases the transfer of heat between the fluid in the inner tube and the inner wall of the inner tube, resulting in an improved efficiency of the internal heat exchanger. The insert can, for example, block the flow in the center of the inner tube to divert the flow in the inner tube toward the inner wall of the inner tube. Such a configuration of an internal heat exchanger can result in a very compact internal heat exchanger as well as increased efficiency thereof. Thus, the size of an air conditioning system can be reduced. Further due to the increase in efficiency, the length of the internal heat exchanger can be reduced with respect to conventional internal heat exchangers. The compact design further facilitates in supporting air conditioning assembly routing.
A method of making an internal heat exchanger includes providing an inner or suction tube. A sleeve defining a spiral profile, a fluid inlet, and a fluid outlet is arranged around the inner tube. The sleeve is pressed or crimped to fix the outer sleeve with respect to the inner tube and so as to cause the spiral profile to contact the suction tube. A flow enhancer can also be inserted into the inner tube to further increase the heat transfer between the fluid flowing through the inner tube and the wall of the inner tube. If a flow enhancer is inserted into the inner tube prior to the crimping of the sleeve, the crimping of the sleeve onto the inner tube can also fix the flow enhancer in the inner tube.
The invention will now be described with reference to the drawings wherein:
An internal heat exchanger according to the present invention can be used in a plurality of applications, for example, in an air conditioning system of a motor vehicle. The internal heat exchanger will be described below in the exemplary context of an air conditioning system for a motor vehicle.
In a preferred embodiment, the spiral profile 9 further includes a second groove 11. The first groove 10 can run in a clockwise or counterclockwise direction and the second groove 11 running in an opposite direction to the first spiral groove 10, thus providing the sleeve 8 with a groove running clockwise and a groove running counter-clockwise. The first and the second grooves intersect at cross-points 17. A spiral profile having spiral grooves in cross direction creates turbulence and adds resistance to a fluid flowing through the sleeve at each cross-point and slows down the fluid flow through the sleeve. A slower fluid flow results in increased heat transfer between the outer wall of the inner tube 7 and the sleeve 8, in particular the fluid flowing through the spiral profile 9.
An insert 12 configured as a flow enhancer can additionally be disposed in the inner tube 7 to increase the heat transfer. The flow enhancer 12 diverts flow to the wall of the inner tube 7, for example, by blocking the center of the inner tube 7. The insert 12 may also have flow enhancer ribs 18 for directing the flow. The diversion of fluid flowing in the inner tube 7 by the flow enhancer 12 increases heat transfer between the fluid flowing through the inner tube 7 and the wall of the inner tube 7. The insert is arranged in the inner tube 7 in the region of the inner tube which is surrounded by the sleeve 8.
A method for making an internal heat exchanger includes a first step of providing an inner tube through which a fluid can flow in the axial direction. A sleeve having a spiral profile is positioned or slid around the inner tube. The spiral profile includes a first spiral groove and a second spiral groove. The first and second spiral grooves spiral in opposite directions and intersect at cross-points. The cross-points generate turbulence and add resistance to the fluid flowing through the sleeve. The sleeve is fixed in position around the inner tube, for example by pressing or crimping the sleeve onto the inner tube. As shown in
It is understood that the foregoing description is that of the preferred embodiments of the invention and that various changes and modifications may be made thereto without departing from the spirit and scope of the invention as defined in the appended claims.