This invention relates to lubrication system for a rotary machine, and more particularly, the invention relates to an axial screw pump for providing supplemental lubrication and cooling to an electromechanical rotary machine.
Hollow shafts have been used in pumps and other rotary machines to permit oil to flow to areas in need of lubrication. The shaft and other components induce oil flow in the shaft passage as resulting from rotation of the shaft. However, lubrication circulation from this type of configuration is often inadequate for providing sufficient lubrication and cooling to shaft bearings.
Screw type arrangements have been employed with rotating shafts to provide a lubricated hydrodynamic seal. The seal includes a pair of mating portions with complementary helical grooves to provide a lubricating film between the portions so that the seal can withstand high rotational speeds. Although the seal provides a pumping action of oil there through, the screw arrangement is not sufficient to provide lubrication and cooling throughout the rotary machine. Other screw arrangements have been used as a pump for pumping fluid throughout the rotary machine. However, prior art screw pumps have not been used in combination with a hollow shaft to provide increased lubrication and cooling throughout the rotary machine.
Therefore, what is needed is a rotary machine having increased internal lubrication and cooling.
The present invention provides a rotary machine, such as an electromechanical device, including a housing having a lubricating oil disposed within the housing. A shaft is rotatable about an axis relative to the housing. The shaft has a passage extending to an end portion of the shaft. A screw includes a body arranged coaxial to the shaft, and preferably affixed thereto. The screw includes helical blades extending outwardly from the body adjacent to a shroud. The shroud is arranged about the screw forming a gap between the blades and the shroud. Rotation of the shaft and screw pump the oil to the end portion of the shaft and into the passage from which the oil may be delivered to other machine components, such as the bearings. A flow straightener having radial fins may be arranged between the screw and the passage for controlling the flow of oil into the passage preventing a vortex.
Accordingly, the above invention provides a rotary machine having increased internal lubrication and cooling.
Other advantages of the present invention can be understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
A rotary machine 10, such as an electromechanical device, is shown in FIG. 1. The machine 10 includes a housing with a stator 14 disposed about a rotor 16, such as those found in known generators or motors. Of course, it should be understood that the machine 10 shown is only one type of rotary machine for which the present invention may be used.
The rotor 16 has a hollow shaft 18 that may be supported in the housing 12 by bearings 20. The shaft 18 is rotatable relative the housing 12 about an axis A. The machine 10 may rotate at significant speeds, and as a result, may produce large amounts of heat that may damage the machine components. To this end, cooling devices 22 and 24 may be employed to remove heat from the machine. However, in some applications the cooling devices may be insufficient for removing the necessary amount of heat to prevent failure of the machine 10.
The housing 12 may define a sump 26 having a lubricating oil disposed within the housing 12 up to a level L. The oil is pumped throughout the machine 10 along lubrications paths f to components requiring lubrication and heat removal. The oil may be circulated and filtered in any know system as necessary. Referring to
A shroud 34 may be affixed to a portion of the housing 12 to enclose the end portion 28 of the shaft 18. Of course, the shroud may be integrally formed with the housing 12 or any other suitable component. The shroud includes fluid inlets 36 that are preferably submerged in the sump 26 so that the oil level L is higher that the inlets 36 to ensure a continuous supply of oil to the interior cavity of the shroud 34.
A screw 38 includes a body 40 arranged coaxial to the shaft 18, and preferably affixed thereto beneath the inlets 36. The screw 38 includes helical blades 42, best shown in
Referring to
The invention has been described in an illustrative manner, and it is to be understood that the terminology that has been used is intended to be in the nature of words of description rather than of limitation. Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is, therefore, to be understood that within the scope of the appended claims the invention may be practiced otherwise than as specifically described.
Number | Name | Date | Kind |
---|---|---|---|
2125645 | Money | Aug 1938 | A |
3493168 | Valbjorn | Feb 1970 | A |
3664461 | Leffers et al. | May 1972 | A |
4714405 | Schaefer et al. | Dec 1987 | A |
5827042 | Ramsay | Oct 1998 | A |
5984627 | Ramsay | Nov 1999 | A |
6210103 | Ramsay | Apr 2001 | B1 |
6234490 | Champlin | May 2001 | B1 |
6296254 | Young | Oct 2001 | B1 |
6450785 | Dellby et al. | Sep 2002 | B1 |
6716001 | Kim | Apr 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20040131464 A1 | Jul 2004 | US |