Internal power-supply potential generating circuit

Information

  • Patent Grant
  • 6777920
  • Patent Number
    6,777,920
  • Date Filed
    Friday, September 20, 2002
    22 years ago
  • Date Issued
    Tuesday, August 17, 2004
    20 years ago
Abstract
The internal power-supply potential generating circuit includes a reference potential generating circuit having small dependency on an external power-supply potential and on a temperature, an MOS transistor for pull up, a level shifter producing a potential lower than a reference potential by a prescribed voltage to a first node and producing a potential lower than an internal power-supply potential by a voltage of the sum of the prescribed potential and an offset potential to a second node, and a differential amplifier bringing an MOS transistor out of conduction in response to the potential of the second node reaching the potential of the first node. Thus, the reference potential may be set lower by the offset voltage, allowing stable reference potential and internal power-supply potential to be obtained even if the external power-supply potential is lowered.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




The present invention relates to an internal power-supply potential generating circuit, and more particularly, to an internal power-supply potential generating circuit that generates an internal power-supply potential based on an external power-supply potential.




2. Description of the Background Art




In a semiconductor memory device, reduction of power consumption has conventionally been attempted by operating an internal circuit with an internal power-supply potential intVCC that is lower than an external power-supply potential VCC. Thus, a semiconductor memory device is provided with an internal power-supply potential generating circuit that down-converts external power-supply potential VCC to generate internal power-supply potential intVCC.

FIG. 8

shows a circuit diagram illustrating the configuration of such an internal power-supply potential generating circuit.




In

FIG. 8

, the internal power-supply potential generating circuit includes a reference potential generating circuit


50


, a differential amplifier


53


and a P-channel MOS transistor


54


. Reference potential generating circuit


50


includes a constant-current source


51


and a resistive element


52


connected in series between the line of external power-supply potential VCC and the line of a ground potential VSS. A-reference potential VR appears at a node N


51


between constant-current source


51


and resistive element


52


. P-channel MOS transistor


54


is connected between the line of external power-supply potential VCC and a power-supply node N


54


. The potential appearing at power-supply node N


54


comes to be internal power-supply potential intVCC. Differential amplifier


53


has an inverting input terminal that receives reference potential VR, a noninverting input terminal that receives internal power-supply potential intVCC, and an output terminal connected to the gate of P-channel MOS transistor


54


. Differential amplifier


53


and P-channel MOS transistor


54


constitute a voltage follower.




If internal power-supply potential intVCC is lower than reference potential VR, differential amplifier


53


outputs a signal at a logic low or “L” level to bring P-channel MOS transistor


54


into conduction. If internal power-supply potential intVCC is higher than reference potential VR, differential amplifier


53


outputs a signal at a logic high or “H” level to bring P-channel MOS transistor


54


out of conduction. Accordingly, internal power-supply potential intVCC is held at the same potential as reference potential VR.




It is required for a semiconductor memory device having external power-supply potential VCC of 2.5V to ensure normal operation even if external power-supply potential VCC varies in the range of 2.5V±0.2V. The semiconductor memory device having external power-supply potential VCC of 2.5V therefore requires a margin to set internal power-supply potential intVCC at 2.2V.




In internal power-supply potential generating circuit in

FIG. 8

, however, voltage drop of 0.2V occurs at constant-current source


51


, which causes reference potential VR to be lower than 2.2V when external power-supply potential VCC is lowered to less than 2.4V. This makes it impossible to hold internal power-supply potential intVCC at 2.2V.




Moreover, output current of constant-current source


51


increases in proportional to temperature, so that reference potential VR is increased as the temperature increases, making internal power-supply potential intVCC higher than 2.2V.




SUMMARY OF THE INVENTION




A primary object of the present invention is, therefore, to provide an internal power-supply potential generating circuit that can generate a stable internal power-supply potential.




According to an aspect of the present invention, an internal power-supply potential generating circuit includes a switching element connected between a line of an external power-supply potential and a line of an internal power-supply potential, a reference potential generating circuit generating a predetermined first reference potential, a level shift circuit having a predetermined offset voltage and generating a second reference potential lower than the first reference potential by a predetermined voltage while generating a monitoring potential lower than the internal power-supply potential by a voltage obtained by adding the offset voltage to the predetermined voltage, and a differential amplifier bringing the switching element into conduction when the monitoring potential is lower than the second reference potential and bringing the switching element out of conduction when the monitoring potential is higher than the second reference potential. Accordingly, the internal power-supply potential is held at a potential obtained by adding the offset voltage to the first reference potential, allowing the first reference potential to be set lower by the offset voltage. Thus, even if the external power-supply potential is lowered, the first reference potential is not lowered, enabling generation of a stable internal power-supply potential. Moreover, the differential amplifier may be operated in a region with a large gain, so that responsibility to variation in the internal power-supply potential is improved.




According to another aspect of the present invention, an internal power-supply potential generating circuit includes a switching element connected between a line of the external power-supply potential and a line of the internal power-supply potential, a first voltage dividing circuit having a first voltage division ratio and generating a monitoring potential by dividing the internal power-supply potential, a reference potential generating circuit generating a predetermined first reference potential, a second voltage dividing circuit having a second voltage division ratio higher than the first voltage division ratio and generating a second reference potential by dividing the first reference potential, and a differential amplifier bringing the switching element into conduction when the monitoring potential is lower than the second reference potential and bringing the switching element out of conduction when the monitoring potential is higher than the second reference potential. Accordingly, the monitoring potential obtained by dividing the internal power-supply potential at the first voltage division ratio is held at the second reference potential obtained by dividing the first reference potential at a second voltage division ratio higher than the first division ratio, allowing the first reference potential to be set lower by the difference between the first and second voltage division ratios. Thus, even if the external power-supply potential is lowered, the first reference potential is not lowered, enabling generation of a stable internal power-supply potential.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

is a circuit diagram showing the configuration of an internal power-supply potential generating circuit according to the first embodiment of the present invention;





FIG. 2

shows the configuration of a reference potential generating circuit shown in

FIG. 1

;





FIG. 3

shows the operation of the reference potential generating circuit shown in

FIG. 2

;





FIG. 4

illustrates the operation of a load circuit shown in

FIG. 2

;





FIG. 5

illustrates the operation of a level shifter shown in

FIG. 1

;





FIG. 6

is another graph illustrating the operation of the level shifter shown in

FIG. 1

;





FIG. 7

is a circuit block diagram showing the configuration of an internal power-supply potential generating circuit according to the second embodiment of the present invention; and





FIG. 8

is a circuit diagram showing the configuration of the conventional internal power-supply potential generating circuit.











DESCRIPTION OF THE PREFERRED EMBODIMENTS




Fist Embodiment




Referring to

FIG. 1

, the internal power-supply potential generating circuit includes a reference potential generating circuit


1


, a level shifter


30


, a differential amplifier


35


and a P-channel MOS transistor


41


. Reference potential generating circuit


1


includes, as shown in

FIG. 2

, a constant-current generating circuit


2


and a load circuit


10


.




Constant-current generating circuit


2


includes P-channel MOS transistors


3


to


5


, N-channel MOS transistors


6


and


7


, and a resistive element


8


. P-channel MOS transistor


3


and N-channel MOS transistor


6


are connected in series between the line of an external power-supply potential VCC and the line of a ground potential VSS. Resistive element


8


, P-channel MOS transistor


4


and N-channel MOS transistor


7


are connected in series between the line of external power-supply potential VCC and the line of ground potential VSS. The gates of P-channel MOS transistors


3


and


4


are both connected to the drain of P-channel MOS transistor


3


. The gates of N-channel MOS transistor


6


and


7


are both connected to the drain of N-channel MOS transistor


7


. The source of P-channel MOS transistor


5


receives external power-supply potential VCC, and the gate thereof is connected to the respective gates of P-channel MOS transistors


3


and


4


.




N-channel MOS transistors


6


and


7


constitute a current mirror circuit. Thus, I7/I6=W7/W6 is established, where I6 and I7 represent current flowing through N-channel MOS transistors


6


and


7


respectively, whereas W6 and W7 represent the channel widths of N-channel MOS transistors


6


and


7


respectively. Further, P-channel MOS transistors


3


and


4


operate in a weak inversion region, so that the ratio of the drain current in P-channel MOS transistor


4


to that in P-channel MOS transistor


3


is represented by the equation below.











I7
I6

=


W7
W6

=


AW4





exp


{


q
kT



(

Vgs
-
Vr

)


}



AW3






exp


(


q
kT


Vgs

)
















=


W4
W3



exp


(


-

q
kT



Vr

)


























wherein W3 and W4 are the channel widths of P-channel MOS transistors


3


and


4


respectively, A is a constant, q is an elementary charge of electrons, k is a Boltzmann constant, Vgs is a gate-source voltage, and Vr is a terminal-to-terminal voltage of resistive element


8


. Accordingly, constant current Ic generated at constant-current generating circuit


2


is represented by the equation below, where Ra is the resistance value of resistive element


8


.






Ic
=


Vr
Ra

=


kT
qRa



ln


(


W4
W3

·

W6
W7


)














Load circuit


10


includes P-channel MOS transistors


11


to


15


connected in series between the drain of P-channel MOS transistor


5


and the line of ground potential VSS, and fuses


16


,


17


and


18


connected in parallel with P-channel MOS transistors


11


,


12


and


15


, respectively. The gates of P-channel MOS transistors


11


to


13


are all connected to the line of ground potential VSS. Each of P-channel MOS transistors


11


to


13


forms a resistive element having a prescribed resistance value Rb. The gate and drain of P-channel MOS transistor


14


are connected with each other, whereas the gate and drain of P-channel MOS transistor


15


are connected with each other. Each of P-channel MOS transistors


14


and


15


forms a diode element having a prescribed threshold voltage Vth.




When fuses


16


to


18


are blown, the potential of the drain of P-channel MOS transistor


5


, i.e. reference potential VR, is represented by VR=3 IcRb+2 Vth=2.2V. When fuse


17


is blown, VR=2 IcRb+2 Vth=2.0V is established. When fuses


16


to


18


are not blown, VR=IcRb+Vth=1.1V is established. Here, fuse


17


is blown to set the reference potential as VR=2.0 V.





FIG. 3

shows a dependency of reference potential VR to external power-supply potential VCC. Referring to

FIG. 3

, if source-drain voltage of P-channel MOS transistor


5


is 0V, no current flows through P-channel MOS transistor


5


, generating no reference potential VR. Accordingly, reference potential VR is lower than external power-supply potential VCC by the source-drain voltage of P-channel MOS transistor


5


. If external power-supply potential VCC is too low, MOS transistors


3


to


7


in constant-current generating circuit


2


are brought out of conduction, generating no reference potential VR. Moreover, as described above, if external power-supply potential VCC in an appropriate range is applied, constant-current generating circuit


2


generates constant current independent of the level of external power-supply potential VCC. When fuse


17


is blown, therefore, VR=VCC−0.2V is established in the range of VCC<2.2V, and VR=2.0V is established in the range of VCC>2.2V.




Drain-source current Ids in the weak inversion region of the MOS transistor is represented by the equation below.






Ids
=

AW






exp


(


q
kT



&LeftBracketingBar;
Vgs
&RightBracketingBar;


)







Therefore
,


ln





Ids

=



q
kT



&LeftBracketingBar;
Vgs
&RightBracketingBar;


+

ln






AW
.















FIG. 4

shows the relationship between gate-source voltage |Vgs| and drain-source current Ids in an MOS transistor. Referring to

FIG. 4

, the slope of the curve becomes smaller as a temperature T increases. Moreover, gate-source voltage |Vgs| obtained when constant current flows through the MOS transistor operating in the weak inversion region, i.e. threshold voltage Vth, is reduced as temperature T increases. Accordingly, the use of two MOS transistors


14


and


15


operating in the weak inversion region can cancel the positive temperature characteristic of constant-current generating circuit


2


.




When fuses


16


to


18


are blown, current of the same value flows through P-channel MOS transistors


11


to


15


. Assuming that, for example, each of P-channel MOS transistors


11


to


13


has a channel width W of 2 μm and a channel length L of 100 μm, and that each of P-channel MOS transistors


14


and


15


has channel width W of 8 μm and channel length L of 0.24 μm, P-channel MOS transistors


11


to


13


can be operated in an inversion region, while P-channel MOS transistors


14


and


15


can be operated in a weak inversion region.




Referring back to

FIG. 1

, level shifter


30


includes N-channel MOS transistors


31


to


34


. N-channel MOS transistors


31


and


32


are connected between the line of external power-supply potential VCC and respective nodes N


31


, N


32


, the gates thereof receiving reference potential VR and internal power-supply potential intVCC, respectively. N-channel MOS transistors


33


and


34


are connected between respective nodes N


31


, N


32


and the line of ground potential VSS, the gates thereof both being connected to node N


31


. N-channel MOS transistors


33


and


34


constitute a current mirror circuit.




Level shifter


30


is configured to have an offset voltage of 0.2V. When intVCC=VR+0.2V=2.2V, the potential of node N


31


is equal to that of node N


32


. Thus, when the channel widths of N-channel MOS transistors


31


to


34


are represented by W31 to W34 respectively, W31/W32=W33/W34 is established in a normal level shifter, the potential of node N


31


being equal to that of node N


32


when VR=intVCC. In level shifter


30


, however, the relationship of W31/W32>W33/W34 (e.g., W31=1.2 μm, W32=W33=W34=0.6 μm) is satistied, nodes N


31


and N


32


having the same potential when internal power-supply potential intVCC reaches VR+0.2V. Here, nodes N


31


and N


32


have a potential of 1.0V.




Differential amplifier


35


includes P-channel MOS transistors


36


,


37


, and N-channel MOS transistors


38


to


40


. P-channel MOS transistors


36


and


37


are connected between the line of external power-supply potential VCC and respective nodes N


36


, N


37


, the gates thereof being connected to node N


36


. P-channel MOS transistors


36


and


37


constitute a current mirror circuit. N-channel MOS transistors


38


and


39


are connected between respective nodes N


36


, N


37


and node N


38


, the gates thereof being connected to nodes N


32


and N


31


respectively. N-channel MOS transistor


40


is connected between node N


38


and the line of ground potential VSS, the gate thereof receiving constant voltage VC. N-channel MOS transistor


40


forms a constant-current source. P-channel MOS transistor


41


is connected between the line of external power-supply potential VCC and power-supply node N


41


, the gate thereof being connected to node N


37


. The potential of power-supply node N


41


comes to be internal power-supply potential intVCC.




Differential amplifer


35


is a normal differential amplifier having no offset voltage. Thus, when the channel widths of P-channel MOS transistors


36


to


39


are represented by W36 to W39 respectively, W36/W37=W38/W39 is established. P-channel MOS transistor


41


is brought out of conduction when the potential of node N


32


reaches the potential of N


31


.




Accordingly, if internal power-supply potential intVCC is lower than VR+0.2V, the potential of node N


31


is higher than the potential of node N


32


, making the current flowing through MOS transistors


36


to


38


smaller than the current flowing through MOS transistor


39


, and thus setting node N


37


at the “L” level. This brings P-channel MOS transistor


41


into conduction, so that internal power-supply potential intVCC is raised.




If internal power-supply potential intVCC is higher than VR+0.2V, the potential of node N


31


is lower than the potential of node N


32


, making the current flowing through MOS transistors


36


to


38


greater than the current flowing through MOS transistor


39


, and thus setting node N


37


at the “H” level. This brings P-channel MOS transistor


41


out of conduction, so that internal power-supply potential intVCC is lowered. Hence, internal power-supply potential intVCC is held at VR+0.2V.





FIG. 5

shows an Id-Vds characteristic of N-channel MOS transistors


38


and


39


included in differential amplifier


35


shown in FIG.


1


. In

FIG. 5

, gate-source voltage Vgs of N-channel MOS transistor


38


is fixed at Vgs=VR=2.0V. When drain-source voltage Vds of N-channel MOS transistor


38


is raised, drain current Id of N-channel MOS transistor


38


also increases. If, however, Vds exceeds Vgs−Vth=2.3−0.8=1.5V, drain current Id comes into saturation.




The Id-Vds characteristic of N-channel MOS transistor


39


sets the point of Vds=VCC=2.3V as the origin, and sets the point of Vds=0V as the point of Vds=VCC=2.3V. When drain-source voltage Vds of N-channel MOS transistor


39


is raised while gate-source voltage Vgs′ of N-channel MOS transistor


39


is set at 2.2V, drain current Id of N-channel MOS transistor


39


also increases. If Vds exceeds VCC-Vth, however, Id comes into saturation. At the intersecting point of the curve of Vgs=2.0V and the curve of Vgs′=2.2V, current Id flowing through N-channel MOS transistor


38


is equal to current Id flowing through N-channel MOS transistor


39


, the potential of node N


37


being Vds≐1.3V. Even if Vgs′ of N-channel MOS transistor


39


varies in the range of ±0.1V from 2.2V, the potential of node N


37


changes only in the range of approximately ±0.3V, resulting in a small gain of differential amplifier


20


.




According to the first embodiment, therefore, reference potential VR and internal power-supply potential intVCC are level-shifted to approximately 1.0V. This increases the area of a saturation region of the Id-Vds characteristics of N-channel MOS transistors


38


and


39


, as shown in

FIG. 6

, widening the range of variation in the potential of node N


21


to approximately 1.5V when Vgs′ of N-channel MOS transistor


39


varies in the range of ±0.1V, increasing the gain of the differential amplifier.




In the first embodiment, internal power-supply potential intVCC is held at the value of potential VR+0.2V which is obtained by adding the offset voltage of level shifter


30


to reference potential VR, allowing reference potential VR to be set lower by the offset voltage. Therefore, even if external power-supply potential VCC is lowered to 2.2V, reference potential VR is held at 2.0V while internal power-supply potential intVCC is held at 2.2V.




Moreover, differential amplifier


35


is operated in a region with a large gain, improving responsivity to the variation in internal power-supply potential intVCC.




Second Embodiment





FIG. 7

is a block diagram showing the configuration of an internal power-supply potential generating circuit according to the second embodiment of the present invention. Referring to

FIG. 7

, the internal power-supply potential generating circuit includes a reference potential generating circuit


1


, a voltage dividing circuit


42


, a differential amplifier


45


, a P-channel MOS transistor


46


, and resistive elements


47


and


48


. Reference potential generating circuit


1


is the same as that shown in

FIG. 2

, generating a reference potential VR=2.0V that is independent of external power-supply potential VCC and a temperature T.




Voltage dividing circuit


42


includes N-channel MOS transistors


43


and


44


connected in series between the line of external power-supply potential VCC and the line of ground potential VSS. N-channel MOS transistor


43


has its gate receiving reference potential VR, and its drain (node N


43


) connected to the gate of N-channel MOS transistor


44


. When the channel widths of N-channel MOS transistors


43


and


44


are represented by W43 and W44 respectively, the channel widths are set as W43>W44 such that node N


43


of 1.1V is obtained. It is noted that, when W43=W44, the potential of node N


43


is represented by VR/2=1.0V.




P-channel MOS transistor


46


is connected between the line of external power-supply potential VCC and power-supply node N


46


. The potential of power-supply node N


36


comes to be internal power-supply potential intVCC. Resistive elements


47


and


48


are connected in series between power-supply node N


46


and the line of ground potential VSS. Resistive elements


47


and


48


have the same resistance value.




Differential amplifier


45


has an inverting input terminal that receives an output potential of voltage dividing circuit


42


, a noninverting input terminal connected to the node between resistive elements


47


and


48


, and an output terminal connected to the gate of P-channel MOS transistor


46


. Differential amplifier


45


controls the gate potential of P-channel MOS transistor


46


such that the potential of the node between resistive elements


47


and


48


corresponds with the output potential of voltage dividing circuit


42


. Thus, internal power-supply potential intVCC is held at 2.2V.




According to the second embodiment, a potential intVCC/2 obtained by dividing internal power-supply potential intVCC by 2 is held at a potential of 1.1VR/2=1.1V obtained by dividing reference potential VR of 1.1 by 2, allowing reference potential VR to be set at 2.0V. Therefore, even if internal power-supply potential VCC is lowered to 2.2V, reference potential VR is held at 2.0V, while internal power-supply potential intVCC is held at 2.2V.




Note that, when fuses


16


to


18


in

FIG. 2

are not blown to set reference potential VR at 1.1V and this reference potential VR of 1.1V is applied to the inverting input terminal of differential amplifier


45


by eliminating voltage dividing circuit


42


in

FIG. 7

, internal power-supply potential intVCC is greatly raised as the temperature increases. This is because two diode elements (P-channel MOS transistors


14


,


15


) having a negative temperature characteristic is required, i.e., one diode element (P-channel MOS transistor


14


) is insufficient, in order to cancel the positive temperature characteristic of constant-current generating circuit


2


. It is, therefore, required to set reference potential VR at 2.2V by blowing fuses


16


to


18


and to provide voltage dividing circuit


42


in order to stabilize internal power-supply potential intVCC.




Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.



Claims
  • 1. An internal power-supply potential generating circuit generating an internal power-supply potential based on an external power-supply potential, comprising:a switching element connected between a line of said external power-supply potential and a line of said internal power-supply potential; a reference potential generating circuit generating a predetermined first reference potential; a level shift circuit having a predetermined offset voltage and generating a second reference potential lower than said first reference potential by a predetermined voltage while generating a monitoring potential lower than said internal power-supply potential by a voltage obtained by adding said offset voltage to said predetermined voltage; and a differential amplifier bringing said switching element into conduction when said monitoring potential is lower than said second reference potential, and bringing said switching element out of conduction when said monitoring potential is higher than said second reference potential.
  • 2. The internal power-supply potential generating circuit according to claim 1, whereinsaid level shift circuit includes first and second transistors connected between the line of the external power-supply potential and first and second nodes respectively, and having input electrodes that receive said first reference potential and said internal power-supply potential respectively, and third and fourth transistors connected between a line of a ground potential and said first and second nodes respectively, and having respective input electrodes both connected to said second node; said second reference potential and said monitoring potential are potentials at said first and second nodes respectively; and a ratio of current drivability of said first transistor to current drivability of said second transistor is greater than a ratio of current drivability of said third transistor to current drivability of said fourth transistor.
  • 3. An internal power-supply potential generating circuit generating an internal power-supply potential based on an external power-supply potential, comprising:a switching element connected between a line of said external power-supply potential and a line of said internal power-supply potential; a first voltage dividing circuit having a first voltage division ratio and generating a monitoring potential by dividing said internal power-supply potential; a reference potential generating circuit generating a predetermined first reference potential; a second voltage dividing circuit having a second voltage division ratio higher than said first voltage division ratio, and generating a second reference potential by dividing said first reference potential; and a differential amplifier bringing said switching element into conduction when said monitoring potential is lower than said second reference potential, and bringing said switching element out of conduction when said monitoring potential is higher than said second reference potential.
  • 4. The internal power-supply potential generating circuit according to claim 3, whereinsaid second voltage dividing circuit includes a first transistor connected between the line of said external power-supply potential and an output node, and having an input electrode that receives said first reference potential, and a second transistor having a first electrode and an input electrode connected to said output node and a second electrode connected to a line of a ground potential; and said second reference potential is a potential of said output node.
  • 5. The internal power-supply potential generating circuit according to claim 3, whereinsaid reference potential generating circuit includes a constant-current generating circuit generating constant current of a predetermined value, and a load circuit generating said first reference potential based on the constant current generated at said constant-current generating circuit; and said constant-current generating circuit and said load circuit are configured such that one temperature characteristic compensates the other temperature characteristic.
Priority Claims (1)
Number Date Country Kind
2002-088609 Mar 2002 JP
US Referenced Citations (2)
Number Name Date Kind
5249155 Arimoto et al. Sep 1993 A
6011428 Tsukude et al. Jan 2000 A
Foreign Referenced Citations (1)
Number Date Country
2001-216035 Aug 2001 JP