The present invention relates generally to devices for converting rotary movement into linear movement or motion, and vice versa. In particular, the present invention is directed to a ball screw and unitary nut assembly in which a plurality of bearing balls are internally recirculated between complementary grooves formed on the exterior structure of the screw and the internal structure of the surrounding unitary nut engaged therewith. Included within each groove formed in the interior structure of the surrounding nut is at least one area having sufficient depth and structure from the rest of the groove to permit the balls to slide over the ridges or lands between adjacent grooves in the ball screw. This arrangement facilitates the recirculation of the bearing balls without any ancillary pieces and produces smooth rotation of the nut and screw in relation to each other with minimum friction losses. This also facilitates the controlled axial translation of the nut along the major axis of the screw.
A ball nut is a nut having a semi-circular helical groove on its inner diameter that fits over a shaft or ball screw having a mating semi-circular helical groove on its outer diameter. The load is transmitted by balls running in the grooves and returning in various manners through non-load carrying sections in the screw, nut or ancillary components.
Ball screw and nut assemblies are commonly utilized in extremely important control and actuation devices. One well-known application is the precise adjustment of flight control surfaces, as exemplified by U.S. Pat. No. 4,715,262 to Nelson et al., incorporated herein by reference. There are also many other precision control and machine applications. In particular, ball screw and nut assemblies are relied upon for ease of rotation, transforming rotation into a very precise lateral movement along the major axis of the screw.
While a wide variety of ball screw and nut designs are known, they share similar characteristics. Conventional ball screw nut assemblies commonly include a round leadscrew having a continuous helical groove or thread (with accompanying lands) along its length and a follower or nut with a mating continuous internal groove or thread that cooperates with the external groove of the leadscrew to form a course or race directing circulating bearing balls. The course is sized to contain a single-file row of a plurality of balls, which operate in rolling contact with both the leadscrew groove and the follower (or nut) groove as one is rotated relative to the other. The balls are displaced along the course as the leadscrew and follower rotate with respect to each other, facilitating easy and precise translation to lateral movement or motion.
The operation of this type of ball screw reduces frictional resistance, thereby saving power. The smooth relative rotation (as compared to other screw thread systems) and resulting smooth lateral movement facilitate high-speed operation. As a result, ball screw nut assemblies are often used in feed systems for cutting tools, or in other precision manufacturing applications.
In such ball screw and nut assemblies, the balls are caused to roll along the race or course by the relative rotation of the screw and nut. As a result, a structure for recirculating the balls is necessary. Conventional ball screw nut assemblies use a number of structures, techniques, etc., whereby the balls are recirculated, including the use of external and internal recirculation systems.
One aspect of a highly efficient operation of a ball screw nut assembly resides in the swift, unimpeded recirculation of the bearing balls. Examples of various types of external recirculating devices are found in the Nelson et al '262 patent, supra, and U.S. Pat. No. 6,109,415 to Morgan et al., both incorporated herein by reference. However, a drawback of this type of design having an external recirculation system of external tubes, channels, etc., is that the overall ball screw and nut configuration tends to be large and awkward. Consequently, various types of internal recirculating devices have been designed in order to address these difficulties.
One type of internal recirculating device is found in the embodiment shown in
Additionally, a further difficulty encountered with this type of internal recirculation ball screw design is that the alignment of the return holes in the nut or follower may not form a sufficiently precise course or race for the easy recirculation of the balls. Sufficient precision must be maintained so that the balls transfer smoothly in both directions from the race or course to the follower or nut recirculation device. This makes the manufacturing process difficult and costly.
Moreover, if the balls are not constrained in precise alignment with each other, they may try to bypass each other and lock up, thereby causing complete failure of the ball screw and nut device. While this is an annoyance with machine tools, it can be disastrous in other applications of ball screw and nut assemblies, such as automobile steering, aeronautical flight control, etc.
This vulnerability becomes extremely pronounced when internal recirculating devices (also known as returns, crossbacks, switchovers, switchbacks, and flipbacks), such as that in the
Moreover, manufacturing the arrangement set forth in
The difficulties produced by the device shown in
More particularly, in the conventional design shown in
It should be noted that
The recirculating grooves (31) of insert (3) reroute the balls (not shown) to align with an “upstream” thread (11) arranged ahead or “upstream” of the insert (3). The ball then restarts its forward advance along the race until it reaches insert (3) once again. In this conventional art arrangement, for selected grooves (11) of nut (2), there is a corresponding external thread groove (not shown) in a mating screw, and a recirculating or crossback groove (31) so that for each rotation of screw (1) with respect to nut (2) the bearing balls are recirculated.
While the aforementioned insert design of
Moreover, because the slot (21) that holds insert (3) must be deeply cut into the nut body to accommodate crossback grooves (31), the nut (2) is substantially weakened. Heat-treating of the nut to provide long-life ball grooves becomes problematical once the cut is made. Further, heat-treating may be impossible once the insert (3) has been inserted into slot (21). The result of all of these factors is a significantly weakened nut body, making its use in such critical systems as automobile steering problematical.
Additionally, several ball screw and nut assemblies have been developed directed to the use of intermediate rings, carriers, inert flexible tapes or strips, etc., to assist in guidance or the prevention of loss or the recirculating ball bearings. See, for example, U.S. Pat. No. 4,612,817. Similarly, multiple component ball screw and nut assemblies have been produced which utilize two or more pieces to produce the nut or screw components. See, for example, U.S. Pat. Nos. 3,393,575 and 3,393,576. However, the inclusion of these additional elements produces numerous manufacturing and assembly difficulties, all at increased cost.
Accordingly, there is a substantial need for improved ball screw and nut assemblies that overcome the aforementioned drawbacks of the conventional technology. Such an improved ball screw and nut assembly would be easier to manufacture than conventional models and be highly reliable, especially in regard to preventing escape of the bearing balls from the device.
Accordingly, an object of the present invention is to provide a ball screw and nut assembly that overcomes the major drawbacks of the conventional technology.
It is another object of the present invention to provide a ball screw and nut assembly in which the recirculating movement of the bearing balls is not slowed or otherwise hindered.
It is a further object of the present invention to provide a ball screw and nut assembly having a structure that assures that the balls will not be lost when the ball screw and/or nut is subjected to stress.
It is an additional object of the present invention to provide a ball screw and nut assembly that avoids conventional heat treatment distortion problems.
It is still another object of the present invention to provide a ball nut, which maintains its full radial strength, and provides improved radial rigidity over conventional ball nuts having radial through-holes.
It is yet an additional object of the present invention to provide a ball screw and nut system with improved movement characteristics over comparable conventional devices.
It is again another object of the present invention to provide a ball nut, which can be made using a single manufacturing operation, with one or multiple cuts.
It is still a further object of the present invention to provide a ball screw and nut system that is stronger than comparable conventional ball screws.
It is again another object of the present invention to provide a ball screw and nut system with a unitary nut having a manufactured internal ball bearing return in which recirculation alignment problems are minimized.
It is yet an additional object of the present invention to provide a ball nut that is more compact, due to thinner wall structures, than comparable conventional devices.
It is still a further object of the present invention to provide a ball nut that avoids heat treatment problems inherent to ball nuts that have cutouts for longitudinal inserts.
It is again another object of the present invention to provide a ball screw and nut system in which the recirculation of the balls is facilitated by the rotation of a screw within a single nut and without the use of any ancillary pieces.
It is yet an additional object of the present invention to provide a ball screw and nut system that can be manufactured more economically than comparable conventional ball screw and nut systems using inserts or through-holes for return caps.
It is still a further object of the present invention to provide a manufacturing operation for a ball screw that is controlled by means of a computerized machine tool.
It is yet an additional object of the present invention to provide a simplified method of manufacture for a ball screw and nut assembly.
It is again another object of the present invention to provide a bearing ball recirculation system with a ball screw and nut arrangement with minimum modifications to the standard configuration of the thread of the leadscrew.
These and other goals and objects of the present invention are achieved by a ball screw and unitary nut assembly including a threaded screw having helical exterior lands and grooves, and a complementary grooved nut having helical interior lands and grooves. The unitary nut is arranged to rotate relative to the screw to achieve lateral movement along the central axis of the screw. The assembly also includes a plurality of bearing balls arranged in one or more single file rows between the screw and the nut and forced to move in either direction along the central axis on a path formed by the grooves of the screw and the nut as a result of rotation of the nut relative to the screw. Also included within the interior grooves of the nut is an internal ball recirculating system having sufficient depth and opposite helix from the rest of the groove to allow the bearing balls to slide over at least one land or ridge between adjacent grooves of the threaded ball screw. This arrangement facilitates the recirculation of the bearing balls without ancillary pieces and produces smooth rotation of the nut and screw in relation to each other with minimum friction losses.
In another embodiment of the present invention a unitary grooved nut having lands and grooves is used as part of a ball screw and nut assembly. Both the nut and the screw have complementary helical lands and grooves. These grooves form an advancing path for a plurality of bearing balls, which are recirculated by one or more internal reversal circuits in the nut. These are formed on an inner circumference of the threaded nut and each constitutes a circuit of 360 degrees. The circuit consists of a path portion for advancing the bearing balls along the path of the screw and a path portion for returning the bearing balls in the opposite direction. The return portion has sufficient depth and structure (i.e., helix, etc.) different from the advancing portion of groove of the path to permit the balls to rise over the ridges or lands between adjacent grooves in the ball screws. In this regard, when the bearing balls enter into the return, they become unloaded and return over the land into the adjacent groove present in the screw.
These and other objects and features of the present invention will be apparent from the following summary and description of the invention, as well as from the drawings and the claims.
The following is a brief description of the drawings, which are presented for the purposes of illustrating the invention and not for the purposes of limiting the same.
a) is a side view diagram of a threaded ball nut made in accordance with the present invention.
b) is an end sectional view of
a) is a side view diagram depicting ball paths with respect to a ball screw used with the present invention.
b) is a side sectional view of
The configuration of the present invention is explained in detail with respect to reference to
a) depicts the groove or path (11) on the interior surface of nut (2) along which balls (5) move. It should be noted that the depiction of
The threads (42) of screw (4) define regular helical grooves (41) along which bearing balls (5) pass. For purposes of the present invention, screw (4) is of regular dimensions, and may be identical to conventional screws. It should also be understood that it is the loading of the screw (4) against the nut (2) through balls (5) that forces movement of the balls (5) through the advancing courses or paths (11). The return paths (111) are deep enough to provide clearance for the balls (5) as they pass over the screw lands (42). As a result, the balls are pushed through this area by balls still under load moving along path (11). The natural movement of the balls (5), as urged by the rotation of the nut (2) about the screw (4), provides the necessary translation of forces for this device and facilitates recirculation of the balls.
In this representative example, the present invention is effected by a combination of relationships between the lands (42) and grooves (41) of screw (4) and the grooves (11 and 111) of nut (2), thereby resulting in unrestricted recirculation of the bearing balls (5). The first relationship between the screw (4) and nut (2) is that the depths of the grooves of the screw are approximately one third the diameter of a bearing ball (5). This is depicted in
Likewise, in
The groove is also arranged as indicated at crossback point (111) to direct the balls back to the previously traversed groove for that particular ball circuit. At a corresponding crossback point on the screw (4), the ball (5) is able to slide over the upper edge of land (42) that constitutes grooves (41) at crossback point (411). This is also depicted in the two end views
An example of one configuration of grooves (11) from the interior diameter of nut (2) is found in
In this representative example, the balls are approximately four millimeters in diameter and the pitch of the grooves in the nut (11) and the screw (41) are approximately five millimeters. The length of the return or crossback area (111) is approximately four diameters of a bearing ball (5). The lead of the screw (the amount that the screw advances laterally per revolution of the nut) is only slightly greater than the diameter of one of the ball bearings (5).
In the example depicted in the drawings, each 360 degree circuit on the inside radius of nut (2) contains both a forward advancing helical path and (11) and a return or crossback path (111). About two-thirds of the circuit is devoted to the advancing or forward path for the ball bearings, while the remainder of the circuit is devoted to a return or crossback path to return the balls to a position “upstream” of the forward path within the same 360-degree circuit. Within the crossback area (111), there is a change in depth. For the first portion of the crossback path, depth of the groove (41) increases from the normal depth for the advance forward path (approximately one-third the diameter of the ball (5)) to a greater depth, which allows clearance for the ball (5) to slip over the top of the screw land (42). The next portion of the return path is at the maximum depth of at least two-thirds the diameter of one of the balls. It is in this area that the balls are able to slide freely over the screw land (42) as depicted in
The result of this arrangement is a very smooth rotation of the nut on the screw, which in turn is caused by a very gradual, unhindered passage of the bearing balls (5) through the return or crossback areas (111) into the forward-advancing groove (11).
It should be noted that the arrangement of
Cooperation between the structure of the nut (2) and screw (4) is absolutely essential for the operation of the present invention. In order for ball bearing (5) to follow the crossback or return route (111), it is necessary for the ball to ride up and slide over the upper portion of land (42), which is used to form grooves (41) in the screw (4). To facilitate this, land (42) may be rounded to allow ball (5) to slide effortlessly over the top at the same position where the corresponding groove (11) in nut (2) deepens to approximately two-thirds the diameter of the ball. While
Besides simplicity, there are other advantages to the present invention. By using the design of the present invention, the overall ball screw system is strengthened since there are no through holes drilled, and no insert slots are cut out of the interior of the nut. Further, there are reduced heat treatment problems because of improved symmetry of the nut and lack of mechanical features, which promote distortion. Consequently, it is much easier to apply uniform heat treatment to harden the nut or follower (2).
Because there are no caps or inserts, it is possible to make the walls of the nut or follower much thinner without compromising the overall strength of the nut. This is a crucial advantage in any number of different applications for ball screws. Further, a ball screw built in accordance of the present invention can use standard screw configurations to be mated with nuts of standard envelope dimensions that have internal construction in accordance with the present invention. This simplifies the process of acquiring the necessary parts for the ball screw. Further, because there are no through holes, there is no means by which the bearing balls can escape from the ball screw during operation. This novel safety feature prevents several modes of catastrophic failure, and recommends the ball screw of the present invention for use in crucial applications such as for steering systems for automobiles, and control surface manipulation in aircraft.
The aforementioned simplicity also leads to easier, less costly manufacturing of ball screw systems built and assembled in accordance with the present invention. Because the devices are drastically simplified, there are fewer manufacturing steps required to provide the recirculation features on the interior of the nut or follower. In particular, all internal features of the nut may be formed with as few as a single internal fabrication setup (with one or a plurality of cuts) in order to provide the required groove structure in the nut. No additional machining for tubes, inserts, or other devices are required. Further, the polishing or finish grinding necessary to achieve the modified screw thread configuration suggested in
In contrast, the conventional device depicted in
While a number of embodiments of the present invention have been illustrated by way of example, the present invention is not limited thereby. Rather, the present invention should be construed to include any and all variations, adaptations, permutations, derivations and embodiments that would occur to one skilled in this art once the present invention has been disclosed. Accordingly, the present invention should be interpreted as being limited only by the following claims.
This is a continuation-in-part application of Provisional Patent Application Ser. No. 60/372,553, filed Apr. 15, 2002.
Number | Name | Date | Kind |
---|---|---|---|
888619 | Kelly | May 1908 | A |
1535135 | Rodel | Apr 1925 | A |
1565805 | Jones | Dec 1925 | A |
1750140 | Thompson | Mar 1930 | A |
2069471 | Baker | Feb 1937 | A |
2082433 | Whitcomb | Jun 1937 | A |
2166106 | Gormley | Jul 1939 | A |
2236492 | Costello | Mar 1941 | A |
2322000 | Douglas | Jun 1943 | A |
2350538 | Seines | Jun 1944 | A |
2450282 | Jackson | Sep 1948 | A |
2503009 | Thomson | Apr 1950 | A |
2519777 | Cochrane | Aug 1950 | A |
2581482 | Hawkins | Jan 1952 | A |
2618166 | Douglas | Nov 1952 | A |
2636397 | Jacubenta | Apr 1953 | A |
2673473 | Phelps | Mar 1954 | A |
2694942 | Hellen | Nov 1954 | A |
2714821 | Orner | Aug 1955 | A |
2724284 | Anderson et al. | Nov 1955 | A |
2749812 | Wetzel | Jun 1956 | A |
2756609 | Hogan et al. | Jul 1956 | A |
2770155 | Morgan | Nov 1956 | A |
2802373 | Schottler | Aug 1957 | A |
2842007 | Brant | Jul 1958 | A |
2842978 | Orner | Jul 1958 | A |
2891414 | Gillum | Jun 1959 | A |
2895343 | Orner | Jul 1959 | A |
2919596 | Kuehl | Jan 1960 | A |
2924113 | Orner | Feb 1960 | A |
2933941 | Millns | Apr 1960 | A |
2945392 | Folkerts | Jul 1960 | A |
2946235 | Musser | Jul 1960 | A |
2969689 | Martens | Jan 1961 | A |
2978920 | Sears et al. | Apr 1961 | A |
3006212 | Galonska | Oct 1961 | A |
3009367 | Striggow | Nov 1961 | A |
3046801 | Pravel | Jul 1962 | A |
3132719 | Cole | May 1964 | A |
3141349 | McDonald | Jul 1964 | A |
3156133 | Anthony | Nov 1964 | A |
3176535 | Rowland | Apr 1965 | A |
3178958 | Beck | Apr 1965 | A |
3186249 | Lanzenberger | Jun 1965 | A |
3186250 | Boutwell | Jun 1965 | A |
3198029 | Orner | Aug 1965 | A |
3234810 | Orner | Feb 1966 | A |
3261224 | Anthony | Jul 1966 | A |
3301082 | Kosinski | Jan 1967 | A |
3327551 | Prueter | Jun 1967 | A |
3372605 | Orner | Mar 1968 | A |
3393576 | Carlson | Jul 1968 | A |
3393577 | Better | Jul 1968 | A |
3398575 | Saxi | Aug 1968 | A |
3494215 | Fengler | Feb 1970 | A |
3577796 | Eissfeldt | May 1971 | A |
3589202 | Stanley | Jun 1971 | A |
3638507 | Orner | Feb 1972 | A |
3667311 | Wysong | Jun 1972 | A |
3673886 | Tomita et al. | Jul 1972 | A |
3791232 | Helmer | Feb 1974 | A |
3826153 | Sheppard | Jul 1974 | A |
3958678 | Jeter | May 1976 | A |
3961541 | Fund et al. | Jun 1976 | A |
4034833 | Jeter | Jul 1977 | A |
4074585 | Richaud et al. | Feb 1978 | A |
4074587 | Brusasco | Feb 1978 | A |
4141255 | Nilsson | Feb 1979 | A |
4173907 | Lundgren | Nov 1979 | A |
4186620 | Brusasco | Feb 1980 | A |
4198872 | Metz | Apr 1980 | A |
4203328 | DeBoynton | May 1980 | A |
4224831 | Nilsson | Sep 1980 | A |
4226137 | Sharp | Oct 1980 | A |
4274297 | Blurock et al. | Jun 1981 | A |
4364282 | Nilsson | Dec 1982 | A |
4366723 | Wilke et al. | Jan 1983 | A |
4474073 | Blaurock et al. | Oct 1984 | A |
4924722 | Bacardit et al. | May 1990 | A |
6439338 | Yoshioka et al. | Aug 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040103734 A9 | Jun 2004 | US |
Number | Date | Country | |
---|---|---|---|
60372553 | Apr 2002 | US |