The invention relates to an internal rotor motor, and in particular to an electronically commutated internal rotor motor.
A motor of this kind has a rotor, usually in the form of a rotor lamination stack, into which permanent magnets are embedded. This rotor is connected to a shaft so that a torque can be transferred in the shaft/rotor system.
If the shaft is press-fitted directly into the rotor, excessively large press-fit forces can occur during manufacture, which on the one hand can damage or destroy the rotor and can also result in damage to the shaft, since the latter can be warped by an excessive buckling load and thus result in rejection.
DE 10 2006 037 804 A1 of inventors Hartkorn, Kienzler & Mauch, assigned to EBM-PAPST, discloses an internal rotor motor having a hollow shaft on whose outer surface are provided notches, for connection to the rotor stack. These notches reduce the surface pressure on the shaft, and lower press-fit forces thus occur in the context of installation of the shaft, which is also referred to as a “joining process” or “joining operation.” As a result of the reduced surface pressure, however, chips can be detached from the shaft and can remain on the rotor stack. Cold welding can occur in this context between the rotor stack and shaft. The hardness pairing of the shaft, on the one hand, and rotor stack, on the other hand, also plays a role here, and this pairing can have a very negative effect on press-fit forces.
It is not possible to specify accurately the hardness pairing between the rotor, on the one hand, and shaft, on the other hand, by design of the materials, since the hardness values of electrical steels fluctuate widely. Two problems thus exist when a notch connection is used:
It is therefore an object of the invention to make available a novel internal rotor motor whose structure minimizes such problems.
According to the invention, this object is achieved by an internal rotor motor wherein the rotor stack consists of a plurality of generally annular laminations or plates, each having a central opening whose periphery includes radially inwardly projecting first portions and, spaced circumferentially therefrom, second portions which remain spaced from the rotor shaft. After assembling together the laminations to form the rotor stack, the rotor shaft is joined to the stack by axially press-fitting into a central bore of the rotor lamination stack, and the shaft is held securely by engagement with the first portions or “teeth.” With the new connection between the rotor and shaft, only a very slight risk of chip formation during the joining process therefore exists. The geometry of the rotor lamination stack (tooth geometry) can be optimized so that an ideal press-fit and pressing-out force, and an ideal torque, exist, and the connection substantially does not react to differences in hardness between the rotor lamination stack and shaft, i.e. in contrast to the situation with use of a notch connection. The novel connection has the advantage that no complex additional processes are necessary in the context of manufacture of the shaft, i.e. no production of notches in cut into the shaft. A reproducible force/travel curve exists, and accurate analyses of the connection can be made on the basis of that curve. The connection is thus reliable in terms of process.
Further details and advantageous refinements of the invention are evident from the exemplifying embodiments, in no way to be understood as a limitation of the invention, that are described below and depicted in the drawings.
In the drawings that follow, identical or identically-functioning parts are labeled with the same reference characters and are in each case described only once. Terms such as “upper,” “lower,” “left,”, and “right” refer to the particular figure of the drawings.
In one possible use of a motor 20 according to the present application, it serves to save fuel in a motor vehicle.
When a motor vehicle is driving on an expressway, the steering forces are very low, and steering assistance is then not needed, i.e. motor 20 can be switched off.
When the vehicle needs to be parked, however, steering assistance is desirable. For this purpose, motor 20 for steering assistance must start very quickly and reliably and, especially at extremely low temperatures, said motor 20 must in a short time transfer a very high torque from rotor 36 via shaft 18 to the servo-assistance system (not shown) of the steering system.
For this, the connection between rotor 36 and shaft 18 must be very reliable but, on the other hand, must not cause rotor 36 or shaft 18 to be damaged or destroyed during manufacture. Such a connection also needs to be economical to manufacture.
Openings 39A, 39B are delimited radially inwardly by magnetic yoke 40, which is mechanically connected in the manner described below to shaft 18 (see
As
As
For a motor having six rotor poles, the offset τp would correspondingly be equal to: τp=360°/6=60°.
The offset then produces what is depicted in
Arranged at both ends of the central lamination stack region 52 are short lamination stacks 54 (
These short stacks 54, 56 serve to facilitate the press-fitting of shaft 18. The press-fit insertion direction of shaft 18 is labeled 58 in
With the above-described manner of connection between rotor lamination stack 52, 54, 56 and shaft 18, the risk of chip formation is largely eliminated. The tooth geometry of central rotor lamination stack 52 can be optimized so that favorable values for the press-fit force, pressing-out force, and transferrable torque are obtained, and so that the connection does not react to differences in hardness between lamination stacks 52, 54, 56, on the one hand, and shaft 18, on the other hand. In addition, no complex additional processes are required in the context of the manufacture of shaft 18. A reproducible force/travel curve results, and accurate analyses of the connection can be made on the basis of that curve. The connection is reliable in terms of process, and when the excess pressure (i.e. the “over dimension” of shaft 18) is correctly designed, what is obtained, as described, is less variation in the press-fit values, which enables reliable production.
When shaft 18 is press-fitted, the temperature T1 of shaft 18 and the temperature T2 of rotor lamination stack 37 can be the same (T1=T2). Alternatively, however, a different temperature can be selected (T1≠T2), the temperature T1 of shaft 18 preferably being lower than the temperature T2 of rotor lamination stack 37 (T1<T2). As a result of thermal contraction resulting from the lower temperature, shaft 18 accordingly has, relatively and temporarily, a slightly lower (outside) diameter d than it would otherwise have, and rotor lamination 37 has, as a result of the higher relative temperature, a slightly larger (inside) diameter D (see
In the context of press-fitting with different temperatures T1, T2, the inside diameter D (defined by first portions 50) of central opening 47 preferably is sufficiently smaller than the outside diameter d of shaft 18 that nondestructive press-fitting of shaft 18 is possible only when the temperature of shaft 18 upon press-fitting is lower than the temperature of the rotor lamination stack. The different temperatures T1, T2 can, however, also be advantageous in cases in which press-fitting at identical temperatures T1, T2 is possible.
A star-configured circuit as a parallel circuit is also possible. As further examples,
Preferably, at least some of the individual laminations 41 of rotor lamination stack 52 are arranged overlappingly relative to one another.
Preferably, at least one end 52A, 52B of the rotor lamination stack, a predetermined number of individual laminations 41 are not arranged with an angular offset from one another, the predetermined number preferably being in the range from 2 to 10.
Preferably openings or pockets 39A, 39B are provided in rotor lamination stack 52, 54, 56, which openings are configured for receiving permanent magnets 38A, 38B, more preferably the angular position of the radially inner first portions with respect to the angular position of openings 39A, 39B, . . . for receiving the embedded permanent magnets 38A, 38B being selected so that axially continuous openings 39A, 39B for receiving permanent magnets 38A, 38B, . . . are produced in rotor lamination stack 52, 52A, 52B.
Preferably an individual lamination 41 of rotor lamination stack 52 is offset, relative to an individual lamination 41 adjacent to it, by an angle that is equal to n*τp, where n=1, 2, 3, . . . and τp=pole pitch of the rotor poles.
Preferably first portions 50 have respective angular extents which are substantially identical to each other.
Preferably, inwardly projecting first portions 50 have a smaller angular extent than second portions 51.
Preferably a first portion 50 and the adjacent second portion 51 together extend over an angular range of 120° (mechanical), as shown in
Preferably individual laminations 41 of rotor lamination stack 37; 52, 54, 56 are configured with uniform shapes.
Many variants and modifications are, of course, possible in the context of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2011 108 677.7 | Jul 2011 | DE | national |
This application is a section 371 of PCT/EP2012/002930, filed 2012-07-12, and further claims priority from German application DE 10 2011 108 677-A, filed 2011 Jul. 22, the entire contents of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2012/002930 | 7/12/2012 | WO | 00 | 11/17/2013 |