This application claims priority under 35 U.S.C. §119 to Korean Patent Application No. 10-2013-0026433, filed on Mar. 13, 2013, in the Korean Intellectual Property Office (KIPO), the entire contents of which are incorporated herein by reference.
1. Technical Field
At least one exemplary embodiment relates generally to integrated circuit (IC) card. More particularly, at least one exemplary embodiment of inventive concepts relates to an internal voltage generator of a contactless IC card and/or a contactless IC card including the same.
2. Description of the Related Art
An IC card is a credit card-sized plastic card to which a thin semiconductor device is attached. Typically, an IC card provides a higher level of security than a conventional magnetic striped card and does not readily lose stored data. The IC card is generally a plastic card having the same thickness and size as a conventional magnetic card or a credit card. The IC card is usually formed as a type of a Chip-On-Board (COB) with a thickness of about 0.5 mm.
The IC cards are divided into two categories; contact IC cards and contactless IC cards. The contactless IC cards are further divided into Contactless IC Cards (CICC) and Remote Coupling Communication Cards (RCCC). For the CICC, a communication range is from 0 to 2 mm at a carrier frequency of 4.9157 MHz. For the RCCC, a communication range is from 0 to 10 cm, at a carrier frequency of 13.56 MHz.
The contactless cards are in accordance with the International Organization for Standardization (ISO) and the International Electro-technical Commission (IEC). For example, the ISO/IEC 10536 standard defines specifications for CICC, and the ISO/IEC 14443 standard defines specifications for certain mechanical characteristics of RCCC and protocols on a wireless frequency power, signal interface, initialization procedure and collision prevention techniques, etc. According to the ISO/IEC 14443 standard, the contactless IC card includes an Integrated Circuit (IC) for carrying out processing and/or memory functions.
At least one exemplary embodiment provides an internal voltage generator of a contactless IC card, capable of mitigating (or alternatively, preventing) ripple phenomenon.
At least one exemplary embodiment provides a contactless IC card including the internal voltage generator.
According to at least one example embodiment, a voltage generator of a contactless integrated circuit (IC) card includes a regulator configured to generate a first internal voltage based on an input voltage and a first reference voltage, the input voltage being received through an antenna of the contactless IC card. The voltage generator includes an internal voltage generator configured to generate a second internal voltage, the second internal voltage being used to operate an internal circuit of the contactless IC card. The voltage generator includes a reference voltage generator configured to generate a second reference voltage based on the first internal voltage, the second reference voltage being generated without regard to a fluctuation component of the first internal voltage. The voltage generator includes a switching unit configured to provide one of the first and second internal voltages as the first reference voltage in response to first and second switching control signals, the first and second switching controls indicating an operation mode of the internal circuit.
According to at least one example embodiment, the voltage generator further includes a switching signal generator. The switching signal generator is configured to, in response to a mode signal indicating the operation mode, generate the first and second switching control signals, and control activation intervals of the first and second switching control signals, the operation mode being based on current consumed in the internal circuit.
According to at least one example embodiment, the activation intervals of the first and second switching control signals partially overlap. The switching unit includes a first switch connected between the internal voltage generator and the regulator, the first switch being configured to receive the first switching control signal. The switching unit includes a second switch connected between the reference voltage generator and the regulator, the second switch being configured to receive the second switching control signal.
According to at least one example embodiment, the operation mode includes first and second operation modes according to the current consumed in the internal circuit. A first current consumed in the first operation mode is less than a second current consumed in the second operation mode.
According to at least one example embodiment, the first internal voltage is applied as the first reference voltage in response to the first switching control signal in the first operation mode, and the second reference voltage is applied as the first reference voltage in response to the second switching control signal in the second operation mode.
According to at least one example embodiment, the internal circuit performs at least one encryption operation in the second operation mode.
According to at least one example embodiment, the reference voltage generator includes a filter configured to filter the fluctuation component of the first internal voltage to generate the first reference voltage.
According to at least one example embodiment, the filter is a low-pass filter.
According to at least one example embodiment, the reference voltage generator includes a constant voltage generator configured to remove the fluctuation component of the first internal voltage by generating a constant voltage having a fixed level as the first reference voltage.
According to at least one example embodiment, the regulator includes a first comparator configured to compare a voltage of a first node and the first reference voltage. The regulator includes a current source and a first resistor connected in series with the current source between the input voltage and a ground voltage, the first node being at a connection point between the first resistor and the current source. The regulator includes a first p-channel metal-oxide semiconductor (PMOS) transistor connected between the input voltage at a second node to which the first internal voltage is provided, the first PMOS transistor having a gate connected to an output of the first comparator.
According to at least one example embodiment, the internal voltage generator includes a second comparator configured to compare a voltage of a third node and a third reference voltage, the voltage of the third node being the first internal voltage divided by resistances of second and third resistors, the second and third resistors being connected in series between the second node and the ground voltage. The internal voltage generator includes a n-channel metal-oxide semiconductor (NMOS) transistor connected between the second node and the ground voltage, the NMOS transistor having a gate connected to an output of the second comparator. The internal voltage generator includes a second PMOS transistor connected between the second node and a fourth node, the second internal voltage being provided at the fourth node. The internal voltage generator includes a third comparator configured to compare a voltage of a fifth node and the third reference voltage, the voltage of the fifth node being the second internal voltage divided by resistances of fourth and fifth resistors, the fourth and fifth resistors being connected in series between the fourth node and the ground voltage.
According to at least one example embodiment, a contactless integrated circuit (IC) card, includes a voltage generator configured to generate a first internal voltage and a second internal voltage based on an input voltage received through an antenna of the contactless IC card, the second internal voltage having a level that is less than a level of the first internal voltage. The contactless IC card includes an internal circuit configured to receive the second internal voltage and operate according to the second internal voltage. The contactless IC includes a detector configured to detect a current consumed in the internal circuit and send a mode signal to the internal voltage generator based on the detected current. The internal voltage generator includes a regulator configured to generate the first internal voltage based on the input voltage and a first reference voltage, an internal voltage generator configured to generate the second internal voltage such that the second internal voltage is less than the first internal voltage, a reference voltage generator configured to generate a second reference voltage based on the first internal voltage. The second reference voltage may be generated without regard to a fluctuation component of the first internal voltage. The voltage generator includes a switching unit configured to apply one of the first and second internal voltages as the first reference voltage in response to first and second switching control signals, the first and second switching control signals being based on the mode signal, the mode signal indicating an operation mode of the internal circuit.
According to at least one example embodiment, the contactless IC card includes a demodulator configured to demodulate input data and send the demodulated input data to the internal circuit, the input data being received through the antenna. The contactless IC card includes a modulator configured to modulate output data from the internal circuit and send the modulated output data to the antenna. The operation mode includes a first operation mode in which the modulator and the demodulator operate and a second operation mode in which the internal circuit performs at least one encryption operation.
According to at least one example embodiment, a first current consumed in the first operation mode is less than a second current consumed in the second operation mode. The first internal voltage is used as the first reference voltage in response to the first switching control signal in the first operation mode. The second reference voltage is used as the first reference voltage in response to the second switching control signal in the second operation mode.
According to at least one example embodiment, the reference voltage generator includes a filter configured to filter the fluctuation component of the first internal voltage to generate the first reference voltage.
According to at least one example embodiment, a contactless integrated circuit (IC) card includes an encryption circuit configured to encrypt input data received by an antenna of the contactless IC card, and a current detector. The current detector is configured to detect an amount of current consumed by the encryption circuit, and output a mode signal based on the detected amount of current. The contactless IC card includes a voltage generator configured to generate a first voltage based on a reference voltage and an input voltage, the reference voltage being generated in response to the mode signal, the input voltage being received from the antenna. The voltage generator is configured to generate a second voltage based on the first voltage, the second voltage supplying the encryption circuit with power and being less than the first voltage.
According to at least one example embodiment, the mode signal indicates one of a first operation mode and a second operation mode of the encryption circuit, the first operation mode being a mode in which the encryption circuit is not performing an encryption operation on the input data, the second mode being a mode in which the encryption circuit is performing an encryption operation on the input data.
According to at least one example embodiment, the voltage generator is configured to use the first voltage as the reference voltage in first operation mode, and use a third voltage as the reference voltage in the second operation mode, the third voltage excluding a fluctuation component of the first voltage.
According to at least one example embodiment, the third voltage is one of a constant voltage and a filtered voltage, the constant and filtered voltages being derived from the first voltage.
According to at least one example embodiment, the contactless IC card further includes a clock generator configured to generate a clock signal based on the first and second voltages, the encryption circuit operating according to the clock signal, a frequency of the clock signal being based on a level of the first voltage.
Illustrative, non-limiting exemplary embodiments will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings.
Various exemplary embodiments will be described more fully hereinafter with reference to the accompanying drawings, in which some exemplary embodiments are shown. Inventive concepts may, however, be embodied in many different forms and should not be construed as limited to the exemplary embodiments set forth herein. Rather, these exemplary embodiments are provided so that this description will be thorough and complete, and will fully convey the scope of inventive concepts to those skilled in the art. In the drawings, the sizes and relative sizes of layers and regions may be exaggerated for clarity. Like numerals refer to like elements throughout.
It will be understood that, although the terms first, second, third etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are used to distinguish one element from another. Thus, a first element discussed below could be termed a second element without departing from the teachings of inventive concepts. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It will be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.).
The terminology used herein is for the purpose of describing particular exemplary embodiments only and is not intended to be limiting of inventive concepts. As used herein, the singular forms “a,” “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “includes,” “including,” “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which inventive concepts belong. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
In
Referring to
The rectifier circuit unit 50 may include a rectifier circuit 51 and a smoothing condenser 52. The rectifier circuit 51 may consist of four diodes forming a bridge, and the smoothing condenser 52 may be configured to smooth the rectified voltage of the rectifier circuit 51 to provide the smoothed voltage for an input voltage VDDU. The rectifier circuit 51 may rectify AC signal received by electromagnetic coupling of the receiving coil L1 and the transmitting coil L2 in the read/write device.
The data receiving circuit 60 may demodulate a data received from the read/write device to provide the demodulated data as an input data DIN for the internal circuit 300. In addition, the data transmitting circuit 70 may modulate an output data DOUT received from the internal circuit 300 to provide the modulated data for the read/write device through the receiving coil L1.
The internal voltage generator 100 may generate a first internal voltage VDDA and a second internal voltage IVC based on the input voltage VDDU. The level of the second internal voltage IVC may be lower than the level of the first internal voltage VDDA. The second internal voltage IVC is provided for the data receiving circuit 60, the data transmitting circuit 70 and the internal circuit 300 to be used as an operation voltage. In addition, the internal voltage generator 100 may select a reference voltage used for generating the first internal voltage VDDA in response to a mode signal MS that determines an operation mode of the contactless IC card 10 based on current consumed in the internal circuit 300.
The clock generator 200 may receive the first internal voltage VDDA and the second internal voltage IVC to generate a clock signal CK and an inverted clock signal CKB. The frequencies of the clock signal CK and the inverted clock signal CKB change according to the level of the first internal voltage VDDA. The phase of the inverted clock signal CKB may be opposite to the phase of the clock signal CK. The clock signal CK may be provided for the data receiving circuit 60, the data transmitting circuit 70 and the internal circuit. Accordingly, the clock signal CK may be used for operation sequence controls or signal/data transmissions.
The internal circuit 300 may include a logic circuit 310 and a non-volatile memory 320. The logic circuit 310 may include a random number generator 311. When the input data DIN is received or the output data DOUT is transmitted, the logic circuit 310 may use the random number generator 311 for encryption. For example, when the internal circuit 300 uses the random number generator 311 for encryption, the internal circuit consumes more current than a case when the internal circuit 300 does not use the random number generator 311. Therefore, the detector 310 detects the current consumed in the internal circuit 300 and provides the internal voltage generator 100 with the mode signal MS indicating whether the internal circuit 300 is performing an encryption operation. When the internal circuit 300 performs an encryption operation, a fluctuation component of the second internal voltage IVC may be transferred to the input voltage VDDU. The fluctuation component of the second internal voltage IVC may be caused by an abrupt increase of consumed current in the internal circuit 300 when the internal circuit 300 performs the encryption operation. The fluctuation component transferred to the input voltage VDDU causes load modulation, and may be transferred to a contactless IC card reader as a recognizable signal by the contactless IC card reader. When the fluctuation component is transferred to the contactless IC card reader as the recognizable signal, transmission errors may occur.
However, according to at least one example embodiment, the internal voltage generator 100 selects a reference voltage in response to the mode signal MS indicating whether the internal circuit 300 is performing an encryption operation, and thus inhibits (or alternatively, prevents) the fluctuation component from being transferred to the input voltage VDDU. Therefore, the internal voltage generator 100 may reduce (or alternatively, prevent) transmission errors that may occur when the internal circuit 300 performs an encryption operation.
Referring to
The regulator 110 may generate the first internal voltage VDDA based on the input voltage VDDU received through the antenna L1 and a first reference voltage VREF1. The internal voltage generating unit 120 may generate the second internal voltage IVC, whose voltage level is lower than the level of the first internal voltage VDDA, based on the first internal voltage VDDA. The reference voltage generator 140 generates a second reference voltage VREF2 without regard to (or excluding) a fluctuation component of the first internal voltage VDDA, based on the first internal voltage VDDA. The switching signal generator 150 generates first and second switching control signals SCS1 and SCS2 according to the mode signal MS. In addition, the switching signal generator 150 controls activation intervals of the first and second switching control signals SCS1 and SCS2, respectively. The switching unit 160 provides the regulator 110 with one of the first internal voltage VDDA and the second reference voltage VREF2 as the first reference voltage VREF1 in response to the first and second switching control signals SCS1 and SCS2 (i.e., according to an operation mode).
The switching unit 160 may include first and second switches 161 and 162. The first switch 161 selectively provides the first internal voltage VDDA to the regulator 110 in response to the first switching control signal SCS1. The second switch 162 selectively provides the second reference voltage VREF2 to the regulator 110 in response to the second switching control signal SCS2.
For example, when the mode signal MS indicates a first operation mode in which the internal circuit 300 is not performing an encryption operation, the mode signal MS has a first (low) logic level, the first switching control signal SCS1 is activated, and the first switch 161 is connected in response to the first switching control signal SCS1. Then, the regulator 110 receives the first internal voltage VDDA as the first reference voltage VREF1 and performs a voltage regulation operation. For example, when the mode signal MS indicates a second operation mode in which the internal circuit 300 is performing encryption operation, the mode signal MS has a second (high) logic level, the second switching control signal SCS2 is activated, and the second switch 162 is connected in response to the second switching control signal SCS2. Then, the regulator 110 receives the second reference voltage VREF2 as the first reference voltage VREF1 and performs a voltage regulation operation. Here, a first current consumed in the first operation mode (i.e., when the encryption operation is not being performed) is less than a second current consumed in the second operation mode (when the encryption operation is being performed).
In
Referring to
The first switch 161 is connected between the second node N2 and the positive input terminal of the first comparator 112, and the first switch 161 selectively provides the first internal voltage VDDA to the regulator 110 in response to the first switching control signal SCS1. The second switch 162 is connected between the constant voltage generator 140a and the positive input terminal of the first comparator 112, and the second switch 162 selectively provides a constant voltage VDDA_C having fixed level to the regulator 110 in response to the second switching control signal SCS2. The fixed level of the constant voltage VDDA_C may be the same as a level of the first interval voltage VDDA when the first interval voltage VDDA does not have the fluctuation component.
The internal voltage generating unit 120 may include resistors R2 and R3, a second comparator 121, an n-type metal-oxide semiconductor (NMOS) transistor 122, a capacitor 123, a third comparator 124, a PMOS transistor 125 and resistors R4 and R5. The resistors R2 and R3 are connected in series between the second node N2 and the ground voltage. A positive input of the second comparator 121 may be connected to the third node N3, and a negative input of the second comparator 121 may be connected to a third reference voltage VREF3. A drain of the NMOS transistor 122 may be connected to the second node N2 to receive the first internal voltage VDDA, and a gate of the NMOS transistor 122 may be connected to the output of the second comparator 121. A source of the NMOS transistor 122 may be connected to the ground voltage. The capacitor 123 may be connected between the second node N1 and the ground voltage to be charged by the first internal voltage VDDA. The PMOS transistor 125 may have a source connected to the second node N2, a drain connected to a fourth node N4, and a gate connected to an output of the third comparator 124. The second internal voltage IVC is provided from the fourth node N4. The resistors R4 and R5 are connected in series between the fourth node N4 and the ground voltage. The resistors R4 and R5 are connected to each other at a fifth node N5. A positive input of the third comparator 124 is connected to the third reference voltage VREF3 and a negative input of the third comparator 124 is connected to the fifth node N5.
The NMOS transistor 122 is turned on and reduces some portion of the first internal voltage VDDA in response to the output of the second comparator 121 when the level of the first interval voltage VDDA rises excessively. The NMOS transistor 122 is turned off and closes a path to the ground in response to the output of the second comparator 121 when the level of the first interval voltage VDDA drops excessively. When the internal circuit 300 is in normal operation and consumed current in the internal circuit 300 is relatively small, the NMOS transistor is turned on. When the internal circuit 300 performs an encryption operation and consumed current in the internal circuit 300 is relatively high, the NMOS transistor is turned off.
When the first internal voltage VDDA is increased above a desired threshold, the NMOS transistor 122 may be turned on in response to the output of the second comparator 121, which reduces a certain level of the first internal voltage VDDA to the ground voltage. When the first internal voltage VDDA is below a desired threshold, the NMOS transistor 122 may be turned off in response to the output of the second comparator 121, which blocks off a path to the ground voltage. In other words, when the current consumed in the logic circuit 310 of
Therefore, even when ripple phenomenon occurs (in which a level of the second internal voltage IVC rapidly decreases because the internal circuit 300 is performing encryption operation), the constant voltage generator 140a may provide the first comparator 112 with the constant voltage VDDA_C as the first reference voltage VREF1, which is not influenced by the ripple phenomenon. Therefore, the internal voltage generator 100a may reduce (or alternatively, prevent) transmission errors that may occur when the internal circuit 300 performs an encryption operation.
In
Referring to
Referring to
In
Referring to
In
Referring to
Referring to
The control voltage generating unit 210 may receive the first internal voltage VDDA to generate a control voltage VG. The level of the control voltage VG may be lower than the level of the first internal voltage VDDA. The first internal signal generating unit 220 may receive the second internal voltage IVC and the control voltage VG. The first internal signal generating unit 220 may provide a first internal signal IS1 in response to the clock signal CK. The first internal signal IS1 may have the level of the second internal voltage IVC during a first half period of the clock signal CK. The second internal signal generating unit 230 may receive the second internal voltage IVC and the control voltage VG. The second internal signal generating unit 230 may provide a second internal signal IS2 in response to the inverted clock signal CKB. The second internal signal IS2 may have the level of the second internal voltage IVC during a second half period of the clock signal CK. The clock generating unit 240 may generate the clock signal CK and the inverted clock signal CKB in response to the first internal signal IS1 and the second internal signal IS2.
Referring to
IG=(VDDA−VG)/(R7+R8) [Expression 1]
Referring to
Referring to
Referring to
Referring to
Referring to
Therefore, with reference to
T=(IVC−VG)*C/IG [Expression 2]
Using [Expression 1] for IG, [Expression 2] can be represented in another form as the following [Expression 3].
T=(IVC−VG)*(R7+R8)*C/(VDDA−VG) [Expression 3]
Therefore, the period of the clock signal CK is increased as the level of the first internal voltage VDDA is decreased. In addition, the period T of the clock signal CK may be adjusted by using the variable resistor R7. As a result, the clock generating unit 240 may generate the clock signal CK, whose frequency changes according to the first internal voltage VDDA.
Referring to
When operating in a first mode (e.g., a normal mode), the internal circuit 300 may bear the consumed current, which has the level of the first internal voltage VDDA based on the input voltage VDDU. Then, the first switch 161 is connected in response to the first switching control signal SCS1 based on the mode signal MS. The first internal voltage VDDA is used as the first reference voltage VREF1 of the regulator 110.
When performing operations such as encryption operation (in which current consumption increases), the level of the second internal voltage IVC decreases rapidly and causes ripples in the second internal voltage IVC. When the ripples occur, a transmission error may occur due to the transferred ripples. For reducing (or alternatively, preventing) such transmission errors for an encryption operation, the second switch 162 is connected in response to the second switching control signal SCS2 based on the mode signal MS.
An internal voltage generator 500a may be used in the contactless IC card 10 which operates in two modes, that is, contact mode and contactless mode.
Referring to
The mode decision unit 510 compares a contactless voltage (or, input voltage) VDDU and a contact voltage VDDC and outputs a contactless enable signal CLEN. When the contactless voltage VDDU is higher than the contact voltage VDDC, the contactless enable signal CLEN is activated to a high level. When the contactless voltage VDDU is lower than the contact voltage VDDC, the contactless enable signal CLEN is deactivated to a low level. The mode decision unit 510 may include a comparator 511 that compares the contactless voltage (or, input voltage) VDDU and the contact voltage VDDC and outputs the contactless enable signal CLEN.
The regulator 110a includes a current source 111, a first comparator 112a, a p-type metal-oxide semiconductor (PMOS) transistor 113 and a first resistor R1. The first comparator 112a compares a voltage of a first node N1 and the first reference voltage VREF1, and the first resistor R1 and the current source 111 are connected in series at the first node N1 between the input voltage VDDU and a ground voltage.
The PMOS transistor 113 may include a source connected to the input voltage VDDU, a drain connected to a second node N2, and a gate connected to an output of the first comparator 112a. The first node N1 is connected to a negative input terminal of the first comparator 112a and the first reference voltage VREF1 is connected to a positive input terminal of the first comparator 112a. The first comparator 112a may be selectively enabled in response to the contactless enable signal CLEN. When the contactless enable signal CLEN is activated, the first internal voltage VDDA is outputted at the first node N1.
A configuration of the internal voltage generating unit 120, the constant voltage generator 140a and the switching unit 160 are substantially the same as corresponding ones of the internal voltage generator 100a of
The contact voltage providing unit 520 may selectively provide the contact voltage VDDC in response to the contactless enable signal CLEN. The contact voltage providing unit 520 may include a PMOS transistor 521. A source of the PMOS transistor 521 is connected to the contact voltage VDDA, and a drain of the PMOS transistor 447 is connected to the second node N2. The contactless enable signal CLEN is provided to a gate of the PMOS transistor 521. When the contactless enable signal CLEN is activated to a high-level, the contact voltage VDDC is not provided to the second node N2, and the first internal voltage VDDA is provided to the second node N2. When the contactless enable signal CLEN is deactivated to a low-level, the contact voltage VDDC is provided to the second node N2. Therefore, when the contactless enable signal CLEN is activated to a high-level, the clock generator 200 may generate the clock signal CK based on the first internal voltage VDDA and the second internal voltage IVC. When the contactless enable signal CLEN is deactivated to a low-level, the clock generator 200 may receive the second internal voltage IVC, which is based on the contact voltage VDDC, to generate the clock signal CK.
When the contactless enable signal CLEN is deactivated to a low-level, the contact voltage VDDC is provided to the second node N2, and thus, the contact voltage VDDC may replace the first internal voltage VDDA in
An internal voltage generator 500b may be used in the contactless IC card 10 which operates in two modes; a contact mode and a contactless mode.
Referring to
The internal voltage generator 500b of
Referring to
Referring to
The application processor 1100 may execute applications, such as a web browser, a game application, a video player, etc. In at least one example embodiment, the application processor 1100 may include a single core or multiple cores. For example, the application processor 1100 may be a multi-core processor, such as a dual-core processor, a quad-core processor, a hexa-core processor, etc. According to at least one example, the application processor 1110 may be coupled to an internal/external cache memory.
The memory device 1310 may store a boot image for booting the mobile system 1000, output data to be transmitted to an external device, and input data from the external device. For example, the memory device 1310 may be an electrically erasable programmable read-only memory (EEPROM), a flash memory, a phase change random access memory (PRAM), a resistance random access memory (RRAM), a nano floating gate memory (NFGM), a polymer random access memory (PoRAM), a magnetic random access memory (MRAM), a ferroelectric random access memory (FRAM), etc.
The contactless IC card 1200 selects the reference voltage for the regulator in the internal voltage generator according to operation mode that is determined based on whether the internal circuit performs an encryption operation. Thus, a fluctuation component is inhibited (or alternatively, prevented) from being transferred to the input voltage. Therefore, the contactless IC card 1200 may reduce (or alternatively) prevent transmission errors that may occur when the internal circuit performs encryption operation. The contactless IC card 1200 may employ the contactless IC card 10 of
The user interface 1130 may include at least one input device, such as a keypad, a touch screen, etc., and at least one output device, such as a speaker, a display device, etc. The power supply 1340 may supply a power supply voltage to the mobile system 1000.
The connectivity unit 1330 may perform wired or wireless communication with an external device. For example, the connectivity unit 1330 may perform Ethernet communication, near field communication (NFC), radio frequency identification (RFID) communication, mobile telecommunication, memory card communication, universal serial bus (USB) communication, etc. In at least one example embodiment, connectivity unit 1330 may include a baseband chipset that supports communications, such as global system for mobile communications (GSM), general packet radio service (GPRS), wideband code division multiple access (WCDMA), high speed downlink/uplink packet access (HSxPA), etc.
In at least one example embodiment, the mobile system 1000 may further include a camera image processor (CIS), and/or a storage device, such as a memory card, a solid state drive (SSD), a hard disk drive (HDD), a CD-ROM, etc.
In at least one example embodiment, the mobile system 1000 and/or components of the mobile system 1000 may be packaged in various forms, such as package on package (PoP), ball grid arrays (BGAs), chip scale packages (CSPs), plastic leaded chip carrier (PLCC), plastic dual in-line package (PDIP), die in waffle pack, die in wafer form, chip on board (COB), ceramic dual in-line package (CERDIP), plastic metric quad flat pack (MQFP), thin quad flat pack (TQFP), small outline IC (SOIC), shrink small outline package (SSOP), thin small outline package (TSOP), system in package (SIP), multi-chip package (MCP), wafer-level fabricated package (WFP), or wafer-level processed stack package (WSP).
According to at least one example embodiment, the internal voltage generator and the contactless IC card may select the reference voltage to the regulator in the internal voltage generator according to operation mode that is determined based on current consumption, which may inhibit (or alternatively, prevent) the fluctuation component from being transferred to the input voltage. Thus, a contactless IC card according to at least one example embodiment may reduce (or alternatively, prevent) transmission errors that may occur when the internal circuit performs an encryption operation.
Various exemplary embodiments may be widely applicable to various contactless IC cards and card systems.
The foregoing is illustrative of exemplary embodiments and is not to be construed as limiting thereof. Although a few exemplary embodiments have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of inventive concepts. Accordingly, all such modifications are intended to be included within the scope of inventive concepts as defined in the claims. Therefore, it is to be understood that the foregoing is illustrative of various exemplary embodiments and is not to be construed as limited to the specific exemplary embodiments disclosed, and that modifications to the disclosed exemplary embodiments, as well as other exemplary embodiments, are intended to be included within the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0026433 | Mar 2013 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
6996726 | Den Besten et al. | Feb 2006 | B1 |
7141939 | Nagasawa et al. | Nov 2006 | B2 |
20050040885 | Hayashi | Feb 2005 | A1 |
20060085655 | Sung et al. | Apr 2006 | A1 |
Number | Date | Country |
---|---|---|
2005216134 | Aug 2005 | JP |
20050073636 | Jul 2005 | KR |
WO-2010051117 | May 2010 | WO |
Number | Date | Country | |
---|---|---|---|
20140266414 A1 | Sep 2014 | US |