Embodiments of the disclosure are generally related to systems for isothermal compression. Specific embodiments of the disclosure relate to an internally-cooled centrifugal compressor with greatly increased heat transfer properties. A more specific embodiment of the disclosure relates to a compressor utilizing a cooled diaphragm section with internal cooling passages through the diffuser and return channel vanes such that cooling flows in a substantially counter-flow direction of gas flow.
Compressors are well known in the art with their primary function being to increase the pressure of a gas. It is also well known that compression of a gas not only increases pressure, but also causes heating of the gas by the work of compression. Thus, a gas is considerably hotter at the discharge than at the inlet of the compressor. In multistage compressors, for subsequent stages, this increase in heat (or temperature) requires greater heat rise for a given pressure ratio, which requires more power than compressing a cool gas.
Isothermal compression has been used as a way of maintaining a constant temperature during the gas compression process which, in turn, reduces the compression power required. However, typical isothermal compression processes will compress the gas in steps with intercooling between these steps with the downside of increased complexity and size of the compressor apparatus.
Thus, a need exists for an efficient means of compressing a gas that maximizes heat transfer while also minimizing aerodynamic pressure losses. A means of achieving isothermal compression of a gas without the size and piping requirements of prior art isothermal compressors would provide numerous advantages.
The following summary is provided to facilitate an understanding of some of the innovative features unique to the present disclosure and is not intended to be a full description. A full appreciation of the various aspects of the embodiments disclosed herein can be gained by taking the entire specification, claims, drawings, and abstract as a whole.
It is, therefore, one aspect of the present disclosure to provide for an improved compressor apparatus. It is another aspect of the present disclosure to provide for an internally-cooled compressor that allows isothermal compression of a gas. It is a further aspect of the present disclosure to provide for an improved isothermal compressor that maximizes heat transfer while not introducing additional aerodynamic losses in the gas flow path. It should be noted that the term “isothermal” also includes operation at a semi-isothermal capacity, without departing from the scope of the disclosure.
The aforementioned aspects and other objectives and advantages can now be achieved as described herein. Briefly, disclosed is an isothermal compressor with a cooling jacket structure formed in the diaphragm of the compressor. With the isothermal compressor of the present disclosure, cooling flow is routed through both the diffuser and return channel vanes and the bulb section of the diaphragm as a working fluid or gas is compressed through the diffuser and return channel. In one embodiment, heat transfer is achieved using diffuser vanes with internal cooling holes through which the cooling flow is channeled. The vanes also serve to increase pressure recovery in the diffuser. The return channel vanes may also define cooling holes that feed cooling flow into a hollow plenum arranged inside the center bulb. As the gas passes by the cooling flow coursing through the cooling holes of both the diffuser and return channel vanes and the center bulb, heat is extracted from the working fluid without additional drop in pressure for the gas.
In one embodiment, the walls for the gas flow path are maintained smooth while the flow path for the cooling fluid is roughened in order to maximize turbulence and heat transfer. Accordingly, in at least one embodiment, all of the cooling holes defined within the diffuser and return channel vanes may be roughened to increase heat transfer. Surface roughness may be achieved by tapping a screw thread in each hole.
According to still another embodiment, an isothermal compressor is disclosed that has an internally-cooled diaphragm with large structural vanes that increase the strength of the diaphragm and also increase the turbulence of cooling liquid flow resulting in improved heat transfer.
Embodiments of the disclosure generally provide an internally-cooled centrifugal compressor. The compressor may include a shaped casing having a stage inlet for an upstream gas connection and a stage outlet for a downstream gas connection, and a diaphragm arranged within said shaped casing and having a gas side and a coolant side so that heat from a gas flowing through the gas side is extracted via said coolant side, wherein, the coolant side includes a cooling agent flow path for directing a cooling agent in a substantially counter-flow direction from a flow of the gas through the gas side.
Embodiments of the disclosure may further provide an internally-cooled centrifugal compressor diaphragm. The compressor may include a rotatable impeller centrally-disposed within the diaphragm, a diffuser fluidly coupled to an outlet of the impeller and having a plurality of diffuser vanes arranged therein, each diffuser vane having at least one diffuser conduit defined therein, and a return channel fluidly coupled to the diffuser and having a plurality of return channel vanes arranged therein, each return channel vane having at least one return conduit defined therein. The compressor may further include a cooling jacket proximally-located about the diffuser and the return channel, the cooling jacket having a first chamber and a second chamber, and a center bulb defined within the diaphragm and interposed between the diffuser and the return channel, the center bulb being in fluid communication with the first chamber via the at least one return conduit and in fluid communication with the second chamber via the at least one diffuser conduit.
Embodiments of the disclosure may further provide a method of cooling a working fluid in a centrifugal compressor. The method may include circulating the working fluid through a diffuser having a plurality of diffuser vanes arranged therein, each diffuser vane having at least one diffuser conduit defined therein, receiving the working fluid in a return channel fluidly coupled to the diffuser and having a plurality of return channel vanes arranged therein, each return channel vane having at least one return conduit defined therein, circulating a cooling agent from a first chamber into a center bulb interposed between the diffuser and the return channel, the first chamber being located adjacent the return channel and in fluid communication with the center bulb via the at least one return conduit, and circulating the cooling agent from the center bulb to a second chamber, the second chamber being located adjacent the diffuser and in fluid communication with the center bulb via the at least one diffuser conduit, whereby as the cooling agent is circulated it removes heat from the working fluid.
The accompanying figures, in which like reference numerals refer to identical or functionally-similar elements throughout the separate views and which are incorporated in and form a part of the specification, further illustrate the present disclosure and, together with the detailed description of the disclosure, serve to explain the principles of the present disclosure.
a and 2b are cross-section close up views of the internally-cooled diaphragm in accordance with an embodiment.
It is to be understood that the following disclosure describes several exemplary embodiments for implementing different features, structures, or functions of the invention. Exemplary embodiments of components, arrangements, and configurations are described below to simplify the present disclosure; however, these exemplary embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the present disclosure may repeat reference numerals and/or letters in the various exemplary embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various exemplary embodiments and/or configurations discussed in the various Figures. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Finally, the exemplary embodiments presented below may be combined in any combination of ways, i.e., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
Additionally, certain terms are used throughout the following description and claims to refer to particular components. As one skilled in the art will appreciate, various entities may refer to the same component by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the invention, unless otherwise specifically defined herein. Further, the naming convention used herein is not intended to distinguish between components that differ in name but not function. Additionally, in the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to.” All numerical values in this disclosure may be exact or approximate values unless otherwise specifically stated. Accordingly, various embodiments of the disclosure may deviate from the numbers, values, and ranges disclosed herein without departing from the intended scope. Furthermore, as it is used in the claims or specification, the term “or” is intended to encompass both exclusive and inclusive cases, i.e., “A or B” is intended to be synonymous with “at least one of A and B,” unless otherwise expressly specified herein.
Referring to
There are many applications for the use of a centrifugal compressor 10 such as, for example, the compression of CO2 associated with carbon capture and sequestration projects and other similar attempts to reduce emissions while conserving energy. As will be described herein, the compressor 10 provides significant reduction in the required power associated with compression of all gases, including CO2, by performing near or at isothermal compression. Accordingly, the compressor 10 may reduce the need for intercoolers or eliminate the need for intercoolers altogether.
In exemplary operation, the gas travels through the compressor 10 generally in the direction of arrow 20 from a stage inlet 22 to a stage outlet 24. The stage inlet 22 provides a pipe connection from a source of gas to a housing or shaped casing 26 containing the various compressor components. Likewise, stage outlet 24 provides a pipe connection to a downstream system for receiving the pressurized gas. The compressor 10 includes a rotating impeller 28 arranged within the shaped casing 26 and configured to force the gas to the tip 30 of the impeller 28, thereby increasing the velocity of the gas entering the diffuser 34. A diaphragm section (or “diaphragm” as the terms shall be used interchangeably) 32 includes all of the various components contained within the back half or downstream end of the shaped casing 26 and forms the gas flow path of compressor 10. In particular, the diaphragm 32 includes a diffuser 34 fluidly coupled to a return channel 48. The diffuser 34 is configured to convert the velocity energy of the gas received from the impeller 28 to pressure energy, resulting in the compression of the gas. The return channel 48 is configured to receive the compressed gas from the diffuser 34 and eject the compressed gas from the gas flow path via the stage outlet 24, or otherwise inject the compressed gas into a succeeding compressor stage (not shown).
Referring now to
As shown in
In one or more embodiments, the cooling agent may include a coolant, such as ambient water, chilled water or ethylene glycol. It will be appreciated, however, that the cooling agent is not limited to liquids only, as gases could also be used as a suitable coolant source. In one embodiment, the cooling agent exiting the left chamber 80 may be circulated through one or more heat exchangers before being reintroduced in the right chamber 62.
Referring now to
It has been found that maximizing the surface area of the cooling domain 100 provides the most efficient transfer of heat from the pressurized gas flowing in the gas side to the cooling agent flowing in the coolant side. Consequently, the surface area of the cooling domain 100 is maximized through the implementation of return conduits 64 and diffuser conduits 70 within the return channel vanes 66 and diffuser vanes 42, respectively. In this way, an internal means of heat extraction is provided to a single stage or multi-stage compressor apparatus, such as the compressor 10 described herein.
It should be understood that the present disclosure is not limited to a particular configuration of diaphragm, such as the diaphragm 32 described herein. Instead, the current disclosure encompasses unique and novel aspects relating to the efficient operation of a compressor, such as compressor 10, where internal cooling is provided by maximizing the surface area of the cooling domain side of the diaphragm section 32 inside the compressor 10 without negatively impacting gas pressure. Thus, Applicants of the present disclosure have discovered that various features can be utilized within the diaphragm section 32 to improve efficiency and avoid negative impacts on compressor 10 performance.
One such feature involves the physical aspects of the diaphragm section 32. For example, it has been discovered by Applicants that maintaining the gas flow path within a substantially smooth-walled structure while directing the cooling agent through a cooling agent flow path having a roughened-walled structure maximizes turbulence in the coolant side and heat transfer while keeping pressure drop on the gas side identical to a standard (non-cooled) compressor design. As used herein, a “smooth-walled structure” generally refers to a diaphragm 32 that has not been intentionally roughened, i.e., does not create significant turbulence with the gas/fluid flowing thereby, so as to result in a diaphragm 32 having walls that are coarse, jagged, or rugged. Moreover, as used herein, a “roughened-walled structure” includes, but is not limited to, threading the return and diffuser conduits 64, 70 so as to generate coarsely threaded holes that make a tortuous flow path for the cooling agent flowing therethrough. The term “roughened-walled structure” may also include or otherwise refer to the implementation or addition of structural vanes 160 within the coolant side of the diaphragm 32, as will be described in more detail below with reference to
The diaphragm 32, including the cooling jacket 46, center bulb 68, diffuser vanes 42, and return channel vanes 66, may be manufactured via a variety of manufacturing processes. For example, in one manufacturing process the diaphragm 32 is fabricated by first machining the individual components, such as by computer numerically controlled (CNC) milling techniques. The machined pieces may then be welded together, heat treated, and then final-machined to smooth each weldment. Because of the complexity of the diaphragm 32 and its components, the diaphragm 32 may be machined and welded throughout multiple stages. For instance, the bulb 68 pieces may be machined in two sections; one section containing the diffuser vanes 42, and the other section containing the return channel vanes 66. These two sections can be welded together to complete the bulb section 68. Moreover, the main structural sections of the cooling jacket 46 may also be machined using two pieces for each half; one piece for the diffuser vane side and another for the return channel side. These two sections may be welded to the bulb section 68 at both the diffuser and return channel vanes 42,66, and may then be welded to each other at the perimeter.
It will be appreciated, however, that other forms of manufacturing may be employed, without departing from the scope of the disclosure. For example, it is also contemplated herein to cast the diaphragm 32 as a single component, such as by sand casting, plaster mold casting, investment casting, or die casting.
Referring to
Referring now to
A cooling agent may then be circulated from a first chamber into a center bulb, as at 606. The center bulb may be interposed between the diffuser and the return channel, and the first chamber may be adjacent to or otherwise surrounding the return channel on at least one side thereof. Moreover, the first chamber may be in fluid communication with the center bulb via the return conduits defined within the return channel vanes. The cooling agent may further be circulated from the center bulb to a second chamber, as at 608. The second chamber may be located adjacent to or otherwise surrounding the diffuser on at least one side thereof. Furthermore, the second chamber may be in fluid communication with the center bulb via the diffuser conduits defined within the diffuser vanes.
Accordingly, as the cooling agent is circulated from the first chamber to the center bulb, and from the center bulb to the second chamber, heat is constantly being transferred from the working fluid to the cooling agent, thereby resulting in the overall cooling of the working fluid. As will be appreciated, the heat transfer may occur within the return vanes or diffuser vanes as the cooling agent passes therethrough, but may also occur within the first and second chambers as heat is passed from the return channel and diffuser into the first and second chambers, respectively. Moreover, heat transfer may occur in the cooling agent flowing in the center bulb.
The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.
This application claims priority to U.S. Provisional Patent Application Ser. No. 61/402,983, filed Sep. 9, 2010.
This invention was made with government support under Government Contract No. DE-FC26-05NT42650 awarded by the US Department of Energy. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
1653217 | Koch | Dec 1927 | A |
1857486 | Trumpler | May 1932 | A |
2380772 | McMahan | Jul 1945 | A |
2384251 | Hill | Sep 1945 | A |
2474410 | Aue | Jun 1949 | A |
2612310 | Eggmann | Sep 1952 | A |
3205828 | Rupp | Sep 1965 | A |
3241743 | Laing et al. | Mar 1966 | A |
3295597 | Laing et al. | Jan 1967 | A |
3424234 | Laing | Jan 1969 | A |
4271682 | Seki | Jun 1981 | A |
5361828 | Lee et al. | Nov 1994 | A |
5674053 | Paul et al. | Oct 1997 | A |
6203275 | Kobayashi et al. | Mar 2001 | B1 |
6345503 | Gladden | Feb 2002 | B1 |
6790014 | Bowen | Sep 2004 | B2 |
20040055740 | Meshenky et al. | Mar 2004 | A1 |
20090028730 | Radermacher et al. | Jan 2009 | A1 |
Number | Date | Country |
---|---|---|
06294398 | Oct 1994 | JP |
Entry |
---|
Machine Translation of JP 06-294398 dated Apr. 8, 2013. |
Novel Concepts for the Compression of Large Volumes of Carbon Dioxide—Phase II Quarterly Progress Report Jul. 1, 2008 thru Sep. 30, 2008. |
Novel Concepts for the Compression of Large Volumes of Carbon Dioxide—Phase II Quarterly Progress Report Oct. 1, 2008 thru Dec. 31, 2008. |
Novel Concepts for the Compression of Large Volumes of Carbon Dioxide—Phase II Quarterly Progress Report Jan. 1, 2009 thru Mar. 31, 2009. |
Novel Concepts for the Compression of Large Volumes of Carbon Dioxide—Phase II Quarterly Progress Report Apr. 1, 2009 thru Jun. 30, 2009. |
Novel Concepts for the Compression of Large Volumes of Carbon Dioxide—Phase II Quarterly Progress Report Jul. 1, 2009 thru Sep. 30, 2009. |
Novel Concepts for the Compression of Large Volumes of Carbon Dioxide—Phase II Quarterly Progress Report Oct. 1, 2009 thru Dec. 31, 2009. |
Novel Concepts for the Compression of Large Volumes of Carbon Dioxide—Phase II Quarterly Progress Report Jan. 1, 2010 thru Mar. 31, 2010. |
Novel Concepts for the Compression of Large Volumes of Carbon Dioxide—Phase II Quarterly Progress Report Apr. 1, 2010 thru Jun. 30, 2010. |
Novel Concepts for the Compression of Large Volumes of Carbon Dioxide—Phase II Quarterly Progress Report Jul. 1, 2010 thru Sep. 30, 2010. |
Novel Concepts for the Compression of Large Volumes of Carbon Dioxide—Phase II Final Progress Report Covering Periods Jun. 30, 2008 thru Dec. 30, 2010 This report is cumulative of Quarterly Reports 1-9 listed above. |
Number | Date | Country | |
---|---|---|---|
20120063882 A1 | Mar 2012 | US |
Number | Date | Country | |
---|---|---|---|
61402983 | Sep 2010 | US |