Internally located return electrode electrosurgical apparatus, system and method

Information

  • Patent Grant
  • 8292887
  • Patent Number
    8,292,887
  • Date Filed
    Wednesday, February 9, 2011
    13 years ago
  • Date Issued
    Tuesday, October 23, 2012
    11 years ago
Abstract
A bipolar, plasma-generating electrosurgical apparatus and system wherein the return electrode is enclosed within an electrosurgical shaft, and the active electrode is located on the outside surface of the shaft such that in treating the tissue, the tissue is exposed to plasma generated on the active electrode, but is minimally exposed to electric fields generated between the active and return electrodes. Due to the configuration of the electrodes, electric fields generated between the electrodes are directed away from the target tissue and inwardly towards the return electrode within the shaft, thereby electrical stimulation of neuromuscular structures in the tissue by the electric fields is minimized.
Description
FIELD OF INVENTION

This invention pertains to an electrosurgical apparatus, system and method of treating tissue in a body structure, in particular a bipolar, plasma-generating electrosurgical apparatus and system wherein the return electrode is enclosed within an electrosurgical shaft, and the active electrode is located on the outside surface of the shaft such that in treating the tissue, the tissue is exposed to plasma generated on the active electrode, but minimally exposed to localized electric fields generated between the active and return electrodes. In various embodiments, due to the configuration of the electrodes, the electric fields are directed away from the target tissue, as they are oriented inwardly towards the return electrode within the shaft, thereby avoiding electrical stimulation of neuromuscular structures in the tissue by these electric fields.


BACKGROUND OF THE INVENTION

Electrosurgical instruments and systems comprising an active and return electrode and powered by a radio-frequency voltage supply as is illustrated for example in FIG. 1, are widely used in procedures for treating target tissues in the body. Treatment of the target tissue involves placing the electrodes (10) in close proximity to a target tissue (12) and applying power to the electrodes to cause Coblation®, heating, ablation, coagulation, cutting, removal, puncturing, probing, and otherwise stimulating the tissue. In some systems an electrically conductive fluid is supplied between the electrodes to generate plasma to treat the tissue; in other systems, the body's fluids are used as the conductive fluid. An example of such system for treating tissues with plasma is described in commonly assigned U.S. patent application Ser. No. 10/661,118, now U.S. Pat. No. 7,276,063, hereby incorporated herein by reference for all purposes.


In an electrosurgical system as illustrated in FIG. 1, the electrodes are located on the distal end portion of the shaft (14). In one configuration of the distal end portion of the shaft as is illustrated in detail FIG. 2, the return electrode (16) is positioned on the outside perimeter of the shaft and, in various embodiments, surrounds the active electrode (18) which is within the shaft. To ensure that plasma (20) generated on the active electrode is closest to the tissue, the distal tip of the active electrode projects beyond the return electrode. Also, in the embodiment illustrated in FIG. 2, the active electrode is separated from the return electrode by an insulator (24), and electrically conductive fluid (26) is supplied between the electrodes by a fluid lumen (27) circumferentially positioned on the shaft around the return electrode. This conductive fluid as is illustrated in FIG. 2 forms a conductive fluid pathway (38) between the electrodes


Also in an electrosurgical system as is illustrated in FIG. 2 and as will be appreciated by one ordinarily skilled in the art, when power is applied across the electrodes, an electric field (22) sometimes in the order of 30,000 V/cm is generated which, for some procedures, is not desired as these fields can interact with the tissue and cause electrical stimulation of neuromuscular structures (28) within the tissue.


Accordingly, there is a need for apparatus and systems for use in electrosurgical procedures wherein unwanted electrical stimulation of the tissue is avoided, and which can be used in confined spaces within the body.


SUMMARY OF THE INVENTION

The present electrosurgical apparatus in one embodiment comprises an electrosurgical shaft having a proximal end portion and a distal end portion. The shaft includes an active electrode disposed on the surface of the distal end portion, and a return electrode disposed within the distal end portion of the shaft. Positioned between the active and return electrode is an insulating member that prevents direct electrical contact between the active and return electrodes. The shaft includes an interconnecting passageway within the distal end portion of the shaft between the active and return electrode. The electrodes are connected to a radio-frequency voltage supply by connectors such that on applying a radio-frequency voltage difference across the active and return electrodes, plasma is generated on the active electrode, and electrical fields generated between the electrodes are directed from the active electrode to the return electrode in the shaft, to avoid electrical stimulation of the tissue. The plasma can be used to treat the tissue by coblating, heating, ablation, coagulation, cutting, removal, puncturing, probing, and otherwise stimulating the tissue.


The present electrosurgical system in one embodiment is a system for performing an electrosurgical procedure on a body tissue using plasma such that electrical stimulation of the tissue is minimized, the system comprising: an electrosurgical instrument comprising a shaft; an electrically conductive fluid supply having a discharge port on a distal end portion of the shaft; and a radio-frequency voltage supply connected to the electrosurgical instrument. In one embodiment, the shaft has: an active electrode on the distal end portion; a return electrode recessed within the shaft; an electrical insulator separating the active and return electrode. Within the shaft is a chamber in communication with the active and return electrodes such that on applying the radio-frequency voltage supply to the active and return electrodes in the presence of an electrically conductive fluid, plasma is generated on the active electrode on the surface of the shaft, and electric fields generated between the active and return electrodes are directed within the shaft, and thus away from the tissue. In some embodiments the shaft of the electrosurgical instrument may include an aspiration lumen having a plurality of inlet apertures formed along a selected length of the shaft, where the selected length of the shaft include a first portion for insertion within a target tissue structure, such as an intervertebral disc, and a second portion for venting outside the target tissue structure.


The present electrosurgical method in one embodiment is a method of treating tissue that avoids nerve stimulation, comprising the steps of: positioning a distal end portion of an electrosurgical instrument in close proximity to the tissue, the distal end portion comprising an active electrode and a return electrode; applying a radio frequency voltage across the active and return electrodes in the presence of an electrically conducting fluid sufficient to generate plasma on the active electrode; and contacting the tissue with the plasma such that the tissue is exposed to plasma but minimally exposed to electric fields generated between the active electrode and the return electrode.


In various embodiments the present apparatus and system can be used in procedures for treating highly neutralized tissue, and other tissues located in confined targets within the body. An example of such targets is tissue in the intervertebral discs.


Details of embodiments of the present apparatus, system and methods are illustrated and described the following Figures and specifications.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of a bipolar electrosurgical system;



FIG. 2 is an illustration of a cross-section of the distal end portion of an electrosurgical instrument showing plasma and electrical fields between the active and return electrodes;



FIG. 3 is an illustration of lateral view of a partial spinal column;



FIG. 4 is an illustration of a perspective view of an intervertebral disc;



FIG. 5 is an illustration of an embodiment of the present apparatus within a herniated intervertebral disc for treating the disc in accordance with one orientation of the apparatus;



FIG. 6 is an illustration of a perspective cut-away view of the distal end portion of the present electrosurgical shaft;



FIG. 7 is an illustration of a longitudinal cross-sectional view of the distal end portion of the present electrosurgical shaft;



FIG. 8 is an illustration of the cross-section of the distal end portion of the present apparatus showing conductive fluid and electrical fields between the active and return electrodes, without plasma;



FIG. 9 is an illustration of the cross-section of the distal end portion of the present apparatus showing conductive fluid flow, electrical field lines between the active and return electrodes, with plasma on the active electrode;



FIG. 10 is an illustration of a perspective view of an embodiment of the present active electrode;



FIG. 11 is as illustration the present electrosurgical system wherein the return electrode is enclosed with the distal end portion of an electrosurgical shaft;



FIG. 12 is an algorithm of the present method of treating tissue with the present apparatus and system;



FIG. 13 shows an electrosurgical system for insertion according to the present disclosure for treating a target tissue;



FIG. 14 shows a cut-away view of a portion of a shaft of an electrosurgical system;



FIG. 15 shows an enlarged view of the distal end of an electrosurgical system, with portions removed, according to the present disclosure; and



FIG. 16 shows an embodiment of an active electrode according to the present disclosure.





DETAILED DESCRIPTION

With reference to FIGS. 1 and 2, a plasma-generating bipolar electrosurgical system typically comprises an electrosurgical shaft (14) having proximal (30) and distal (32) end portions; one or more active electrode(s) (18) located on the distal end of the shaft; a return electrode (16) located on the shaft of the return electrode and separated from the active electrode by an insulator (24); electrical connectors (34) coupling the active and return electrodes (18, 16) to a source of radio-frequency voltage supply (36); and a supply of electrically conductive fluid (26) from fluid reservoir (26a) adapted to be discharged between the active and return electrodes. On application of the radio-frequency voltage across the electrodes in the presence of the conductive fluid, plasma is generated which can be used to treat tissue as described for example in U.S. patent application Ser. No. 10/661,118, now U.S. Pat. No. 7,276,063, supra.


A bipolar electrosurgical apparatus, as is illustrated for example in FIGS. 1 and 2, is an electrosurgical apparatus wherein both the active and return electrodes (18, 16) are positioned on the shaft (14). In this regard, a bipolar apparatus is distinguishable from a monopolar apparatus in that on a monopolar apparatus only the active electrode is positioned on the shaft; in a monopolar apparatus the return electrode is located off the shaft but is in electrical contact through the patient to the target site and the electrically conductive fluid.


Examples of an electrically conductive fluid include isotonic saline, a conductive gel, Ringer's solution and the biocompatible electrolytes as described for example in U.S. patent application Ser. No. 10/661,118, now U.S. Pat. No. 7,276,063, supra.


In a bipolar electrosurgical apparatus as is illustrated for example in one embodiment in FIG. 2, the electrodes are separated from each other by an insulator (24) to prevent short-circuiting of the electrodes on the distal end portion of the shaft. However, to establish a closed electrical circuit across the electrodes on the shaft and generate plasma, an electrically conductive fluid pathway (38) is provided between the electrodes. This electrically conductive fluid pathway can be provided in several ways including placing the conductive fluid on the shaft such that the fluid is in contact with both electrodes; or placing the conductive fluid on the target tissue such that the fluid is in contact with both electrodes and the target tissue at the same time; or inserting the shaft into the tissue such that the electrical circuit between the electrodes is established through the tissue by conductive body fluids in the tissue.


In both bipolar and monopolar plasma-generating apparatus, however, regardless of how the conductive pathway is established between the electrodes, for the instrument to generate plasma it is necessary to maintain a closed electrical circuit on the distal end of the shaft comprising the electrodes, the electrically conductive fluid and the power supply, as described for example in U.S. patent application Ser. No. 10/661,118, now U.S. Pat. No. 7,276,063, supra.


On a bipolar plasma-generating systems and apparatus as illustrated in FIGS. 1 and 2 and as is described in commonly assigned U.S. patent application Ser. No. 10/661,118, now U.S. Pat. No. 7,276,063, supra, plasma is generated on the electrodes by applying a radio frequency voltage across the electrodes in the presence of the electrically conductive fluid (26) along fluid pathway (38). With these systems and apparatus, plasma (20), comprised of energized charged species such as ions and electrons, is used to treat the target tissue by Coblation® as described in U.S. patent application Ser. No. 10/661,118, now U.S. Pat. No. 7,276,063, supra.


On a plasma-generating bipolar apparatus, in order to generate and use plasma to treat the tissue, the electrodes are designed such that only the active electrode generates the plasma, and that in use this electrode is located as close as possible to the target tissue. Conversely, the return electrode is designed such that it does not generate plasma, and that in use it is away from the target tissue to avoid contacting the tissue, but it is in electrical contact with the active electrode through the electrically conductive fluid. One way by which the plasma is generated on the active electrodes but not on the return electrode is to maintain the surface area of the active electrode smaller relative to the surface area of the return electrode.


In this regard it should be noted that during use, ablated tissues and other materials may accumulate on the return electrode thereby causing a reduction of its exposed surface area relative to the exposed surface area of the active electrode, thereby undesirably causing the return electrode to also generate plasma.


In a plasma-generating bipolar apparatus and system as is illustrated for example in FIGS. 1 and 2 and described in U.S. patent application Ser. No. 10/661,118, now U.S. Pat. No. 7,276,063, supra, a convenient way by which a relatively large return electrode is maintained is to use the shaft proximal of the active electrode as the return electrode. Typically this involves using an outer metallic portion of the shaft that is insulated from the active electrode. Thus, as is illustrated in FIG. 2 in a bipolar system, in one embodiment, the active electrode is the distal tip of the shaft, whereas the return electrode is the shaft's outer surface insulated from the active electrode.


Also as is illustrated for example in FIGS. 1 and 2 and described in U.S. patent application Ser. No. 10/661,118, now U.S. Pat. No. 7,276,063, supra, in using a plasma-generating bipolar apparatus for some procedures it is necessary to supply the electrodes with an electrically conductive fluid to form the electrically conductive fluid (26) along fluid pathway (38) between the electrodes (18, 16), and in some embodiments also to flush the target site and the electrodes with fluid.


In procedures requiring a conductive fluid, this fluid can be provided by a fluid supply lumen located on the shaft. In this arrangement the fluid supply lumen is attached to a conductive fluid supply at the proximal end, such that the fluid is available for discharge at the distal end through an opening in the lumen near the electrodes and the target site.


Further, in a plasma-generating bipolar apparatus as is illustrated for example in FIGS. 1 and 2, for some procedures it is necessary to remove excess fluids and ablated tissue away from the target site. Where such fluid and tissue removal is necessary, an aspiration lumen is provided. In various embodiments the fluid aspiration lumen is located on the shaft but it can also be placed off the shaft in other embodiments. In an arrangement wherein the aspiration lumen is on the shaft, the lumen may comprise of a fluid inlet port disposed at the distal end of shaft, and a fluid discharge port at the proximal end where it is connected to a vacuum system for suctioning fluids, gases and ablated tissue from the target site through the aspiration lumen.


One procedure wherein a bipolar, plasma-generating apparatus is used for treating tissue is in treating an intervertebral disc as is described for example in U.S. patent application Ser. No. 10/656,597, now U.S. Pat. No. 7,276,063, incorporated herein by reference herein for all purposes. In one procedure as illustrated in FIGS. 3-5, the distal end of the shaft (40) is inserted in the disc (42) and thereafter radio-frequency voltage is applied across the electrodes to generate plasma to treat the disc. In FIG. 5, the electrosurgical apparatus (50) is shown inserted anteriorily into the disc, however as will be appreciated to one ordinarily skilled in the art, in other procedures not shown in FIG. 5, the electrosurgical apparatus is also insertable posteriorily into the disc.


As can be appreciated in the art in using a bipolar apparatus in treating a intervertebral disc as is illustrated in FIGS. 3-5, besides generating plasma as described above, the apparatus also generates electrical fields (22) across the electrodes as is illustrated in FIG. 2, and these fields can be as high as 30,000 V/cm. A problem with these electrical fields is that in sensitive tissues such as in the disc and around the spine, the electric fields can cause undesired stimulation of regional nerve or nerve fibers (28) as is illustrated in FIG. 2.


Also as can be appreciated by one ordinarily skilled in the art, in treating tissue in confined spaces such as in the intervertebrate disc, it can be difficult to avoid contacting the tissue with the return electrode thus causing a short circuit across the electrodes or reducing the surface area of the electrode relative to the area of the active electrode.


Another problem with using a bipolar apparatus in confined spaces such as in the invertebrate disc is that since the shaft may include a fluid supply lumen and an aspiration lumen, the shaft can get too bulky for easy access and use.


Accordingly, the present apparatus, system and apparatus in various embodiments are adapted to electrosurgically treat tissue, while minimizing exposure of the tissue to electrical stimulation. The apparatus, as will be appreciated from the present description, is also reduced in size in part because of the placement of the return electrode with the shaft; thus, with a smaller profile on the distal end portion the present apparatus and system provides improved access flexibility for applying electrosurgical procedures in restricted areas of the body, as for example, within an intervertebral disc.


With reference to FIGS. 5-11, in one embodiment the electrosurgical apparatus (50) comprises a shaft (52) having a proximal end portion (54) and a distal end portion (56). On the distal end portion of the shaft is disposed an active electrode (58) on the surface of the shaft. Also disposed on the distal end portion but within the shaft is a return electrode (60) that is insulated from the active electrode by an insulating member (62) positioned on the distal end portion of the shaft. In this position, the insulating member prevents direct electrical contact between the active and return electrodes. Also included in the shaft in the present embodiment are electrical conductors (64, 66) that are adapted for applying a radio-frequency voltage difference across the active and return electrodes.


In one embodiment the electrosurgical apparatus comprises a lumen (70) within the shaft through which an electrically conductive fluid such as saline, Ringer's solution or another acceptable other biocompatible ionic solutions can be supplied to the distal end portion of the shaft in the vicinity of the electrodes and the target tissue. As is illustrated in FIGS. 1 and 11, the electrically conductive fluid can be supplied from a reservoir (26A) attached to the apparatus at the proximal end; in other embodiments not shown the reservoir is located on another apparatus.


In the embodiment illustrated in FIGS. 6-9, for example, the lumen is connected to an interconnecting passage (68) formed within the distal end portion of the shaft in between the electrodes. Within this interconnecting passage as is illustrated in FIG. 9, when a high frequency voltage is applied across the electrodes in the presence of an electrically conductive fluid, for example within the interconnecting passageway (68), plasma (74) which can be used to treat tissue is generated on the active electrode (58). Also, as noted above, when the power is applied to the electrodes, an electric field (76) is generated between the active electrode (58) and the return electrode (60) located within the shaft (52). Thus, since these electric fields are directed inwards, their effect on neighboring tissue is at least minimized, or eliminated.


In an embodiment of the active electrode illustrated in FIGS. 6-10, and in particular in FIG. 10, a plurality of apertures or holes (78) are provided on the electrode for passing an electrically conductive fluid between the outside of the shaft to the return electrode. In one embodiment the apertures are in the form of a mesh made of interwoven wires. Thus with this embodiment, both electrodes can be kept in electrical contact with an electrically conductive fluid within the interconnecting passageway (68).


Also in the embodiment of the apparatus illustrated in FIGS. 6-10, the return electrode is connected to a conductive cap (77) having an exposed surface on the outer surface of the shaft (52), such that the cap is spaced sufficiently far from the active electrode to minimize generation of an electric circuit between the active electrode and the cap. An advantage of using this cap is that if the cap is conductive, since it is connected to the return electrode, its conductive area contributes to the area of the return electrode and thus helps to ensure that the charge density on the surface of the return electrode is lower than the charge density on the surface of active electrode.


With reference to FIGS. 1 and 11, the electrosurgical apparatus in one embodiment comprises an aspiration lumen having an inlet in the proximity of the electrodes for removing fluids form the distal end portion of the shaft. The fluids may include fluids that flush the site as well as fluids that result from treatment of the tissue.


Also provided in the present application is a system for performing an electrosurgical procedure on a body tissue using plasma, as is illustrated for example in FIG. 11. The system (51) in one embodiment comprises an electrosurgical instrument comprising a shaft (52); an electrically conductive fluid supply having a discharge port on a distal end portion (56) of the shaft; and a radio-frequency voltage supply (36) connected to the electrosurgical instrument. In one embodiment, and as described above with reference to FIGS. 6-9, the shaft has: an active electrode (58) on the distal end portion; a return electrode (60) recessed within the shaft; an electrical insulator (62) separating the active and return electrode; and an interconnecting passageway (68) in communication with the active and return electrodes within the shaft, wherein on applying the radio-frequency voltage supply (36) to the active and return electrodes in the presence and electrically conductive fluid (72), plasma (74) is generated on the active electrode on the surface of the shaft, and electric fields (76) generated between the active and return electrodes are directed within the shaft.


Further provided is a method of treating body tissue including nerve-sensitive tissue in the body, as set forth in FIG. 12, comprising the steps of: positioning a distal end portion of an electrosurgical instrument in close proximity to the tissue (122), the distal end portion comprising an active electrode and a return electrode; applying a radio frequency voltage across the active and return electrodes in the presence of an electrically conduct fluid sufficient to generate plasma on the active electrode; contacting the tissue with the plasma (124) and thereby avoiding exposing the tissue to electric fields generated between the active electrode and the return electrodes.


Now referring generally to the embodiments shown in FIGS. 13-16, an electrosurgical system (150) for insertion into a body structure (138) is provided. Electrosurgical system (150) generally includes shaft (152) having a distal end portion (156) and a proximal end (not expressly shown) where distal end portion (156) is adapted for treating a target tissue within body structure (138). In a preferred embodiment, body structure (138) may be an intervertebral disc and the target tissue comprises tissue within either or both the nucleus pulposus or the annulus fibrosus thereof. In the present embodiment distal end portion (156) includes an active electrode (158) disposed on the exterior surface of shaft (152). Also disposed within distal end portion (156) but within shaft (152) is a return electrode (160) that is insulated from the active electrode by an insulating member or spacer (162). In this position, insulating member (162) prevents direct electrical contact between active electrode (158) and return electrode (160) but also allows conductive fluid (172) to flow therebetween. Also included in shaft (152) are suitable electrical conductors (not expressly shown) adapted for connection with a radio-frequency voltage source and applying a radio-frequency voltage difference across active electrode (158) and return electrode (160) and a conductive cap (177), as described below.


In the present embodiment apparatus (150) comprises a fluid delivery lumen (170) and an aspiration lumen (171). Fluid delivery lumen (170) is preferably adapted to supply an electrically conductive fluid (172) such as saline, Ringer's solution or another suitable biocompatible ionic solutions to the distal end portion (156) of shaft (152) in the vicinity of the electrodes (158) and (160) and the target tissue. As is illustrated in FIGS. 1 and 11, electrically conductive fluid (172) may be supplied from a reservoir (26A) in communication with the apparatus (150) at the proximal end or from another suitable source of electrically conductive fluid. In the present embodiment the distal terminus of delivery lumen (170) comprises return electrode (160).


In the present embodiment fluid delivery lumen (170) is connected with and terminates within an interconnecting passage or chamber (168) formed within the distal end portion (156) of the shaft (152) between the active electrode (158) and return electrode (160). In other words, fluid delivery lumen (170) supplies fluid (172) to chamber (168) which may then preferably flow through apertures (178) of active electrode (158). Within chamber (168), when a suitable high frequency voltage is applied across the electrodes (158) and (160) in the presence of electrically conductive fluid (172) a plasma may preferably be formed for the treatment of tissue proximate active electrode (158).


Shaft (152) also includes aspiration lumen (171). In the present embodiment aspiration lumen (171) includes a distal opening (186) proximate active electrode (158), return electrode (160) and chamber (168) as well as a plurality of apertures (188) formed along a selected length (182) of shaft (152). In the present embodiment, apertures (188), which may also be referred to as “inlet apertures”, are substantially uniformly spaced along selected length (182), including being uniformly spaced along the circumference of shaft (152), and have a uniform size. In alternate embodiments the size and disposition of apertures (188) may vary along the selected length. In the present embodiment, selected length (182) comprises approximately 2.5 centimeters, however in alternate embodiments selected length may be in the range of between about one centimeter and about five centimeters or between about two centimeters and about three centimeters.


As shown in the embodiment of FIG. 14, conductive fluid (172) is delivered through fluid delivery lumen (170) and fluids are vented from the treatment site via aspiration lumen (171). Fluids may enter aspiration lumen (171) through opening (186) or apertures (188) and subsequently travel away from the body structure (138) in the direction of arrows (181).


Referring now to FIG. 13, the selected length (182) comprises a first portion (183) and a second portion (184) where the first portion (183) is designed to be inserted within body structure (138) during a medical procedure while the second portion (184) is designed to remain outside of the body structure during use. For example, first portion (183) may be about one (1) centimeter and second portion (184) may be about one and one-half (1.5) centimeters. In this manner, first portion (183) allows fluids (including gases) produced during treatment of the target tissue to evacuate through aspiration lumen (171) via apertures (188) and opening (186) along first portion (183). In an alternate embodiment (not expressly shown) the cumulative or collective area of apertures (188) with second portion (184) is at least equal to the cross sectional area of aspiration lumen (171). In another alternate embodiment, the size and/or distribution of apertures (188) in the first portion (183) may be greater than the size and/or distribution of apertures (188) in the second portion (184). In an alternate embodiment, distal opening (186) may be filled with an epoxy or other suitable material such that flow into aspiration lumen (171) is provided only through apertures (188).


By providing second portion (184) outside of body structure (138) pressure P1 within body structure may be preferably kept at or substantially near atmospheric pressure. Aspiration lumen (171) may preferably be in communication with a suction source, however, the disposition of apertures (188) along selected length (182) allows fluid to flow away from the treatment site without requiring a separate suction source. In situations in which a separate suction source is not provided or not used, the evacuated material may exit aspiration lumen (171) via apertures along the second portion (184) of selected length (182).


As noted above, when the power is applied to electrodes (158) and (160), an electric field (not expressly shown) may be is generated therebetween. However, since this electric field is directed inwards and is maintained primarily within the distal end portion (156) the effect of the electric field on neighboring tissue is substantially minimized, if not eliminated.


In the embodiments of the apparatus illustrated in FIGS. 13-16, return electrode (160) is in electrical communication with a conductive cap or tip (177) having an exposed surface on the outer surface of the shaft (152), such that the cap is sufficiently spaced with respect to active electrode (158) to minimize generation of an electric field between the active electrode and the cap. As discussed above, an advantage of providing conductive cap (177) is to ensure that the charge density on the surface of return electrode (160) is lower than the charge density on the surface of active electrode (158).


As shown in FIG. 16, active electrode (158) includes a screen or mesh portion (194) comprising a plurality of apertures (178). Active electrode (158) also includes a distal loop assembly (196). As shown in FIG. 15, loop assembly (196) is adapted to interface with distal end portion (156) of shaft (152). As shown, bushing (190) is disposed circumferentially around the exterior surface of return electrode (160). Note that in FIG. 15 a proximal portion of bushing (190) has been cut away to allow return electrode (160) and chamber (168) to be in view. In the present embodiment bushing (190) preferably extends slightly in a proximal direction such that loop section (196) may then be disposed around bushing (190) and such that bushing (190) insulates loop (196) from return electrode (160). A distal spacer (192), also shown in FIG. 15 with a portion removed, may be further provided circumferentially around bushing (190) to insulate cap (177) from active electrode (158). Distal spacer (192) and cap (177) may aid in blunt dissection and protect active electrode (158) during insertion into body structure 138. In an alternate embodiment active electrode (158) may be brazed onto distal end portion (156) of shaft (152). In an alternate embodiment electrode (158) may include a second loop located, for example, at the opposite end of screen (194) for interfacing with distal end portion (156).


As shown in FIGS. 13-15 an electric insulator or spacer element (162) is provided between active electrode (158) and return electrode (160). Insulator (162) includes an opening for allowing conductive fluid to flow between active electrode (158) and return electrode (160). Additionally, insulator (162) may include apertures (163) formed therein. Apertures (163) may be formed uniformly on the body of the insulator (162) or may be provided along only a portion of insulator (162). Apertures (163) may be elliptical (as shown), circular or have any other suitable shape. Apertures (162) may open into chamber (168) and/or onto a surface of return electrode (160). In this manner apertures (163) may contribute to ensuring that the charge density on the surface of return electrode (160) is lower than the charge density on the surface of active electrode (158). Apertures (163) preferably provide an exit path for conductive fluid (172) in chamber (168) in the event that screen portion (194) of active electrode (158) becomes clogged.


By the present description and Figures it is to be understood that the terms used herein are descriptive rather than limiting, and that changes, modifications, and substitutions may be made without departing from the scope of the invention. Also it will be appreciated that although the present apparatus, system is described in the context electrosurgery on an intervertebral disc, the apparatus and its use is not restricted to treating discs but is applicable in general for electrosurgical procedures wherein is desired to minimize exposure of the tissue to electrical stimulation, and where access to the tissue is limited. Therefore the invention is not limited to the embodiments described herein, but is defined by the scope of the appended claims.

Claims
  • 1. A method of treating nerve-sensitive tissue within a body structure, comprising: positioning a distal end portion of an electrosurgical instrument in close proximity to the body structure, the distal end comprising an active electrode and a return electrode, wherein the active electrode comprises a tissue-contacting surface on the distal end portion, and the return electrode is recessed within the distal end portion;applying a radio frequency voltage across the active and return electrodes in the presence of an electrically conductive fluid such that electric fields are generated between the active electrode and the return electrode, wherein the voltage is sufficient to generate plasma on the active electrode, and wherein the electric fields are directed within a chamber defined between the active electrode and the return electrode;electrically connecting the return electrode to a conductive cap having an exposed surface and disposed at a distal end of the instrument;sufficiently spacing the conductive cap from the active electrode, thereby minimizing generation of an electric arc between the active electrode and the conductive cap;aspirating fluid and tissue fragments along a selected length of the instrument, wherein the selected length comprises a first portion and a second portion; andcontacting the tissue with the plasma.
  • 2. The method of claim 1, wherein the return electrode is enclosed within the distal end portion.
  • 3. The method of claim 1, wherein the chamber comprises a fluid passageway between the active electrode and the return electrode.
  • 4. The method of claim 3, wherein the electrically conductive fluid is in contact with the active and return electrodes through the fluid passageway.
  • 5. The method of claim 1, wherein the electrically conductive fluid is supplied from a fluid supply lumen located within the instrument.
  • 6. The method of claim 1, wherein the electrically conductive fluid is selected from the group consisting of isotonic saline, Ringer's solution, and body fluids.
  • 7. The method claim 1, wherein aspirating fluid and tissue fragments further comprises removing the electrically conductive fluid and tissue fragments through an aspiration lumen fluidly coupled to a plurality of inlet apertures formed along the selected length of the instrument.
  • 8. The method of claim 7, wherein the aspiration lumen is in communication with a suction source.
  • 9. The method of claim 7, wherein a collective area of the plurality of inlet apertures in the second portion is at least equal to a cross-sectional area of the aspiration lumen.
  • 10. The method of claim 7, wherein the plurality of inlet apertures are substantially evenly spaced along the selected length of the instrument.
  • 11. The method of claim 1, wherein the body structure comprises an intervertebral disc.
  • 12. The method of claim 1, wherein treating nerve-sensitive tissue comprises heating, ablation, coagulation, cutting, removal, puncturing, probing, or otherwise stimulating the tissue.
  • 13. The method of claim 1, wherein the first portion is inserted within the body structure and the second portion remains outside the body structure.
  • 14. The method of claim 13, wherein aspirating fluid and tissue fragments does not require a suction source.
  • 15. The method of claim 14, wherein the aspirated fluid and tissue fragments exit the instrument along the second portion of the selected length.
  • 16. The method of claim 1, wherein the selected length is between about one centimeter and about five centimeters.
  • 17. The method of claim 1, wherein the selected length is between about two centimeters and about three centimeters.
  • 18. The method of claim 1, wherein the active electrode comprises a screen section having a plurality of apertures formed therein.
  • 19. The method of claim 18, further comprising flowing the electrically conductive fluid outside the distal end portion through the plurality of apertures formed on the active electrode.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 11/681,594 filed Mar. 2, 2007, now U.S. Pat. No. 7,901,403, the complete disclosure of which is incorporated herein by reference for all purposes.

US Referenced Citations (456)
Number Name Date Kind
2056377 Wappler Oct 1939 A
3633425 Sanford Jan 1972 A
3659607 Banko May 1972 A
3815604 O'Malley et al. Jun 1974 A
3828780 Morrison, Jr. et al. Aug 1974 A
3901242 Storz Aug 1975 A
3920021 Hiltebrandt Nov 1975 A
3939839 Curtiss Feb 1976 A
3970088 Morrison Jul 1976 A
4040426 Morrison, Jr. Aug 1977 A
4043342 Morrison, Jr. Aug 1977 A
4074718 Morrison, Jr. Feb 1978 A
4092986 Schneiderman Jun 1978 A
4116198 Roos Sep 1978 A
4161950 Cowan et al. Jul 1979 A
4181131 Ogiu Jan 1980 A
4184492 Meinke et al. Jan 1980 A
4202337 Hren et al. May 1980 A
4228800 Degler, Jr. et al. Oct 1980 A
4232676 Herczog Nov 1980 A
4248231 Herczog et al. Feb 1981 A
4269174 Adair May 1981 A
4326529 Doss et al. Apr 1982 A
4381007 Doss Apr 1983 A
4449926 Weiss May 1984 A
4474179 Koch Oct 1984 A
4476862 Pao Oct 1984 A
4483338 Bloom et al. Nov 1984 A
4532924 Auth et al. Aug 1985 A
4548207 Reimels Oct 1985 A
4567890 Ohta et al. Feb 1986 A
4572214 Nordenstrom et al. Feb 1986 A
4573448 Kambin Mar 1986 A
4582057 Auth et al. Apr 1986 A
4590934 Malis et al. May 1986 A
4593691 Lindstrom et al. Jun 1986 A
4658817 Hardy Apr 1987 A
4660571 Hess et al. Apr 1987 A
4674499 Pao Jun 1987 A
4682596 Bales et al. Jul 1987 A
4706667 Roos Nov 1987 A
4727874 Bowers et al. Mar 1988 A
4765331 Petruzzi et al. Aug 1988 A
4785823 Eggers et al. Nov 1988 A
4805616 Pao Feb 1989 A
4823791 D'Amelio et al. Apr 1989 A
4832020 Augustine May 1989 A
4832048 Cohen May 1989 A
4896671 Cunningham et al. Jan 1990 A
4907589 Cosman Mar 1990 A
4920978 Colvin May 1990 A
4931047 Broadwin et al. Jun 1990 A
4936281 Stasz Jun 1990 A
4936301 Rexroth et al. Jun 1990 A
4943290 Rexroth et al. Jul 1990 A
4958539 Stasz et al. Sep 1990 A
4966597 Cosman Oct 1990 A
4967765 Turner et al. Nov 1990 A
4976709 Sand Dec 1990 A
4976711 Parins et al. Dec 1990 A
4979948 Geddes et al. Dec 1990 A
4998933 Eggers et al. Mar 1991 A
5007908 Rydell Apr 1991 A
5009656 Reimels Apr 1991 A
5035696 Rydell Jul 1991 A
5047026 Rydell Sep 1991 A
5047027 Rydell Sep 1991 A
5078717 Parins et al. Jan 1992 A
5080660 Buelna Jan 1992 A
5084044 Quint Jan 1992 A
5084045 Helenowski Jan 1992 A
5085659 Rydell Feb 1992 A
5088997 Delahuerga et al. Feb 1992 A
5098431 Rydell Mar 1992 A
5099840 Goble Mar 1992 A
5102410 Dressel Apr 1992 A
5108391 Flachenecker et al. Apr 1992 A
RE33925 Bales et al. May 1992 E
5112330 Nishigaki et al. May 1992 A
5122138 Manwaring Jun 1992 A
5125928 Parins et al. Jun 1992 A
5137530 Sand Aug 1992 A
5156151 Imran Oct 1992 A
5158565 Marcadis et al. Oct 1992 A
5167659 Ohtomo et al. Dec 1992 A
5171311 Rydell et al. Dec 1992 A
5178620 Eggers et al. Jan 1993 A
5190517 Zieve et al. Mar 1993 A
5192280 Parins Mar 1993 A
5195959 Smith Mar 1993 A
5197466 Marchosky et al. Mar 1993 A
5197963 Parins Mar 1993 A
5201729 Hertzmann et al. Apr 1993 A
5207675 Canady May 1993 A
5207684 Nobles May 1993 A
5217457 Delahuerga et al. Jun 1993 A
5217459 Kamerling Jun 1993 A
5230334 Klopotek Jul 1993 A
5261410 Alfano et al. Nov 1993 A
5267994 Gentelia et al. Dec 1993 A
5267997 Farin et al. Dec 1993 A
5273524 Fox et al. Dec 1993 A
5277201 Stern Jan 1994 A
5281216 Klicek Jan 1994 A
5290273 Ton Mar 1994 A
5290282 Casscells Mar 1994 A
5300069 Hunsberger et al. Apr 1994 A
5306238 Fleenor Apr 1994 A
5312400 Bales et al. May 1994 A
5314406 Arias et al. May 1994 A
5318564 Eggers Jun 1994 A
5324254 Phillips Jun 1994 A
5330470 Hagen Jul 1994 A
5334140 Phillips Aug 1994 A
5336443 Odashima Aug 1994 A
5342357 Nardella Aug 1994 A
5366443 Eggers et al. Nov 1994 A
5370675 Edwards et al. Dec 1994 A
5374261 Yoon Dec 1994 A
5374265 Sand Dec 1994 A
5375588 Yoon Dec 1994 A
5380277 Phillips Jan 1995 A
5380316 Aita Jan 1995 A
5383876 Nardella Jan 1995 A
5383917 Desai et al. Jan 1995 A
5389096 Aita Feb 1995 A
5395312 Desai Mar 1995 A
5400267 Denen et al. Mar 1995 A
5401272 Perkins Mar 1995 A
5403311 Abele et al. Apr 1995 A
5417687 Nardella et al. May 1995 A
5419767 Eggers et al. May 1995 A
5423810 Goble et al. Jun 1995 A
5423882 Jackman et al. Jun 1995 A
5429138 Jamshidi Jul 1995 A
5433739 Sluijter et al. Jul 1995 A
5436566 Thompson et al. Jul 1995 A
5437662 Nardella Aug 1995 A
5438302 Goble Aug 1995 A
5439446 Barry Aug 1995 A
5441499 Fritzsch Aug 1995 A
5451224 Goble et al. Sep 1995 A
5454809 Janssen Oct 1995 A
5458596 Lax et al. Oct 1995 A
5496312 Klicek Mar 1996 A
5496314 Eggers Mar 1996 A
5496317 Goble et al. Mar 1996 A
5514130 Baker May 1996 A
5542945 Fritzsch Aug 1996 A
5554152 Aita Sep 1996 A
5556397 Long et al. Sep 1996 A
5562703 Desai Oct 1996 A
5569242 Lax et al. Oct 1996 A
5571100 Goble et al. Nov 1996 A
5571189 Kuslich Nov 1996 A
5584872 LaFontaine et al. Dec 1996 A
5609151 Mulier et al. Mar 1997 A
5617854 Munsif Apr 1997 A
5618587 Markle et al. Apr 1997 A
5626136 Webster, Jr. May 1997 A
5626576 Janssen May 1997 A
5632761 Smith et al. May 1997 A
5633578 Eggers et al. May 1997 A
5647869 Goble et al. Jul 1997 A
5660836 Knowlton Aug 1997 A
5662680 Desai Sep 1997 A
5676693 LaFontaine et al. Oct 1997 A
5681282 Eggers et al. Oct 1997 A
5683366 Eggers et al. Nov 1997 A
5697281 Eggers et al. Dec 1997 A
5697536 Eggers et al. Dec 1997 A
5697882 Eggers et al. Dec 1997 A
5697909 Eggers et al. Dec 1997 A
5700262 Acosta et al. Dec 1997 A
5720744 Eggleston et al. Feb 1998 A
5725524 Mulier et al. Mar 1998 A
5762629 Kambin Jun 1998 A
5766153 Eggers et al. Jun 1998 A
5766252 Henry et al. Jun 1998 A
5785705 Baker Jul 1998 A
5807306 Shapland et al. Sep 1998 A
5807395 Mulier et al. Sep 1998 A
5810764 Eggers et al. Sep 1998 A
5810809 Rydell Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5820580 Edwards et al. Oct 1998 A
5823955 Kuck et al. Oct 1998 A
5836875 Webster, Jr. Nov 1998 A
5843019 Eggers et al. Dec 1998 A
5846196 Siekmeyer et al. Dec 1998 A
5849009 Bernaz Dec 1998 A
5860951 Eggers Jan 1999 A
5860974 Abele Jan 1999 A
5860975 Goble et al. Jan 1999 A
5871469 Eggers et al. Feb 1999 A
5873855 Eggers et al. Feb 1999 A
5877289 Thorpe et al. Mar 1999 A
5885277 Korth Mar 1999 A
5888198 Eggers et al. Mar 1999 A
5891095 Eggers et al. Apr 1999 A
5891134 Goble et al. Apr 1999 A
5897553 Mulier Apr 1999 A
5902272 Eggers et al. May 1999 A
5916214 Cosio et al. Jun 1999 A
5925042 Gough et al. Jul 1999 A
5935083 Williams Aug 1999 A
5941869 Patterson et al. Aug 1999 A
5944715 Goble et al. Aug 1999 A
5954716 Sharkey et al. Sep 1999 A
5980504 Sharkey et al. Nov 1999 A
6004319 Goble et al. Dec 1999 A
6007570 Sharkey et al. Dec 1999 A
6013076 Goble et al. Jan 2000 A
6014584 Hofmann et al. Jan 2000 A
6015406 Goble et al. Jan 2000 A
6024733 Eggers et al. Feb 2000 A
6027501 Goble et al. Feb 2000 A
6036681 Hooven Mar 2000 A
6039734 Goble et al. Mar 2000 A
6045532 Eggers et al. Apr 2000 A
6047700 Eggers et al. Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6056746 Goble et al. May 2000 A
6063079 Hovda et al. May 2000 A
6066134 Eggers et al. May 2000 A
6068628 Fanton et al. May 2000 A
6073051 Sharkey et al. Jun 2000 A
6074386 Goble et al. Jun 2000 A
6086584 Miller et al. Jul 2000 A
6090106 Goble et al. Jul 2000 A
6093186 Goble et al. Jul 2000 A
6093187 Lecuyer Jul 2000 A
6095149 Sharkey et al. Aug 2000 A
6096036 Bowe et al. Aug 2000 A
6102046 Weinstein et al. Aug 2000 A
6105581 Eggers et al. Aug 2000 A
6109268 Thapliyal et al. Aug 2000 A
6117109 Eggers et al. Sep 2000 A
6122549 Sharkey et al. Sep 2000 A
6126682 Sharkey et al. Oct 2000 A
6142992 Cheng et al. Nov 2000 A
6146380 Racz et al. Nov 2000 A
6149620 Baker et al. Nov 2000 A
6159194 Eggers et al. Dec 2000 A
6159208 Hovda et al. Dec 2000 A
6168593 Sharkey et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6179824 Eggers et al. Jan 2001 B1
6179836 Eggers et al. Jan 2001 B1
6183469 Thapliyal et al. Feb 2001 B1
6187048 Milner et al. Feb 2001 B1
6190381 Olsen et al. Feb 2001 B1
6203542 Ellsberry et al. Mar 2001 B1
6210402 Olsen et al. Apr 2001 B1
6214001 Casscells et al. Apr 2001 B1
6224592 Eggers et al. May 2001 B1
6228078 Eggers May 2001 B1
6228081 Goble et al. May 2001 B1
6234178 Goble et al. May 2001 B1
6235020 Cheng et al. May 2001 B1
6237604 Burnside et al. May 2001 B1
6238391 Olsen et al. May 2001 B1
6245107 Ferree Jun 2001 B1
6254600 Willink et al. Jul 2001 B1
6258086 Ashley et al. Jul 2001 B1
6261286 Goble et al. Jul 2001 B1
6261311 Sharkey et al. Jul 2001 B1
6264650 Hovda et al. Jul 2001 B1
6264651 Underwood et al. Jul 2001 B1
6264652 Eggers et al. Jul 2001 B1
6270460 McCartan et al. Aug 2001 B1
6273861 Bates et al. Aug 2001 B1
6277112 Underwood et al. Aug 2001 B1
6280441 Ryan Aug 2001 B1
6283961 Underwood et al. Sep 2001 B1
6293942 Goble et al. Sep 2001 B1
6296636 Cheng et al. Oct 2001 B1
6296638 Davison et al. Oct 2001 B1
6306134 Goble et al. Oct 2001 B1
6308089 von der Rur et al. Oct 2001 B1
6309387 Eggers et al. Oct 2001 B1
6312408 Eggers et al. Nov 2001 B1
6319250 Falwell et al. Nov 2001 B1
6322549 Eggers et al. Nov 2001 B1
6330478 Lee et al. Dec 2001 B1
6355032 Hovda et al. Mar 2002 B1
6363937 Hovda et al. Apr 2002 B1
6364877 Goble et al. Apr 2002 B1
6379350 Sharkey et al. Apr 2002 B1
6379351 Thapliyal et al. Apr 2002 B1
6391025 Weinstein et al. May 2002 B1
6402740 Ellis et al. Jun 2002 B1
6416507 Eggers et al. Jul 2002 B1
6416508 Eggers et al. Jul 2002 B1
6416509 Goble et al. Jul 2002 B1
6428576 Haldimann Aug 2002 B1
6432103 Ellsberry et al. Aug 2002 B1
6443988 Felt et al. Sep 2002 B2
6461357 Sharkey et al. Oct 2002 B1
6464695 Hovda et al. Oct 2002 B2
6468270 Hovda et al. Oct 2002 B1
6468274 Alleyne et al. Oct 2002 B1
6468275 Wampler et al. Oct 2002 B1
6482201 Olsen et al. Nov 2002 B1
6497704 Ein-Gal Dec 2002 B2
6500173 Underwood et al. Dec 2002 B2
6508839 Lambrecht et al. Jan 2003 B1
6517498 Burbank et al. Feb 2003 B1
6530922 Cosman Mar 2003 B2
6540741 Underwood et al. Apr 2003 B1
6558390 Cragg May 2003 B2
6562033 Shah et al. May 2003 B2
6575968 Eggers et al. Jun 2003 B1
6578579 Burnside Jun 2003 B2
6589237 Woloszko et al. Jul 2003 B2
6602248 Sharps et al. Aug 2003 B1
6604003 Fredricks et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6620155 Underwood et al. Sep 2003 B2
6620156 Garito et al. Sep 2003 B1
6622731 Daniel et al. Sep 2003 B2
6632193 Davison et al. Oct 2003 B1
6632220 Eggers et al. Oct 2003 B1
6635034 Cosmescu Oct 2003 B1
6635087 Angelucci et al. Oct 2003 B2
6645247 Ferree Nov 2003 B2
6679886 Weikel et al. Jan 2004 B2
6699244 Carranza et al. Mar 2004 B2
6712811 Underwood et al. Mar 2004 B2
6726684 Woloszko et al. Apr 2004 B1
6740093 Hochschuler et al. May 2004 B2
6746451 Middleton et al. Jun 2004 B2
6749604 Eggers et al. Jun 2004 B1
6749605 Ashley et al. Jun 2004 B2
6749608 Garito et al. Jun 2004 B2
6758846 Goble et al. Jul 2004 B2
6761718 Madsen Jul 2004 B2
6770071 Woloszko et al. Aug 2004 B2
6772012 Ricart et al. Aug 2004 B2
6780178 Palanker et al. Aug 2004 B2
6780180 Goble et al. Aug 2004 B1
6802842 Ellman et al. Oct 2004 B2
6827716 Ryan et al. Dec 2004 B2
6837884 Woloszko Jan 2005 B2
6837887 Woloszko et al. Jan 2005 B2
6837888 Ciarrocca et al. Jan 2005 B2
6878155 Sharkey et al. Apr 2005 B2
6918908 Bonner et al. Jul 2005 B2
6920883 Bessette et al. Jul 2005 B2
6921399 Carmel et al. Jul 2005 B2
6929640 Underwood et al. Aug 2005 B1
6949096 Davison et al. Sep 2005 B2
6960204 Eggers et al. Nov 2005 B2
6974453 Woloszko et al. Dec 2005 B2
6974480 Messerli et al. Dec 2005 B2
6984231 Goble et al. Jan 2006 B2
6991631 Woloszko et al. Jan 2006 B2
6997885 Lubock et al. Feb 2006 B2
6997925 Maguire et al. Feb 2006 B2
7001431 Bao et al. Feb 2006 B2
7004941 Tvinnereim et al. Feb 2006 B2
7014633 Cragg Mar 2006 B2
7041102 Truckai et al. May 2006 B2
7070596 Woloszko et al. Jul 2006 B1
7090672 Underwood et al. Aug 2006 B2
7094215 Davison et al. Aug 2006 B2
7104986 Hovda et al. Sep 2006 B2
7104989 Skarda Sep 2006 B2
7108696 Daniel et al. Sep 2006 B2
7131969 Hovda et al. Nov 2006 B1
7169143 Eggers et al. Jan 2007 B2
7172591 Harano et al. Feb 2007 B2
7179255 Lettice et al. Feb 2007 B2
7186234 Dahla et al. Mar 2007 B2
7192428 Eggers et al. Mar 2007 B2
7201750 Eggers et al. Apr 2007 B1
7217268 Eggers et al. May 2007 B2
7241293 Davison Jul 2007 B2
7241294 Reschke Jul 2007 B2
7270658 Woloszko et al. Sep 2007 B2
7270659 Hovda et al. Sep 2007 B2
7270661 Dahla et al. Sep 2007 B2
7276063 Davison et al. Oct 2007 B2
7278972 Lamoureux et al. Oct 2007 B2
7297143 Woloszko et al. Nov 2007 B2
7297145 Ormsby et al. Nov 2007 B2
7318823 Sharps et al. Jan 2008 B2
7331956 Hovda et al. Feb 2008 B2
RE40156 Sharps et al. Mar 2008 E
7357798 Sharps et al. Apr 2008 B2
7387625 Hovda et al. Jun 2008 B2
7393351 Woloszko et al. Jul 2008 B2
7419488 Ciarrocca et al. Sep 2008 B2
7429260 Underwood et al. Sep 2008 B2
7429262 Woloszko et al. Sep 2008 B2
7435247 Woloszko et al. Oct 2008 B2
7442191 Hovda et al. Oct 2008 B2
7445618 Eggers et al. Nov 2008 B2
7449021 Underwood et al. Nov 2008 B2
7462178 Woloszko et al. Dec 2008 B2
7468059 Eggers et al. Dec 2008 B2
7491200 Underwood et al. Feb 2009 B2
7507236 Eggers et al. Mar 2009 B2
7572251 Davison et al. Aug 2009 B1
7628780 Bonner et al. Dec 2009 B2
7632267 Dahla Dec 2009 B2
7682368 Bombard et al. Mar 2010 B1
7691101 Davison et al. Apr 2010 B2
7704249 Woloszko et al. Apr 2010 B2
7708733 Sanders et al. May 2010 B2
7794456 Sharps et al. Sep 2010 B2
7824398 Woloszko et al. Nov 2010 B2
7879034 Woloszko et al. Feb 2011 B2
7883515 Kear Feb 2011 B2
7892230 Woloszko et al. Feb 2011 B2
7901403 Woloszko et al. Mar 2011 B2
7951141 Sharps et al. May 2011 B2
7976554 Newell et al. Jul 2011 B2
20020029036 Goble et al. Mar 2002 A1
20020049438 Sharkey et al. Apr 2002 A1
20020082698 Parenteau et al. Jun 2002 A1
20020120337 Cauthen Aug 2002 A1
20030013986 Saadat Jan 2003 A1
20030088245 Woloszko et al. May 2003 A1
20030130738 Hovda et al. Jul 2003 A1
20030158545 Hovda et al. Aug 2003 A1
20030171743 Tasto et al. Sep 2003 A1
20030208196 Stone Nov 2003 A1
20030212396 Eggers et al. Nov 2003 A1
20040087937 Eggers et al. May 2004 A1
20040116922 Hovda et al. Jun 2004 A1
20040127893 Hovda Jul 2004 A1
20040230190 Dahla et al. Nov 2004 A1
20050004634 Hovda et al. Jan 2005 A1
20050096645 Wellman et al. May 2005 A1
20050261754 Woloszko et al. Nov 2005 A1
20050267553 Staunton et al. Dec 2005 A1
20060036237 Davison et al. Feb 2006 A1
20060095031 Ormsby May 2006 A1
20060178670 Woloszko et al. Aug 2006 A1
20060189971 Eggers et al. Aug 2006 A1
20060253117 Hovda et al. Nov 2006 A1
20060259025 Dahla Nov 2006 A1
20070106288 Woloszko et al. May 2007 A1
20070149966 Dahla et al. Jun 2007 A1
20070161981 Sanders et al. Jul 2007 A1
20070282323 Woloszko et al. Dec 2007 A1
20090105543 Miller et al. Apr 2009 A1
20090299220 Field et al. Dec 2009 A1
20100114110 Taft et al. May 2010 A1
20100204693 Sanders et al. Aug 2010 A1
20100324553 Sharps et al. Dec 2010 A1
20110112373 Ainsworth et al. May 2011 A1
20110288539 Woloszko et al. Nov 2011 A1
20110288619 Pianca Nov 2011 A1
Foreign Referenced Citations (84)
Number Date Country
3530335 Mar 1987 DE
3930451 Mar 1991 DE
515 867 Dec 1992 EP
0703461 Mar 1996 EP
0740926 Nov 1996 EP
0754437 Jan 1997 EP
719162 Nov 1997 EP
774926 Jun 1999 EP
0694290 Nov 2000 EP
2313949 Jan 1977 FR
2 308 979 Jul 1997 GB
2 308 980 Jul 1997 GB
2 308 981 Jul 1997 GB
2 327 350 Jan 1999 GB
2 327 351 Jan 1999 GB
2 327 352 Jan 1999 GB
57-57802 Apr 1982 JP
57-117843 Jul 1982 JP
10504732 May 1998 JP
2002-503508 Feb 2002 JP
2002-541904 Dec 2002 JP
9003152 Apr 1990 WO
9007303 Jul 1990 WO
9221278 Dec 1992 WO
9313816 Jul 1993 WO
9320747 Oct 1993 WO
9404220 Mar 1994 WO
9408524 Apr 1994 WO
9408654 Apr 1994 WO
9414383 Jul 1994 WO
9426228 Nov 1994 WO
9505781 Mar 1995 WO
9505867 Mar 1995 WO
9530373 Nov 1995 WO
9534259 Dec 1995 WO
9600042 Jan 1996 WO
9607360 Mar 1996 WO
9620652 Jul 1996 WO
9623449 Aug 1996 WO
9639914 Dec 1996 WO
9641574 Dec 1996 WO
9700070 Jan 1997 WO
9700646 Jan 1997 WO
9700647 Jan 1997 WO
9723169 Jul 1997 WO
9724073 Jul 1997 WO
9724074 Jul 1997 WO
9724992 Jul 1997 WO
9724993 Jul 1997 WO
9724994 Jul 1997 WO
9748345 Dec 1997 WO
9748346 Dec 1997 WO
9800070 Jan 1998 WO
9801087 Jan 1998 WO
9803117 Jan 1998 WO
9803220 Jan 1998 WO
9807468 Feb 1998 WO
9811944 Mar 1998 WO
9814131 Apr 1998 WO
9817190 Apr 1998 WO
9827879 Jul 1998 WO
9827880 Jul 1998 WO
9903414 Jan 1999 WO
9920185 Apr 1999 WO
9942037 Aug 1999 WO
9947058 Sep 1999 WO
9951155 Oct 1999 WO
9951158 Oct 1999 WO
0001313 Jan 2000 WO
0007507 Feb 2000 WO
0010475 Mar 2000 WO
0062698 Oct 2000 WO
0071043 Nov 2000 WO
0126570 Apr 2001 WO
0187154 May 2001 WO
0182813 Nov 2001 WO
0211635 Feb 2002 WO
0236028 May 2002 WO
03024506 Mar 2003 WO
03089997 Oct 2003 WO
2004022155 Mar 2004 WO
2005039390 May 2005 WO
2005122938 Dec 2005 WO
2005125287 Dec 2005 WO
Related Publications (1)
Number Date Country
20110130753 A1 Jun 2011 US
Continuations (1)
Number Date Country
Parent 11681594 Mar 2007 US
Child 13023631 US