The present application is a U.S. National Stage Application of International Application No. PCT/US2014/065218 filed Nov. 12, 2014, which is incorporated herein by reference in its entirety for all purposes.
The present disclosure relates to wellbore completion operations and, more particularly, to a downhole completion assembly for sealing an inflow control device installed along a length of production tubing.
The advent of horizontal drilling has been considered a significant advance in the oil and gas industry. While this form of drilling has increased the complexity and cost of drilling, it has also increased economic returns to well operators. Horizontal drilling has lead to increased production because it maximizes the reservoir contact. This is because most oil and gas fields are generally horizontally situated. It has also enabled tapping reserves from zones previously thought too difficult to reach, such as thin oil zones.
Although horizontal completion technology and techniques have improved over the years, horizontal wells continue to face challenges. One of those challenges relates to uneven influx of reservoir fluid to the wellbore. This causes early water and gas breakthrough. Water and gas coning in the heel of the well is often blamed for these challenges. Another reason for water and gas breakthrough is related to uneven permeability and fractures or differences in fluid mobility, which occurs in wells with high-viscosity oil. Since it becomes easier for the reservoir fluid to be produced through one section compared to the other, having an even drawdown under conditions of uneven permeability or uneven fluid mobility can lead to premature breakthrough of water or gas.
In reservoirs which are largely homogenous with higher drawdown in the heel, one solution to the challenge of water and gas breakthrough is to balance the drawdown from the heel to the toe. This can be done by applying a controlled pressure drop from the annulus to the production tubing in the heel using inflow control devices (ICDs). The use of these devices reduces the drawdown and the fluid rate from this particular section. In reservoirs which are mostly heterogenous, where the drawdown is more equally distributed along the wellbore, the drawdown is reduced in high-permeability sections to allow low-productivity sections to flow more oil. This is typically achieved through equal distribution of the ICDs. ICDs have thus been very effective at delaying potential water or gas breakthroughs and thus allowing more oil to be produced throughout the life of the well.
There are some instances, however, where the balancing achieved using ICDs is insufficient to delay water and gas coning at the heel of a well. In those instances, it is desirable to close these zones at the heel while still allowing production from the deeper zones.
For a more complete understanding of the present disclosure and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:
Illustrative embodiments of the present disclosure are described in detail herein. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation specific decisions must be made to achieve developers' specific goals, such as compliance with system related and business related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of the present disclosure. Furthermore, in no way should the following examples be read to limit, or define, the scope of the invention.
The present disclosure provides a downhole completion system that features an expandable sealing structure and corresponding internal truss structure that are capable of being run through existing production tubing and subsequently expanded to support and seal the internal surface of an ICD so as to restrict the flow of fluids from the wellbore into the production tubing in the region where the ICD is installed. Once the sealing structure is run to its proper downhole location, which in most cases will be between the heel and toe of a horizontal section, it may be expanded by any number of expansion tools that are also small enough to axially traverse the production tubing. In operation, the expanded sealing structure may be useful in sealing the ICD thereby restricting the influx of unwanted fluids into the production tubing. The internal truss structure may be arranged within the sealing structure and useful in radially supporting the expanded sealing structure. In some embodiments, the sealing structure and corresponding internal truss structure are expanded at the same time with the same expansion tool.
The downhole completion system may provide advantages in that it is small enough to be able to be run-in through existing production tubing. When expanded, the disclosed downhole completion system may provide sufficient expansion within an ICD to adequately restrict the influx of undesired formation fluids, such as water and gas. As a result, the life of a well may be extended, thereby increasing profits and reducing expenditures associated with the well. As will be appreciated by those of ordinary skill in the art, the methods and systems disclosed herein may salvage or otherwise revive certain types of wells, which were previously thought be economically unviable.
Referring to
While
In present embodiments, the system 100 includes a truss structure and a sealing structure disposed around the truss structure. The system 100 may be run in through the tubing string 108, past the heel portion 102 and is brought into alignment with the ICD 106 adjacent to the heel portion 102. From this position, as described in detail below, an expansion tool may be actuated to expand the truss structure and the sealing structure of the system 100 against an inner portion of the ICD 106, thereby sealing the ICD 106.
Having generally described the context in which the disclosed downhole completion system 100 may be utilized, a more detailed description of the components that make up the system 100 will be provided. To that end,
In certain embodiments, the truss structure 110 is formed by cutting the desired pattern into a 2.5 to 3 inch diameter, 30 inch long, schedule 40/80 stainless steel pipe. As those of ordinary skill in the art will appreciate, the size and composition of the truss structure 110 is not limited to this exemplary embodiment. Further, it will be appreciated that the truss structure 110 may be formed using any suitable manufacturing technique including, but not limited to, casting, 3D printing, etc. In the illustrated embodiment, the cut pattern is formed of a plurality of rows 114 of perforations disposed equidistant around the circumference of the truss structure 110. These perforations may form a plurality of expandable cells 122 defined on the truss structure 110. Each row 114 is formed of a plurality of generally opposing, longitudinally offset arc-shaped perforations 116, each having a dimple 118 formed in the approximate mid-section of the arc, as shown in
Each of the expandable cells 122 includes a perimeter that is defined by the arc-shaped perforations 116, the dimples 118, and the holes 120. Upon expansion of the cells 122, the arc-shaped perforations open up and form opposing offset generally pie-shaped openings in the body of the truss structure 110, which are formed along the length of the pipe, as shown in
It should be noted that any suitable shaped perforations 116 that permit the truss structure 110 to expand may be used in other embodiments. In addition, any suitable number of such perforations 116 may be utilized to provide the desired expansion. Furthermore, any suitable relationship between the perforations 116 may be contemplated in the disclosed embodiments. Still further, the openings 122 in the body of the truss structure 110 may have any suitable shaped upon expansion of the truss structure 110.
The run-in configuration of the downhole completion system 100 is shown in
In some embodiments, the sealing structure 130 may further include a sealing element 132 disposed about at least a portion of the outer circumferential surface of the sealing structure, as illustrated in
In operation, the sealing element 132 may be configured to expand as the sealing structure 130 expands and ultimately engage and seal against the inner diameter of the ICD 106. In some embodiments, the sealing element 132 may be arranged at two or more discrete locations along the length of the sealing structure 130. In some embodiments, the sealing element 132 may be arranged at a location along the length of the sealing structure 130 that corresponds with the location of apertures in the ICD 106, through which production fluids would otherwise enter the tubing string 108. The sealing element 132 may be made of an elastomer, a rubber, or any other suitable material. The sealing element 132 may further be formed from a swellable or non-swellable material. In at least one embodiment, the sealing element 132 may be a swellable elastomer that swells in the presence of at least one of water and oil. However, it will be appreciated that any suitable swellable material may be employed and remain within the scope of the present disclosure.
In other embodiments, the material for the sealing elements 132 may vary along the sealing section in order to create the best sealing available for the fluid type that the particular seal element may be exposed to. For instance, one or more bands of sealing materials may be located as desired along the length of the sealing section. The material used for the sealing element 132 may include swellable elastomeric, as described above, and/or bands of viscous fluid. The viscous fluid, for instance, may be an uncured elastomeric that will cure in the presence of well fluids. The viscous fluid may include a silicone that cures with water in some embodiments. In other embodiments, the viscous fluid may include other materials that are a combination of properties, such as a viscous slurry of the silicone and small beads of ceramic or cured elastomeric material. The viscous material may be configured to better conform to the annular space between the expanded sealing structure and the varying shape of the tubing string 108 and/or the ICD 106. It should be noted that to establish a seal, the material of the sealing element 132 does not need to change properties, but only have sufficient viscosity and length to remain in place the life of the well. The presence of other fillers, such as fibers, may enhance the viscous material.
As illustrated, and as will be discussed in greater detail below, at least one truss structure 110 may be generally arranged within a corresponding sealing structure 130 and may be configured to radially expand to seal a portion of production tubing. For example,
During installation, the system 100 may be combined with a mechanical connection to the surface for translating the system 100 through the tubing string 108. The mechanical connection may include a conveyance device used to transport the sealing structure 130 and truss structure 110 in their respective contracted configurations through the tubing string 108 to the ICD 106. The conveyance device may include a wireline, a slickline, coiled tubing or jointed tubing. In some embodiments, the system 100 may be run in to the ICD 106 in a contracted state on an expansion tool coupled to the mechanical connection prior to expansion via the expansion tool. After expansion of the system 100, the expansion tool may be released and translated out of the tubing string 108 via the mechanical connection. In some embodiments, the system 100 may be positioned within the ICD 106 to seal the ports 150 through the use of a spinner, a casing-collar locator, tagging off of a known restriction (e.g., landing nipple), or any other method. In some embodiments, the system 100 and/or the ICD 106 may be equipped with a sensor for determining the position of the system 100 with respect to the ICD 106 and the ports 150 that need to be covered.
In some embodiments, multiple different ICDs 106 located along the horizontal wellbore 104 may need to be sealed throughout the life of the well. For example, the ICD 106 located adjacent to the heel portion 102 of the horizontal wellbore 104 may be sealed first and then another ICD 106 located closer to the toe of the horizontal wellbore 104 may need to be sealed to prevent water encroachment. In such situations, an additional downhole completion system 100 may be deployed into the horizontal wellbore 104 to seal the other ICD 106. As illustrated, the additional system 100 may be translated (in a contracted configuration) through the expanded system 100 that is already sealing the ICD 106 near the heel portion 102. This is because an inner diameter of the truss structure 110 in the expanded configuration is greater than an outer diameter of the downhole completion system 100 in the contracted configuration. Thus, sealing can be provided along the ICDs 106 from heel to toe within the horizontal wellbore 104.
The disclosed downhole completion system 100 may be deployed directly into the tubing string 108 to seal ICDs 106 at any point along the length of the horizontal wellbore 104 and at any point during production. This allows flexibility in sealing off various ICDs 106 in order to increase the amount of formation fluids produced through the horizontal wellbore 104. An operator does not have to anticipate which zones of the horizontal wellbore 104 might start taking in water or gas during the lifetime of the well. In addition, the use of the system 100 to seal the ICD 106 near the heel portion 102 of the wellbore does not prevent the installation of another system 100 further along the horizontal wellbore 104.
Embodiments disclosed herein include:
A. A method of sealing an inflow control device installed in a subterranean formation which is producing an undesirable fluid that includes conveying a truss structure and sealing structure disposed thereon into production tubing adjacent the inflow control device. The truss and sealing structures being radially expandable between a contracted configuration and an expanded configuration. The method also includes radially expanding the truss and sealing structures from their contracted configurations to an expanded configuration whereby the sealing structure seals against the inflow control device thereby creating a flow restriction between the subterranean formation and an inside surface of the production tubing.
B. A downhole completion system includes a truss structure and a sealing structure disposed about the truss structure. The truss structure is radially expandable between a contracted configuration and an expanded configuration. The sealing structure is radially expandable between a contracted configuration and an expanded configuration. The sealing structure is operable to seal one or more apertures in an inflow control device so as to restrict the flow of fluids through the apertures.
Each of the embodiments A and B may have one or more of the following additional elements in combination: Element 1: wherein when in the expanded configuration the truss structure radially supports the sealing structure. Element 2: further including conveying the sealing and truss structures into the production tubing simultaneously, the truss structure being nested inside the sealing structure when the sealing structure is in its contracted configuration. Element 3: wherein radially expanding the truss structure into its expanded configuration further comprises expanding a plurality of expandable cells defined on the truss structure. Element 4: wherein the axial length of the truss structure in the contracted and expanded configurations is substantially the same. Element 5: wherein a diameter of the truss structure is expanded by more than 50% when the truss structure is expanded from the contracted configuration to the expanded configuration. Element 6: further including conveying the truss structure and the sealing structure into the production tubing until the truss structure and the sealing structure are disposed in proximity to the inflow control device based on sensor feedback, and radially expanding the truss and sealing structures from their contracted configurations to the expanded configuration when the truss and sealing structures are disposed in proximity to the inflow control device. Element 7: further including conveying a second truss structure with a second sealing structure disposed thereon in a contracted configuration into the production tubing and through the expanded truss structure.
Element 8: further including a conveyance device to transport the sealing and truss structures in their respective contracted configurations through the production tubing to the inflow control device. Element 9: wherein the conveyance device is selected from the group consisting of wireline, slickline, coiled tubing and jointed tubing. Element 10: further including a deployment device to radially expand the sealing and truss structures from their respective contracted configurations to their respective expanded configurations, the truss structure being expanded while arranged at least partially within the sealing structure. Element 11: wherein the deployment device is selected from the group consisting of a hydraulic inflation tool and an inflatable packer. Element 12: wherein when in the expanded configuration the truss structure radially supports the sealing structure. Element 13: wherein the truss structure includes a plurality of expandable cells. Element 14: wherein at least one of the plurality of expandable cells includes an arc-shaped perforation with holes formed at the beginning and end of the arc-shaped perforation. Element 15: wherein the truss structure has a diameter which expands by more than 50% when the truss structure is expanded from the contracted configuration to the expanded configuration. Element 16: wherein the axial length of the truss structure in the contracted and expanded configurations is substantially the same. Element 17: wherein an inner diameter of the truss structure in the expanded position is greater than an outer diameter of the sealing structure in the contracted position. Element 18: wherein a swellable material is disposed about at least a portion of the truss structure.
Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2014/065218 | 11/12/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/076853 | 5/19/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3477506 | Malone | Nov 1969 | A |
6315040 | Donnelly | Nov 2001 | B1 |
6478092 | Voll | Nov 2002 | B2 |
6695054 | Johnson et al. | Feb 2004 | B2 |
9982507 | Murphree | May 2018 | B2 |
20020046840 | Schetky et al. | Apr 2002 | A1 |
20020107562 | Hart et al. | Aug 2002 | A1 |
20030079886 | Schetky et al. | May 2003 | A1 |
20030089496 | Price-Smith et al. | May 2003 | A1 |
20040020660 | Johnson et al. | Feb 2004 | A1 |
20040026079 | Johnson et al. | Feb 2004 | A1 |
20040074642 | Price-Smith et al. | Apr 2004 | A1 |
20040084176 | Hackworth et al. | May 2004 | A1 |
20040089454 | Hackworth et al. | May 2004 | A1 |
20050016740 | Aldaz | Jan 2005 | A1 |
20050098324 | Gano | May 2005 | A1 |
20050155773 | Wetzel | Jul 2005 | A1 |
20070084277 | Steinsiek | Apr 2007 | A1 |
20080149349 | Hiron et al. | Jun 2008 | A1 |
20090065199 | Patel | Mar 2009 | A1 |
20100175895 | Metcalfe | Jul 2010 | A1 |
20100319928 | Bussear | Dec 2010 | A1 |
20110114336 | Lehr | May 2011 | A1 |
20110122727 | Gleitman | May 2011 | A1 |
20110147007 | O'Malley et al. | Jun 2011 | A1 |
20110214855 | Hart et al. | Sep 2011 | A1 |
20120278053 | Garcia | Nov 2012 | A1 |
20130220640 | Fripp et al. | Aug 2013 | A1 |
20130220641 | Fripp et al. | Aug 2013 | A1 |
20130220642 | Fripp et al. | Aug 2013 | A1 |
20130220643 | Fripp et al. | Aug 2013 | A1 |
20130220644 | Fripp et al. | Aug 2013 | A1 |
20140151054 | Norrid | Jun 2014 | A1 |
20150144330 | Noblett | May 2015 | A1 |
20150167424 | Richards | Jun 2015 | A1 |
20180155991 | Arsalan | Jun 2018 | A1 |
Entry |
---|
International Search Report and Written Opinion issued in related PCT Application No. PCT/US2014/065218 dated Jul. 28, 2015, 14 pages. |
International Preliminary Report on Patentability issued in related Application No. PCT/US2014/065218, dated May 26, 2017 (11 pages). |
Number | Date | Country | |
---|---|---|---|
20170292341 A1 | Oct 2017 | US |