The present disclosure relates generally to orthopedics and orthopedic surgery. More specifically, the present disclosure relates to devices used to support adjacent bones.
In human anatomy, the spine is a generally flexible column that can take tensile and compressive loads. The spine also allows bending motion and provides a place of attachment for keels, muscles and ligaments. Generally, the spine is divided into three sections: the cervical spine, the thoracic spine and the lumbar spine. The sections of the spine are made up of individual bones called vertebrae. Also, the vertebrae are separated by intervertebral discs, which are situated between adjacent vertebrae.
The intervertebral discs function as shock absorbers and as joints. Further, the intervertebral discs can absorb the compressive and tensile loads to which the spinal column may be subjected. At the same time, the intervertebral discs can allow adjacent vertebral bodies to move relative to each other a limited amount, particularly during bending, or flexure, of the spine. Thus, the intervertebral discs are under constant muscular and/or gravitational pressure and generally, the intervertebral discs are the first parts of the lumbar spine to show signs of deterioration.
Facet joint degeneration is also common because the facet joints are in almost constant motion with the spine. In fact, facet joint degeneration and disc degeneration frequently occur together. Generally, although one may be the primary problem while the other is a secondary problem resulting from the altered mechanics of the spine, by the time surgical options are considered, both facet joint degeneration and disc degeneration typically have occurred. For example, the altered mechanics of the facet joints and/or intervertebral disc may cause spinal stenosis, degenerative spondylolisthesis, and degenerative scoliosis.
An implant is disclosed and can include a body and a plurality of pellets disposed within the body. The implant can be moved between an unmolded, relaxed configuration wherein the body is not conformed to a bone and a molded, relaxed configuration wherein the body is at least partially conformed to the bone.
In another embodiment, an implant is disclosed and can include a conformable body that can contain a plurality of pellets and a fluid. The implant can be configured from a malleable configuration to a substantially rigid configuration by removing fluid from the body.
In yet another embodiment, a method of treating a spine is disclosed and includes molding an implant to at least partially conform to at least one bone. The implant can include a body and a plurality of pellets within the body. The method also includes tightening the body around the pellets to create a substantially rigid structure that can be in engagement within the bone.
In still another embodiment, a kit is disclosed and can include an implant, an implant pushing device, and an implant pulling device. The implant can include a body and a plurality of pellets within the body. Further, the implant pushing device and the implant pulling device can be configured to stretch the body of the implant around the pellets and close-pack the pellets.
Description of Relevant Anatomy
Referring initially to
As shown in
As depicted in
In a particular embodiment, if one of the intervertebral lumbar discs 122, 124, 126, 128, 130 is diseased, degenerated, damaged, or otherwise in need of repair, augmentation or treatment, that intervertebral lumbar disc 122, 124, 126, 128, 130 can be treated in accordance with one or more of the embodiments described herein.
Referring to
As illustrated in
It is well known in the art that the vertebrae that make up the vertebral column have slightly different appearances as they range from the cervical region to the lumbar region of the vertebral column. However, all of the vertebrae, except the first and second cervical vertebrae, have the same basic structures, e.g., those structures described above in conjunction with
Description of a First Embodiment of an Implant
Referring to
As illustrated in
In a particular embodiment, the pellets 410 can be a filler material. The pellets 410 can also include granules, powder, particles, chunks, pieces, or a combination thereof.
In a particular embodiment, the pellets 410 can be generally spherical, generally elliptical, generally pyramidal, generally conical, generally frustal, generally cubic, generally polyhedral, or a combination thereof. In a particular embodiment, the pellets 410 can be made from one or more biocompatible materials. For example, the materials can be metal containing materials, polymer materials, or composite materials that include metals, polymers, or combinations of metals and polymers.
The pellets 410 can range in size from micro-size particles to chunks that measure one or more millimeters. In a specific embodiment, the pellets 410 can have an overall dimension, e.g., a length, width, height, or a combination thereof, that can be in a range of fifty micrometers (50 μm) to five millimeters (5 mm). More specifically, the pellets 410 can include an overall dimension that can be in a range of 250 micrometers (250 μm) to two and one-half millimeters (2.5 mm).
Regardless of shape or size, the pellets 410 can have an aspect ratio, i.e., a ratio of one dimension to another dimension, that can be in a range of one (1) to fifty (50). More specifically, the pellets 410 can have an aspect ratio that can be in a range of one (1) to five (5). The aspect ratio can be a ratio of length to width, a ratio of length to height, a ratio of width to length, a ratio of width to height, a ratio of height to length, a ratio of height to width, or a combination thereof.
In a particular embodiment, the metal containing materials can be metals. Further, the metal containing materials can be ceramics. Also, the metals can be pure metals or metal alloys. The pure metals can include titanium. Moreover, the metal alloys can include stainless steel, a cobalt-chrome-molybdenum alloy, e.g., ASTM F-999 or ASTM F-75, a titanium alloy, or a combination thereof.
The polymer materials can include polyurethane, polyolefin, polyaryletherketone (PAEK), silicone, hydrogel, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefm, or a combination thereof.
The polyaryletherketon (PAEK) materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyetherketoneetherketoneketone (PEKEKK), or a combination thereof.
The hydrogels can include polyacrylamide, poly-N-isopropylacrylamine, polyvinyl methylether, polyvinyl alcohol, polyethyl hydroxyethyl cellulose, poly (2-ethyl) oxazoline, polyethyleneoxide, polyethylglycol, polyethylene glycol, polyacrylic acid, polyacrylonitrile, polyvinylacrylate, polyvinylpyrrolidone, or a combination thereof.
In a particular embodiment, the ceramics can include calcium phosphate, hydroxyapatite, calcium sulfate, bioactive glass, or a combination thereof.
The body can also contain a fluid such as, for example, air or saline, in order to maintain the pellets in a loose-packed, malleable configuration.
As shown in
After the implant 400 is moved to the molded, relaxed configuration, a vacuum line (not shown) can be coupled to the valve 406. Thereafter, air within the body 402 of the implant 402 can be evacuated and the body 402 can be moved to a molded, compressed configuration, shown in
In the unmolded, relaxed configuration the pellets 410 are loose-packed and the body 402 does not conform to a bone, e.g., a spinous process. In the molded, relaxed configuration, the pellets 410 remain loose-packed, but the body 402 at least partially conforms to a bone. Further, in the molded, compressed configuration, the pellets 410 are close-packed and the body 402 at least partially conforms to a bone. In an exemplary embodiment, the body can contain a curable material which, when cured, can substantially maintain the pellets in the molded configuration. The curable material can be chosen from art-recognized materials that can be cured in vivo, such as a material that can be cured in situ, such as a moisture curable material. In a certain embodiment, the curable material can comprise a silicone material
In a particular embodiment, in the unmolded, relaxed configuration a ratio of a volume of pellets 410 to an interior volume of the body 402 can be less than or equal to 0.9. Further, in the unmolded, relaxed configuration a ratio of a volume of pellets 410 to an interior volume of the body 402 can be less than or equal to 0.75. In the molded, compressed configuration a ratio of a volume of pellets 410 to an interior volume of the body 402 can be greater than or equal to 0.9. Moreover, in the molded, compressed configuration a ratio of a volume of pellets 410 to an interior volume of the body 402 can be greater than or equal to 0.95.
In another embodiment, a distractor can be used to increase the distance 610 between the superior spinous process 600 and the inferior spinous process 602 and the implant 400 can be placed within the distracted superior spinous process 600 and the inferior spinous process 602. After the implant 400 is moved to the molded, compressed configuration, as described herein, the distractor can be removed and the implant 400 can support the superior spinous process 600 and the inferior spinous process 602 and substantially prevent the distance 610 between the superior spinous process 600 and the inferior spinous process 602 from returning to a pre-distraction value.
Description of a Second Embodiment of an Implant
Referring to
As illustrated, the implant 800 can further include a stem 804 that extends from the body 802. Further, the stem 804 can include an end 806. The end 806 of the stem 804 can include an eyelet 808 configured to receive a hook attached to a pulling device.
In a particular embodiment, the pellets 810 can be a filler material. The pellets 810 can also include granules, powder, particles, chunks, pieces, or a combination thereof.
In a particular embodiment, the pellets 810 can be generally spherical, generally elliptical, generally pyramidal, generally conical, generally frustal, generally cubic, generally polyhedral, or a combination thereof. In a particular embodiment, the pellets 810 can be made from one or more biocompatible materials. For example, the materials can be metal containing materials, polymer materials, or composite materials that include metals, polymers, or combinations of metals and polymers.
The pellets 810 can range in size from micro-size particles to chunks that measure one or more millimeters. In a specific embodiment, the pellets 810 can have an overall dimension, e.g., a length, width, height, or a combination thereof, that can be in a range of fifty micrometers (50 μm) to five millimeters (5 mm). More specifically, the pellets 810 can include an overall dimension that can be in a range of 250 micrometers (250 μm) to two and one-half millimeters (2.5 mm).
Regardless of shape or size, the pellets 810 can have an aspect ratio, i.e., a ratio of one dimension to another dimension, that can be in a range of one (1) to fifty (50). More specifically, the pellets 810 can have an aspect ratio that can be in a range of one (1) to five (5). The aspect ratio can be a ratio of length to width, a ratio of length to height, a ratio of width to length, a ratio of width to height, a ratio of height to length, a ratio of height to width, or a combination thereof.
In a particular embodiment, the metal containing materials can be metals. Further, the metal containing materials can be ceramics. Also, the metals can be pure metals or metal alloys. The pure metals can include titanium. Moreover, the metal alloys can include stainless steel, a cobalt-chrome-molybdenum alloy, e.g., ASTM F-999 or ASTM F-75, a titanium alloy, or a combination thereof.
The polymer materials can include polyurethane, polyolefin, polyaryletherketone (PAEK), silicone, hydrogel, or a combination thereof. Further, the polyolefm materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof.
The polyaryletherketon (PAEK) materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyetherketoneetherketoneketone (PEKEKK), or a combination thereof.
The hydrogels can include polyacrylamide, poly-N-isopropylacrylamine, polyvinyl methylether, polyvinyl alcohol, polyethyl hydroxyethyl cellulose, poly (2-ethyl) oxazoline, polyethyleneoxide, polyethylglycol, polyethylene glycol, polyacrylic acid, polyacrylonitrile, polyvinylacrylate, polyvinylpyrrolidone, or a combination thereof.
In a particular embodiment, the ceramics can include calcium phosphate, hydroxyapatite, calcium sulfate, bioactive glass, or a combination thereof.
The body can also contain a fluid such as, for example, air or saline, in order to maintain the pellets in a loose-packed, malleable configuration.
As shown in
After the implant 800 is moved to the molded, relaxed configuration, the implant pushing device 900 can be inserted around the stem 804 of the implant 800. Further, the implant pulling device 1000 can be hooked to the stem 804 of the implant 800. Thereafter, the implant pulling device 1000 can be moved relative to the implant pushing device 900, as indicated by arrow 1060, in order to stretch the body 802 of the implant 800 around the pellets 810. The body 802 of the implant can include a port (not shown) or a valve (not shown) that can be configured to allow air to pass through the body 802 as the body 802 is stretched around the pellets 810. Alternatively, the body 802 can be porous and the porosity of the body 802 can allow air to pass through the body 802 as the body 802 is stretched around the pellets 810.
After the body 802 is stretched, as indicated, a band 1100 can be placed around the stem 804 of the body 802 in order to seal the body 802 and prevent the pellets 810 from being expelled from within the body 802. The elasticity of the body 802 can compress the pellets 810 and cause the pellets 810 within the body 802 to be close-packed.
Accordingly, the implant 800 can be moved from the molded, relaxed configuration to a molded, compressed configuration. In the molded, compressed configuration, the pellets 810 within the body 802 can form a relatively rigid construct that can support the adjacent spinous processes 1050, 1052 and substantially prevent a distance 1062 there between from decreasing - other than slight temporary decreases due to the elasticity of the pellets 810 within the implant 800. After the implant 800 is moved to the molded, compressed configuration, the vacuum line (not shown) can be removed.
In the unmolded, relaxed configuration the pellets 810 are loose-packed and the body 802 does not conform to a bone, e.g., a spinous process. In the molded, relaxed configuration, the pellets 810 remain loose-packed, but the body 802 at least partially conforms to a bone. Further, in the molded, compressed configuration, the pellets 810 are close-packed and the body 802 at least partially conforms to a bone. In an exemplary embodiment, the body can contain a curable material which, when cured, can substantially maintain the pellets in the molded configuration. The curable material can be chosen from art-recognized materials that can be cured in vivo, such as a material that can be cured in situ, such as a moisture curable material. In a certain embodiment, the curable material can comprise a silicone material
In a particular embodiment, in the unmolded, relaxed configuration a ratio of a volume of pellets 810 to an interior volume of the body 802 can be less than or equal to 0.9. Further, in the unmolded, relaxed configuration a ratio of a volume of pellets 810 to an interior volume of the body 802 can be less than or equal to 0.75. In the molded, compressed configuration a ratio of a volume of pellets 810 to an interior volume of the body 802 can be greater than or equal to 0.9. Moreover, in the molded, compressed configuration a ratio of a volume of pellets 810 to an interior volume of the body 802 can be greater than or equal to 0.95
In another embodiment, a distractor can be used to increase the distance 1062 between the superior spinous process 1050 and the inferior spinous process 1052 and the implant 800 can be placed within the distracted superior spinous process 1050 and the inferior spinous process 1052. After the implant 800 is moved to the molded, compressed configuration, as described herein, the distractor can be removed and the implant 800 can support the superior spinous process 1050 and the inferior spinous process 1052 and substantially prevent the distance 1062 between the superior spinous process 1050 and the inferior spinous process 1052 from returning to a pre-distraction value.
Description of a Third Embodiment of an Implant
Referring to
As illustrated, the implant 1300 can further include a stem 1304 that extends from the body 1302. Further, the stem 1304 can include an end 1306. The end 1306 of the stem 1304 can include a first eyelet 1308 and a second eyelet 1310 that are configured to receive hooks attached to a pulling device.
In a particular embodiment, the pellets 1312 can be a filler material. The pellets 1312 can also include granules, powder, particles, chunks, pieces, or a combination thereof.
In a particular embodiment, the pellets 1312 can be generally spherical, generally elliptical, generally pyramidal, generally conical, generally frustal, generally cubic, generally polyhedral, or a combination thereof. In a particular embodiment, the pellets 1312 can be made from one or more biocompatible materials. For example, the materials can be metal containing materials, polymer materials, or composite materials that include metals, polymers, or combinations of metals and polymers.
The pellets 1312 can range in size from micro-size particles to chunks that measure one or more millimeters. In a specific embodiment, the pellets 1312 can have an overall dimension, e.g., a length, width, height, or a combination thereof, that can be in a range of fifty micrometers (50 μm) to five millimeters (5 mm). More specifically, the pellets 1312 can include an overall dimension that can be in a range of 250 micrometers (250 μm) to two and one-half millimeters (2.5 mm).
Regardless of shape or size, the pellets 1312 can have an aspect ratio, i.e., a ratio of one dimension to another dimension, that can be in a range of one (1) to fifty (50). More specifically, the pellets 1312 can have an aspect ratio that can be in a range of one (1) to five (5). The aspect ratio can be a ratio of length to width, a ratio of length to height, a ratio of width to length, a ratio of width to height, a ratio of height to length, a ratio of height to width, or a combination thereof.
In a particular embodiment, the metal containing materials can be metals. Further, the metal containing materials can be ceramics. Also, the metals can be pure metals or metal alloys. The pure metals can include titanium. Moreover, the metal alloys can include stainless steel, a cobalt-chrome-molybdenum alloy, e.g., ASTM F-999 or ASTM F-75, a titanium alloy, or a combination thereof.
The polymer materials can include polyurethane, polyolefin, polyaryletherketone (PAEK), silicone, hydrogel, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefm, flouropolyolefin, or a combination thereof.
The polyaryletherketon (PAEK) materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyetherketoneetherketoneketone (PEKEKK), or a combination thereof
The hydrogels can include polyacrylamide, poly-N-isopropylacrylamine, polyvinyl methylether, polyvinyl alcohol, polyethyl hydroxyethyl cellulose, poly (2-ethyl) oxazoline, polyethyleneoxide, polyethylglycol, polyethylene glycol, polyacrylic acid, polyacrylonitrile, polyvinylacrylate, polyvinylpyrrolidone, or a combination thereof.
In a particular embodiment, the ceramics can include calcium phosphate, hydroxyapatite, calcium sulfate, bioactive glass, or a combination thereof.
The body can also contain a fluid such as, for example, air or saline, in order to maintain the pellets in a loose-packed, malleable configuration.
As shown in
After the implant 1300 is moved to the molded, relaxed configuration, the implant pushing device 1400 can be inserted within the stem 1304 of the implant 1300. Further, the implant pulling device 1500 can be hooked to the stem 1304 of the implant 1300. Thereafter, the implant pulling device 1500 can be moved relative to the implant pushing device 1400, as indicated by arrow 1560, in order to stretch the body 1302 of the implant 1300 around the pellets 1312. The body 1302 of the implant can include a port (not shown) or a valve (not shown) that can be configured to allow air to pass through the body 1302 as the body 1302 is stretched around the pellets 1312. Alternatively, the body 1302 can be porous and the porosity of the body 1302 can allow air to pass through the body 1302 as the body 1302 is stretched around the pellets 1312.
After the body 1302 is stretched, as indicated in
Accordingly, the implant 1300 can be moved from the molded, relaxed configuration to a molded, compressed configuration. In the molded, compressed configuration, the pellets 1312 within the body 1302 can form a relatively rigid construct that can support the adjacent spinous processes 1550, 1552 and substantially prevent a distance 1562 there between from decreasing—other than slight temporary decreases due to the elasticity of the pellets 1312 within the implant 1300. After the implant 1300 is moved to the molded, compressed configuration, the vacuum line (not shown) can be removed.
In the unmolded, relaxed configuration the pellets 1312 are loose-packed and the body 1302 does not conform to a bone, e.g., a spinous process. In the molded, relaxed configuration, the pellets 1312 remain loose-packed, but the body 1302 at least partially conforms to a bone. Further, in the molded, compressed configuration, the pellets 1312 are close-packed and the body 1302 at least partially conforms to a bone. In an exemplary embodiment, the body can contain a curable material which, when cured, can substantially maintain the pellets in the molded configuration. The curable material can be chosen from art-recognized materials that can be cured in vivo, such as a material that can be cured in situ, such as a moisture curable material. In a certain embodiment, the curable material can comprise a silicone material
In a particular embodiment, in the unmolded, relaxed configuration a ratio of a volume of pellets 1312 to an interior volume of the body 1302 can be less than or equal to 0.9. Further, in the unmolded, relaxed configuration a ratio of a volume of pellets 1312 to an interior volume of the body 1302 can be less than or equal to 0.75. In the molded, compressed configuration a ratio of a volume of pellets 1312 to an interior volume of the body 1302 can be greater than or equal to 0.9. Moreover, in the molded, compressed configuration a ratio of a volume of pellets 1312 to an interior volume of the body 1302 can be greater than or equal to 0.95
In another embodiment, a distractor can be used to increase the distance 1562 between the superior spinous process 1550 and the inferior spinous process 1552 and the implant 1300 can be placed within the distracted superior spinous process 1550 and the inferior spinous process 1552. After the implant 1300 is moved to the molded, compressed configuration, as described herein, the distractor can be removed and the implant 1300 can support the superior spinous process 1550 and the inferior spinous process 1552 and substantially prevent the distance 1562 between the superior spinous process 1550 and the inferior spinous process 1552 from returning to a pre-distraction value.
Description of a Method of Treating a Spine
Referring to
Moving to block 1806, an implant can be installed between the adjacent spinous processes. In a particular embodiment, the implant can be an implant according to one or more of the embodiments described herein. At block 1808, a compression device can be connected to the implant. In a particular embodiment, the compression device can be a vacuum system, an implant pushing device, an implant pulling device, or a combination thereof.
Proceeding to block 1810, the implant can be moved to a molded, relaxed configuration in which the implant approximates a final desired shape. In a particular embodiment, the implant can be moved to the molded, relaxed configuration manually. Thereafter, at bock 1812, the implant can moved to the molded, compressed configuration. The implant can be moved to the molded, compressed configuration by evacuating the air within the implant or by stretching the body of the implant so the body compresses a plurality of pellets therein.
At block 1814, the implant can be sealed, if necessary. For example, if the implant does not include a valve, the implant can be sealed using a band or other similar device. At block 1816, the compression device can be removed from the implant.
Continuing to block 1818, the implant can be trimmed, if necessary. For example, if the body of the implant is stretched and sealed with a band, a portion of a stem, around which the band is installed, may be removed. Thereafter, at block 1820, the surgical area can be irrigated. At block 1822, the retractor system can be removed. Further, at block 1824, the surgical wound can be closed. The surgical wound can be closed by simply allowing the patient's skin to close due to the elasticity of the skin. Alternatively, the surgical wound can be closed using sutures, surgical staples, or any other suitable surgical technique well known in the art. At block 1826, postoperative care can be initiated. The method can end at state 1828.
In a particular embodiment, the spinous processes can be distracted prior to inserting the implant. After the implant is moved to the molded, compressed configuration, the distractor can be removed and the implant can support the superior spinous process and the inferior spinous process and substantially prevent a distance between the superior spinous process and the inferior spinous process from returning to a pre-distraction value.
Conclusion
With the configuration of structure described above, the implant provides a device that can be used to treat a spine and substantially alleviate or minimize one or more symptoms associated with disc degeneration, facet joint degeneration, or a combination thereof. For example, the implant can installed between adjacent spinous processes, molded, and compressed in order to support the spinous processes and maintain them at or near a predetermined distance there between. Although the present Figures show use of the present implant as an interspinous process brace, the implant can be used in other applications, such as a nucleus implant, an intervertebral disc prosthesis or the like.
The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments that fall within the true spirit and scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
Number | Name | Date | Kind |
---|---|---|---|
2677369 | Knowles | May 1954 | A |
3648691 | Lumb et al. | Mar 1972 | A |
3867728 | Stubstad et al. | Feb 1975 | A |
4003376 | McKay et al. | Jan 1977 | A |
4011602 | Rybicki et al. | Mar 1977 | A |
4078559 | Nissinen | Mar 1978 | A |
4257409 | Bacal et al. | Mar 1981 | A |
4554914 | Kapp et al. | Nov 1985 | A |
4570618 | Wu | Feb 1986 | A |
4573454 | Hoffman | Mar 1986 | A |
4604995 | Stephens et al. | Aug 1986 | A |
4643178 | Nastari et al. | Feb 1987 | A |
4686970 | Dove et al. | Aug 1987 | A |
4827918 | Olerud | May 1989 | A |
4936848 | Bagby | Jun 1990 | A |
4969888 | Scholten et al. | Nov 1990 | A |
5011484 | Breard | Apr 1991 | A |
5047055 | Bao et al. | Sep 1991 | A |
5092866 | Breard et al. | Mar 1992 | A |
5171280 | Baumgartner | Dec 1992 | A |
5192326 | Bao et al. | Mar 1993 | A |
5201734 | Cozad et al. | Apr 1993 | A |
5236460 | Barber | Aug 1993 | A |
5242444 | MacMillan | Sep 1993 | A |
5306275 | Bryan | Apr 1994 | A |
5314477 | Marnay | May 1994 | A |
5360430 | Lin | Nov 1994 | A |
5366455 | Dove | Nov 1994 | A |
5415661 | Holmes | May 1995 | A |
5437672 | Alleyne | Aug 1995 | A |
5454812 | Lin | Oct 1995 | A |
5496318 | Howland et al. | Mar 1996 | A |
5527312 | Ray | Jun 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5609634 | Voydeville | Mar 1997 | A |
5628756 | Barker, Jr. et al. | May 1997 | A |
5645597 | Krapiva | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5665122 | Kambin | Sep 1997 | A |
5674295 | Ray et al. | Oct 1997 | A |
5676702 | Ratron | Oct 1997 | A |
5690649 | Li | Nov 1997 | A |
5702452 | Argenson et al. | Dec 1997 | A |
5725582 | Bevan et al. | Mar 1998 | A |
5746762 | Bass | May 1998 | A |
5755797 | Baumgartner | May 1998 | A |
5810815 | Morales | Sep 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
5860977 | Zucherman et al. | Jan 1999 | A |
5976186 | Bao et al. | Nov 1999 | A |
6019792 | Cauthen | Feb 2000 | A |
6022376 | Assell et al. | Feb 2000 | A |
6048342 | Zucherman et al. | Apr 2000 | A |
6066154 | Reiley et al. | May 2000 | A |
6068630 | Zucherman et al. | May 2000 | A |
6099565 | Sakura, Jr. | Aug 2000 | A |
6132464 | Martin | Oct 2000 | A |
6179874 | Cauthen | Jan 2001 | B1 |
6187043 | Ledergerber | Feb 2001 | B1 |
6238397 | Zucherman et al. | May 2001 | B1 |
6277120 | Lawson | Aug 2001 | B1 |
6293949 | Justis et al. | Sep 2001 | B1 |
6299613 | Ogilvie et al. | Oct 2001 | B1 |
6332894 | Stalcup et al. | Dec 2001 | B1 |
6336930 | Stalcup et al. | Jan 2002 | B1 |
6352537 | Strnad | Mar 2002 | B1 |
6364883 | Santilli | Apr 2002 | B1 |
6395034 | Suddaby | May 2002 | B1 |
6402750 | Atkinson et al. | Jun 2002 | B1 |
6402785 | Zdeblick et al. | Jun 2002 | B1 |
6419704 | Ferree | Jul 2002 | B1 |
6425923 | Stalcup et al. | Jul 2002 | B1 |
6440168 | Cauthen | Aug 2002 | B1 |
6440169 | Elberg et al. | Aug 2002 | B1 |
6447514 | Stalcup et al. | Sep 2002 | B1 |
6451019 | Zucherman et al. | Sep 2002 | B1 |
6558390 | Cragg | May 2003 | B2 |
6582433 | Yun | Jun 2003 | B2 |
6626944 | Taylor | Sep 2003 | B1 |
6645207 | Dixon et al. | Nov 2003 | B2 |
6645248 | Casutt | Nov 2003 | B2 |
6695842 | Zucherman et al. | Feb 2004 | B2 |
6709435 | Lin | Mar 2004 | B2 |
6723126 | Berry | Apr 2004 | B1 |
6733534 | Sherman | May 2004 | B2 |
6761720 | Senegas | Jul 2004 | B1 |
6805697 | Helm et al. | Oct 2004 | B1 |
6835205 | Atkinson et al. | Dec 2004 | B2 |
6852128 | Lange | Feb 2005 | B2 |
6863688 | Ralph et al. | Mar 2005 | B2 |
6899713 | Shaolian et al. | May 2005 | B2 |
6946000 | Senegas et al. | Sep 2005 | B2 |
6958077 | Suddaby | Oct 2005 | B2 |
6969404 | Ferree | Nov 2005 | B2 |
6969405 | Suddaby | Nov 2005 | B2 |
6972036 | Boehm, Jr. et al. | Dec 2005 | B2 |
7041136 | Goble et al. | May 2006 | B2 |
7048736 | Robinson et al. | May 2006 | B2 |
7081120 | Li et al. | Jul 2006 | B2 |
7087083 | Pasquet et al. | Aug 2006 | B2 |
7105024 | Richelsoph | Sep 2006 | B2 |
7163558 | Senegas et al. | Jan 2007 | B2 |
7201751 | Zucherman et al. | Apr 2007 | B2 |
7238204 | Le Couedic et al. | Jul 2007 | B2 |
7306628 | Zucherman et al. | Dec 2007 | B2 |
7377942 | Berry | May 2008 | B2 |
7442208 | Mathieu et al. | Oct 2008 | B2 |
7445637 | Taylor | Nov 2008 | B2 |
20020029039 | Zucherman et al. | Mar 2002 | A1 |
20020133155 | Ferree | Sep 2002 | A1 |
20020143331 | Zucherman et al. | Oct 2002 | A1 |
20030040746 | Mitchell et al. | Feb 2003 | A1 |
20030139814 | Bryan | Jul 2003 | A1 |
20030153915 | Nekozuka et al. | Aug 2003 | A1 |
20030220649 | Bao et al. | Nov 2003 | A1 |
20040055607 | Boehm, Jr. et al. | Mar 2004 | A1 |
20040083002 | Belef et al. | Apr 2004 | A1 |
20040097931 | Mitchell | May 2004 | A1 |
20040186475 | Falahee | Sep 2004 | A1 |
20040186576 | Biscup et al. | Sep 2004 | A1 |
20040215342 | Suddaby | Oct 2004 | A1 |
20040225360 | Malone | Nov 2004 | A1 |
20040230305 | Gorensek et al. | Nov 2004 | A1 |
20040267368 | Kuslich | Dec 2004 | A1 |
20050010293 | Zucherman et al. | Jan 2005 | A1 |
20050033431 | Gordon et al. | Feb 2005 | A1 |
20050033432 | Gordon et al. | Feb 2005 | A1 |
20050033437 | Bao et al. | Feb 2005 | A1 |
20050033439 | Gordon et al. | Feb 2005 | A1 |
20050038432 | Shaolian et al. | Feb 2005 | A1 |
20050049708 | Atkinson et al. | Mar 2005 | A1 |
20050101955 | Zucherman et al. | May 2005 | A1 |
20050143738 | Zucherman et al. | Jun 2005 | A1 |
20050165398 | Reiley | Jul 2005 | A1 |
20050197702 | Coppes et al. | Sep 2005 | A1 |
20050203512 | Hawkins et al. | Sep 2005 | A1 |
20050203624 | Serhan et al. | Sep 2005 | A1 |
20050203626 | Sears et al. | Sep 2005 | A1 |
20050209696 | Lin et al. | Sep 2005 | A1 |
20050216017 | Fielding et al. | Sep 2005 | A1 |
20050228391 | Levy et al. | Oct 2005 | A1 |
20050240267 | Randall et al. | Oct 2005 | A1 |
20050261768 | Trieu | Nov 2005 | A1 |
20050267580 | Suddaby | Dec 2005 | A1 |
20050273110 | Boehm, Jr. et al. | Dec 2005 | A1 |
20050288672 | Ferree | Dec 2005 | A1 |
20060004367 | Alamin et al. | Jan 2006 | A1 |
20060004447 | Mastrorio et al. | Jan 2006 | A1 |
20060015181 | Elberg | Jan 2006 | A1 |
20060015183 | Gilbert et al. | Jan 2006 | A1 |
20060036246 | Carl et al. | Feb 2006 | A1 |
20060036256 | Carl et al. | Feb 2006 | A1 |
20060036259 | Carl et al. | Feb 2006 | A1 |
20060036323 | Carl et al. | Feb 2006 | A1 |
20060036324 | Sachs et al. | Feb 2006 | A1 |
20060058790 | Carl et al. | Mar 2006 | A1 |
20060064165 | Zucherman et al. | Mar 2006 | A1 |
20060084983 | Kim | Apr 2006 | A1 |
20060084985 | Kim | Apr 2006 | A1 |
20060084987 | Kim | Apr 2006 | A1 |
20060084988 | Kim | Apr 2006 | A1 |
20060085069 | Kim | Apr 2006 | A1 |
20060085070 | Kim | Apr 2006 | A1 |
20060085074 | Raiszadeh | Apr 2006 | A1 |
20060089654 | Lins et al. | Apr 2006 | A1 |
20060089719 | Trieu | Apr 2006 | A1 |
20060106381 | Ferree et al. | May 2006 | A1 |
20060106397 | Lins | May 2006 | A1 |
20060111728 | Abdou | May 2006 | A1 |
20060122620 | Kim | Jun 2006 | A1 |
20060136060 | Taylor | Jun 2006 | A1 |
20060184247 | Edidin et al. | Aug 2006 | A1 |
20060184248 | Edidin et al. | Aug 2006 | A1 |
20060195102 | Malandain | Aug 2006 | A1 |
20060217726 | Maxy et al. | Sep 2006 | A1 |
20060235387 | Peterman | Oct 2006 | A1 |
20060235532 | Meunier et al. | Oct 2006 | A1 |
20060241613 | Brueneau et al. | Oct 2006 | A1 |
20060247623 | Anderson et al. | Nov 2006 | A1 |
20060247640 | Blackwell et al. | Nov 2006 | A1 |
20060253198 | Myint et al. | Nov 2006 | A1 |
20060264938 | Zucherman et al. | Nov 2006 | A1 |
20060271044 | Petrini et al. | Nov 2006 | A1 |
20060293662 | Boyer, II et al. | Dec 2006 | A1 |
20060293663 | Walkenhorst et al. | Dec 2006 | A1 |
20070043362 | Malandain et al. | Feb 2007 | A1 |
20070073292 | Kohm et al. | Mar 2007 | A1 |
20070088436 | Parsons et al. | Apr 2007 | A1 |
20070162000 | Perkins | Jul 2007 | A1 |
20070198091 | Boyer et al. | Aug 2007 | A1 |
20070233068 | Bruneau et al. | Oct 2007 | A1 |
20070233081 | Pasquet et al. | Oct 2007 | A1 |
20070233089 | DiPoto et al. | Oct 2007 | A1 |
20070233146 | Henniges et al. | Oct 2007 | A1 |
20070270834 | Bruneau et al. | Nov 2007 | A1 |
20080161818 | Kloss et al. | Jul 2008 | A1 |
Number | Date | Country |
---|---|---|
2821678 | Nov 1979 | DE |
101 49 385 | Apr 2003 | DE |
0418387 | Mar 1991 | EP |
0322334 | Feb 1992 | EP |
0 661 957 | Sep 1998 | EP |
1138268 | Oct 2001 | EP |
1330987 | Jul 2003 | EP |
2623085 | May 1989 | FR |
2625097 | Jun 1989 | FR |
2681525 | Mar 1993 | FR |
2681525 | Mar 1993 | FR |
2700941 | Aug 1994 | FR |
2703239 | Oct 1994 | FR |
2707864 | Jan 1995 | FR |
2717675 | Sep 1995 | FR |
2722087 | Jan 1996 | FR |
2722087 | Jan 1996 | FR |
2722088 | Jan 1996 | FR |
2724554 | Mar 1996 | FR |
2725892 | Apr 1996 | FR |
2730156 | Aug 1996 | FR |
2775183 | Aug 1999 | FR |
2799640 | Apr 2001 | FR |
2799948 | Apr 2001 | FR |
2816197 | May 2002 | FR |
2851154 | Aug 2004 | FR |
02-224660 | Sep 1990 | JP |
09-075381 | Mar 1997 | JP |
988281 | Jan 1983 | SU |
1484348 | Jun 1989 | SU |
WO 9113598 | Sep 1991 | WO |
WO 9426192 | Nov 1994 | WO |
WO 9426195 | Nov 1994 | WO |
WO 9820939 | May 1998 | WO |
WO 9834568 | Aug 1998 | WO |
WO 9959669 | Nov 1999 | WO |
WO 0045752 | Aug 2000 | WO |
WO 0115638 | Mar 2001 | WO |
WO 0209625 | Feb 2002 | WO |
WO 03007829 | Jan 2003 | WO |
WO 2004028401 | Apr 2004 | WO |
WO 2004047691 | Jun 2004 | WO |
2004084768 | Oct 2004 | WO |
WO 2004084768 | Oct 2004 | WO |
2005002474 | Jan 2005 | WO |
WO 2005002474 | Jan 2005 | WO |
2005009300 | Feb 2005 | WO |
WO 2005009300 | Feb 2005 | WO |
WO 2005016194 | Feb 2005 | WO |
WO 2005044118 | May 2005 | WO |
WO 2005097004 | Oct 2005 | WO |
WO 2005110258 | Nov 2005 | WO |
WO 2005115261 | Dec 2005 | WO |
WO 2006009855 | Jan 2006 | WO |
2006025815 | Mar 2006 | WO |
2006044786 | Apr 2006 | WO |
WO 2006064356 | Jun 2006 | WO |
2006089085 | Aug 2006 | WO |
WO 2007034516 | Mar 2007 | WO |
2007075788 | Jul 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20070270826 A1 | Nov 2007 | US |