This application claims priority of European patent application EP09150802 of Jan. 16, 2009, the contents whereof are hereby incorporated.
The present invention concerns a method and a device for estimating channel impulse response in an OFDM receiver or in an OFDM system, as well as a receiver comprising such device or implementing such method.
Orthogonal Frequency Division Multiplexing modulation (OFDM or COFDM) is a digital multi-carrier modulation method in which the transmitted data is divided into several parallel channels, which are carried by a large number of closely-spaced orthogonal sub-carriers.
OFDM is increasingly employed in wired or wireless wideband digital communication, also thanks to its ability to accommodate with variable or poor channel conditions.
Among others, OFDM schemes are used in broadband interned (DSL) and digital television and audio broadcasting (DVB and DAB). In the following reference will be made, to exemplify the invention, to the DVB standard, as described ETSI standard EN 300 744, EN 302 304, EN 300, N 301 192; EN 300 421 and in ETCI publication A122, “Frame structure channel coding and modulation for a second generation digital terrestrial television broadcasting system” (DVB-T2), which are hereby incorporated. It must be intended, however, that this is not a limiting feature of the invention, which includes OFDM modulation systems, be they used for broadcast or data transmission, on a radio channel, or on a wired channel, or in any other suitable transmission channel. The present invention could be applied to other digital television system, and also to wireless networks (HIPERLAN, WiMax), digital radio systems, ADSL, VDSL and PLC data networks, and so on.
In a typical OFDM system, schematically represented in
This is performed by an N-size inverse Fourier Transform (IFFT) in block 32. In order to reduce the complexity of the receiver the modulated data are completed (block 33) by a cyclic prefix (CP) (i.e., the last LCP symbols of the IFFT output are replicated at the beginning of the OFDM-modulated frame before transmission). The transmission rate is 1/Ts=(N+LCP)/NT. The signal is transferred to the receiver by a suitable channel (block 35).
At the receiver, the received signal is split, by detecting the repetition of the cyclic prefix, into frames of size N+LCP, corresponding to the transmitted frames. The first LCP samples (corresponding to the CP) are discarded (block 43) and the following N samples are transformed with a fast Fourier Transform (FFT, block 42) to obtain the symbol yn(u) for frame u at sub-carrier n, with n=0, 1, . . . , N−1. The rate of yn(u) is N/T.
For dispersive channels the detection and selection of N samples on which one perform the FFT is a critical task. Such task will be named synchronization. In the state of the art, Synchronization is usually performed using techniques based on time-domain-autocorrelation of the received signal, as disclosed, for example, In the papers “Robust Frequency and Timing Synchronization for OFDM”, of Timothy M. Schmidl and Donald C. Cox, published on IEEE Trans. Communications, vol. 45, No 12, pp. 1613-1621, December 1997 and “On the Synchronization Techniques for Wireless OFDM Systems”, by Bo Ai, Zhi-xing Yang, Chang-yong Pan, Jian-hua Ge, Yong Wang and Zhen Lu, published in IEEE Trans. Broadcasting, vol. 52, No 5, pp 236-244, June 2006. The synchronization has to detect the beginning of each OFDM frame and it has to select a good set of N consecutive samples to perform the FFT. The N samples have not to be affected by Inter-Symbol-Interference (ISI). Nevertheless ISI can be zero only if the maximum channel delay is smaller than the CP-length. Nevertheless when the maximum channel delay is larger than CP-length, then ISI cannot be avoided and the objective is to minimize it.
Indicating with Y(u)=[y0(u), y1(u), . . . , yN-1(u)]T the N-size vector of received samples for the frame u, where T denotes transposition and with X(u)=[x0(u), x1(u), . . . , xN-1(u)]T be the N-size vector of the transmitted symbols for the frame u the received signal is equal to:
Y(u)=H(u)X(u)+W(u), (1)
where H(u) is a matrix of size N×N containing the channel frequency response of channel 35 and W(u)=[w0(u), w1(u), . . . , wN-1(u)]T is the noise vector. The receiver needs a reasonable estimate of H(u) to detect the transmitted symbol, with coherent modulations. To this end some sub-carriers are reserved for the transmission of symbols that are known at the receiver and will be used to estimate the channel frequency response. There sub-carriers are called pilots tones. The size and structure of these OFDM frames, and the position of pilots, are specified by different modulation standards, for example DVB-T, DVB-T2, DVB-M, DAB and so on. The details of DVB implementation are defined by ETSI standards mentioned above.
In the following, the pilot pattern of the u-th OFDM frame will be denoted by p(u). p(u) contains the indices of the sub-carriers carrying pilot tones. p(u) can be written in a vector form as follows:
p(u)=[p0(u); . . . ; pL
where Ls is the length of the p(u) vector. Ls and p(u) can significantly change according to the modulation standard, OFDM frame and configuration. The examples presented in the present specification will refer principally to the DVB-T standard, for concision's sake. It must be understood, however, that the present invention is not so limited and covers all the modulation and encoding systems to which it applies.
In the state of the art have been proposed several methods for estimating the channel frequency response from the pilot signals including: Least Square (LS) method; Minimum Mean Square Error (MMSE) estimates; and other methods based on Singular Value Decomposition (SVD). These techniques give a channel estimate only at pilot positions. Once a channel estimate is available on pilots, interpolation and smoothing is used to derive the channel estimates on the other sub-carriers. It is known in the art to interpolate the channel response with 2-D Wiener Filtering that exploits the time and frequency correlation properties of the channel, for example as disclosed in articles “Two-dimensional pilot-symbol aided channel estimation by Wiener Filtering” by P. Hoeher, S. Kaiser and P. Robertson, in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), pp 1845-1848 and “Linear Interpolation in pilot symbol assisted channel estimation for OFDM” of Xiaodai Dong, Wu-Sheng Lu and Anthony C. K. Soong, IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1910-1920, May 2007.
It is also known, as schematically represented in
According to the invention, these aims are achieved by means of the method and device that are object of the appended claims.
The invention will be better understood with the aid of the description of an embodiment given by way of example and illustrated by the figures, in which:
From a formal standpoint, an OFDM system can be modelled as follows: Consider an OFDM system transmitting on the channel at rate 1/T. OFDM frame u comprises N cells Xn(u), n=0, 1, . . . , N−1, carrying complex data symbols, that are transformed into the time domain by inverse discrete Fourier transform (IDFT) to obtain
where j=√{square root over (−1)} and p=0, 1, . . . , N−1 Each time domain block is extended with a cyclic prefix (CP) of size LCP that avoids interference among transmitted blocks and allows frequency domain equalization. After CP insertion we obtain the block of size P=N+LCP, with elements
which is transmitted on the channel.
We consider the equivalent sampled channel, obtained by the cascade of the transmit interpolating filter, the continuous time channel and the receive sampling filter. In general, the channel is time-varying due to the mobility of transmit/receiver or surrounding objects. The resulting sampled channel impulse response (CIR) at time nT is denoted {hl(n)}, with l=0, 1, . . . , L−1. As widely considered in wireless broadcast literature, channel taps {hl(n)} are modelled as independent with zero mean and variance σh2(l), while time variations are described by the Jakes model, providing the following correlation for tap l at delay δT
ρ′l(δ)=E[Hl(n)h*l(n−δ)]=σh(l)2J0(2πfDT|δ|), (5)
where E[•] denotes expectation, fD is the maximum Doppler frequency and J0(•) is the Bessel function of order zero. This model includes a Single Frequency Network (SFN) scenario where the signal is broadcast by multiple transmitters: σh2(l) is the sum of the power profiles of each channel, with suitable delays.
At the receiver, after proper synchronization, the signal is split into blocks of P samples and element p=0, 1, . . . , P−1, of frame u is
where wp(u) is an additive white Gaussian noise term with zero mean and variance σw2, compactly denoted as wp(u)˜N(0,σw2) and L is the number of channel path. The CP part of rp(u), with indices p=0, 1, . . . , LCP−1, is discarded and a discrete Fourier transform (DFT) is applied on vector {rp(u)}, p=LCP, LCP+1, . . . , P−1. For a transmission over a time invariant dispersive channel, the output of the DFT is a noisy and scaled version of the transmitted OFDM data symbol. In this case equalization boils down to an element-wise multiplication of DFT outputs. In the more general case of time-varying channels, interference among samples of an OFDM data symbol arises. Let the average channel for OFDM symbol u be
with l=0, 1, . . . , L−1, and the corresponding N-size DFT be
with n=0, 1, . . . , N−1. Due to time-variations of the channel within each OFDM symbol, inter-carrier interference (ICI) arises. Then, the demodulated OFDM symbol can be written as
where n=0, 1, . . . , N−1, Wn(u) accounts both for noise (as DFT of wp(u), p=LCP, LCP+1, . . . , P−1) and for ICI.
The received samples are then passed to a demodulator/demapper to obtain either hard or soft information on bits. In both cases, channel estimate is needed to correct the phase and to compensate for the amplitude (hard decision) or compute the likelihood ratio of each bit (soft decision) to be passed to the decoder. Hence, it is essential to have an estimate of
With reference to
In DVB-T the output of the Time Interpolation, denoted by Y10, is the channel estimated every 3 sub-carrier. This processing is described by
Using the generalization described by
The output of block 20 for the u-th OFDM frame will be denoted by Ŷ(u), it can be obtained using different known techniques: LS, MMSE, SVD, etc.
In an example, block 20 aims at estimating the
where n=0, 1, . . . , L−1 and z=0, 1, . . . , Z−1. It can be assumed that pilot cells have unitary amplitude, i.e. |Xn(u)|=1, thus the noise/ICI term
It is considered here, for the sake of a simpler implementation, that interpolation is obtained in two steps, as the cascade of time interpolation (TI) followed by frequency interpolation (FI) according to
Ŷ(u)=[Ĥ0(u); . . . ; ĤL
where Ĥn(u) is the channel estimated for the pn(u)-th pilot tone.
The Time Interpolation unit 21 performs time interpolation. The process is performed using Ŷ(u) associated to different OFDM frames. The output of the block 21 is denoted by
where LT is the number of pilot tones for which the Time Interpolation has been performed.
Time interpolation can be modelled considering pH and |pL| OFDM symbols before and after that on which interpolation is performed, respectively. The interpolation coefficients are αp(z), p=pL, pL+1, . . . , pH−1,pH, where pH>pL. Hence, TI is defined as
where the function ζz,s defines which pilots are used for interpolation. For example, setting ζz,s=s, and pL=pH=0, interpolation is performed using only the symbol nearest to zZ+z, irrespective of the fact that the used symbol is in the past or in the future. On the other hand, by setting
when pL=pH=0 we always consider the previous OFDM symbol for interpolation. In other words, when z≧s, the index of the previous OFDM symbol, with respect to current qZ+z, having a pilot at cell nSB+sS, has index qZ+s. In the latter case instead, the previous symbol has index (q−1)Z+s.
Preferably, the signal
{tilde over (H)}i=bi
The set b0, . . . , bL
Windowing on the estimated CIR is performed to reduce noise. For example, if CIR is shorter than the number of time interpolated carriers, windowing may be implemented by an inverse DFT on {{tilde over (G)}nS
The purpose of the pre-filtering unit 22 is to change the intensity profile of the non-desired peaks artificially generated after performing a discrete Fourier transform on a truncated signal (the signal to be processed is indeed initially observed through a rectangular window), while leaving the peaks of interest slightly affected (these peaks will be enlarged and attenuated). From a practical standpoint, this unit array-multiplies the signal to be processed with a sequence of coefficients, which can be pre-defined or calculated in real-time when needed.
One possible weighting coefficient set that can be used in this invention is the well-known windowing function called the Blackman window. Like any of the commonly used windowing functions, its coefficients are real-valued, symmetrical with respect to the middle of the set and approach zero at both edges of the set. It is used to smooth out the discontinuities at the beginning and at the end of the signal to be Fourier transformed. The Blackman window offers a good trade-off between main lobe width (that is, the enlargement of the peak of interest) and side lobe peak level attenuation, thereby providing us with the resolution needed to separate the path peaks. Its equation is given below:
with a0=(1−α)/2, a1=1/2 and a2=α/2 with α=0.16, i=0 . . . (LT−1)
The output of Pre-Filtering Unit is processed by the Fourier Transform Unit (FTU) 23 that performs a Fourier Transform on {tilde over (H)}, the output of such Fourier Transform will be denoted by {tilde over (g)}. {tilde over (g)} is the (preliminary) raw estimate of the Channel Impulse Response performed by this invention.
The Fourier Transform can be implemented using different techniques, such as, for example, the well known Fast Fourier transform (FFT), which is an optimized implementation of the Discrete Fourier Transform (DFT).
Assume a DFT is computed, the {tilde over (g)} signal can be rewritten in a vector form as follows:
{tilde over (g)}=[{tilde over (g)}0; . . . ; {tilde over (g)}C−1]. (17)
In the absence of any noise and for a time-invariant channel only a sub-set of {tilde over (g)}, (this sub-set of no null elements) is generated by channel paths.
Each physical channel path can generate one or more non-zero elements in the {tilde over (g)} signal and then if follows that.
where G is the set of the non-zero elements induced by channel paths.
In order to analyze the error introduced by TI when the channel is time-varying, we consider the CIR estimate obtained after the C-size IDFT of the time interpolated frequency response estimate {tilde over (G)}nS(u), i.e.
l=0, 1, . . . , C−1, where the factor √{square root over (N)}/C ensures {tilde over (g)}l(u)=
where {tilde over (w)}l(qZ+z) is the noise term whose variance, from (13) and (19), is
However, when the channel is time-varying, and TI is not ideal, aliases in the CIR estimate arise since (13) turns out to be the sum of DFTs of different CIRs. In fact, from (19) we obtain
with k=0, 1, . . . , Z−1 and l=0, 1, . . . , LB−1. Using (13) and (8) we have
where l=0, 1, . . . , LB−1 and k=0, 1, . . . , Z−1. For a time-varying channel, (23) shows that aliases arise in the time interpolated CIR, unless the combining coefficients are properly chosen. Indeed, absence of aliases in a time-varying scenario is ensured only when pH=−pL=∞ and the interpolating coefficients are a sinc function.
For a time-invariant channel, but in presence of noise, each element {tilde over (g)} is affected by an incertitude. This is why Eq. (18) becomes:
where νc is the additive noise and then the incertitude on {tilde over (g)}.
From a statistical point of view, the elements of G are significantly larger than the others, and the receiver of the invention preferably includes a Path Detection Unit (PDU) to detect them. Taking into account only the value of {tilde over (g)} significantly different from zero the Path Detection unit detects channel paths and their delays.
The PDU 24 identifies the paths of interest, for example by comparing {tilde over (g)} with a threshold. Every value larger than a given threshold is taken into account and then considered as a path. The threshold could be a fixed value, or a dynamic threshold adapted to any given environment, for example determined on the base of the maximum of {tilde over (g)} or of the noise present in the system, or a combination of the above.
The output of PDU 24, denoted by {circumflex over (z)}, is the information relative to paths detected by PDU. {circumflex over (z)} summarizes the information about the most significant characteristics of detected paths such as: delay, amplitude, etc.
In a time-varying environment the outputs {tilde over (g)} and {circumflex over (z)} can be affected by significant errors. These errors are mainly introduced by TI. Considering a Time Interpolation described by
These extra errors modify the description of the signal {tilde over (g)} proposed in Eq. (24), which then becomes:
where tl denotes the error introduced by TI. In the following the noise introduce by TI will be also named t-noise.
Note that most of the tc elements are equal to zero. The generic tc can be different to zero for all the indices generated by the set G circularly shifted by LB, . . . , (Z−1)LB. The G circularly shifted by LB generates the following set on indices:
GL
where mod(•; C) denotes operation in modulo C.
The noise introduced by TI can generate a wrong detection in the Path Detection Unit.
Considering, for the sake of simplicity, G=[0, . . . , L−1], the presence of aliases in the estimated CIR can be seen as an estimation error, which can be written as
We are interested in computing the average estimation error power βl(z)=E[|òl(qZ+z)|2] and the compound error power
In the Appendix, the closed form expression of βl(z) is derived. For a time-invariant channel we have E=σw2□. Moreover, by the Parseval theorem E is also the average error power of the frequency domain channel estimate after TI and FI. When windowing is included, the part of {tilde over (g)}l(qZ+z) that does not contain CIR is set to zero. The compound error power then becomes
where the first sum is now limited to L−1 instead of C−1. For a time-invariant channel we have Ew=Lσw2/C with a reduction of 10 log10(C/L) dB with respect to E.
The wrong detections can be avoided increasing the threshold used by the Path Detection Unit or filtering the output of the Path Detection Unit. In both cases the detection of t-noise is necessary. According to the invention, the receiver includes an Anti Doppler Unit 25, whose goals are to detect the t-noise and to reduce its effects on Channel Profile Estimation. For any path detected by block 24 the Anti-Doppler Unit looks for the presence of its aliases or replica at positions +LB, +2LB, . . . and +(Z−1)LB.
The CIR (Channel Impulse Response) estimation can be declared affected by t-noise if one, more than one or all the replicas are detected.
Assume that Z=4; C=2048 and LB=514. In case of t-noise, detection the Anti-Doppler-Unit can decide to increase the threshold used for the detection in the block 24 or to delete a set of paths because considered t-noise. This second solution permits to avoid t-noise effects without sensitivity loss for path detection.
The system of the invention is further arranged to control the time interpolation in order to avoid t-noise, if the anti-Doppler unit 25 detects its presence. In particular, the detection of t-noise could, in a variant, cause the switch off or the bypass of the time interpolation unit 21 of
The removal of a path by {circumflex over (z)} can be done following the principle that the samples of {tilde over (g)} generated by a physical path are larger than the samples of a correspondent replica. This is why, assuming that there are four paths at the position: a, a+LB, a+2LB and a+3LB, having respectively amplitude A0, A1, A2 and A3, and assuming that A0 is significantly larger than the others, it follows that the path at the position a has to be considered the only one to be generated by a physical echo, while the others are just one replica of it.
The output of the Anti Doppler Unit denoted by
If we use a Time Interpolation processing different from the one described by
Nevertheless, for a given Time Interpolation processing, it is always possible to pre-estimate the positions of the replicas generated by t-noise. This is why the processing performed by Anti Doppler unit 25 can be further generalized. For each path detected by block 24 the Anti-Doppler Unit 25 looks for the presence of its replica for a set of positions: +L1, +L2, . . . , +LQ, where the generic Li is a pre-computed value function on the processing implemented by all the previous blocks: 20, 21, 22, 23 and 24.
In a practical implementation, the output of each block reported in this invention cannot be considered error free. The errors introduced by any process can be seen as additive noise, which can be white or coloured. Anti Doppler unit 25 can be used even to delete any kind of coloured noise introduced by any unit of the signal processing chain. To this end the coloured noise has to be identified and characterized. The characterization consists in producing a good pattern +L1, . . . +LQ for the Anti Doppler Unit.
The goal of anti Doppler unit 25 is the detection and suppression of any sort of coloured noise present in {circumflex over (z)}.
The output of block 25 is then filtered by the Anti Noise Unit 26. This Unit observes the time evolution of the
Formally, the function and behaviour of the anti noise unit 26 can be described as follows: Channel duration can be estimated through {tilde over (g)}l(u) as derived in (19). However, the presence of aliases can lead to an erroneous estimate. On the other hand, if the channel is long, e.g. in a SFN scenario, we should not confuse long echoes with aliases. We propose an algorithm where aliases are detected, removed and lastly channel duration estimate is performed, thus allowing for possible long echoes to be detected.
For the first step of alias detection, since we do not know if estimated taps l>LB are due to the channel or its aliases, we consider only the most powerful taps with index l≦LB, assuming that these taps lead to most powerful aliases, i.e.
P0={l:|{tilde over (g)}l(u)|2>σmin2, l=0, 1, . . . , LB−1}, (30)
where σmin2 is a real positive parameter. Aliases, when present, will be on taps with indices belonging to sets
Pk={l+kLB|l εP0}, k=1, 2, . . . , Z−1. (31)
An estimate of the compound power of aliases relative to taps in the set Pk is then obtained as
Detection of aliases follows on each replica, by performing (Z-1) tests with null hypothesis H0(u):ψk(u)≧ψmin,k and alternative hypothesis H1(u):ψk(u)w<ψmin,k. If more than G tests over (Z−1) are positive, i.e. more than G taps have an estimated energy larger than ψmin,k, we decide that aliases are present and we force to zero all corresponding taps of the estimated CIR, setting {tilde over (g)}l(u)=0, l ε
{tilde over (L)}=max{l:|{tilde over (g)}l(u)|2≧gmin2}. (33)
Parameters Optimization
In order to determine the parameter ψmin,k for alias detection, we aim at minimizing the error probability PE of the compound alias test, which can be obtained from the error probability of each test PE,k, k=1, 2, . . . , Z−1, by enumerating all cases that lead to a detection error starting from errors on each test. In particular, we must have at least G tests in error to have a detection failure, hence, denoting with {Gu(G)} are all the possible sets of at least G elements taken from {1, 2, . . . , Z−1} and
The minimum of the error probability for the compound test is achieved by minimizing the probability of each test.
The error probability of each test is the sum of the false alarm (FA) probability, i.e. the probability of declaring a mobility scenario when a static channel is present, and the miss detection (MD) probability, i.e. the probability of missing the presence of aliases averaged over channel realizations, so that
PE,k=PMD,k+PFA,k. (35)
Adaptive TI with Known Channel Duration
Let us consider, the case when CIR length is less than the number of pilots per OFDM symbols, i.e. L≦LB. Although the channel can be estimated on a single OFDM symbol, for static channels TI is still advantageous as it reduces the estimation noise power. However, if time variations are fast enough and TI is not ideal, it is convenient to switch off TI when the additional error introduced by TI is excessive.
To this end, we perform a test on ψk and, similarly for the detection of aliases, we switch off TI if ψk>ψTI,min,k for at least G values of k. The error probability can be computed as in Section “parameters optimization” above, where the MD probability is computed in correspondence of a threshold frequency fD over which on average TI is worsening performance.
Numerical Simulations
We consider an OFDM transmission system in a DVB-T scenario, with parameters reported in Table 1. As channel model we consider SFN transmission with NTX transmitters having delay δn, n=1, 2, . . . , NTX with respect to the first transmitter (i.e. δ1=0), and relative average power n=1, 2, . . . , NTX with respect to the first transmitter (i.e. ζ1=1). The channel of each transmitter is modelled with an exponentially decaying power profile with root mean square delay spread τrms, so that we have
where ω=Σl=0I-1σh2(l) is a normalization factor ensuring average unitary channel power. In particular, we consider NTX=2 and mutual uniform random delay within the CP. Each transmitter-receiver link has a frequency selective fading channel as described in Section \ref{analysis}, with a root mean square delay spread of 1.4 T, describing a typically urban channel model, as TU6.
The alias detection technique is based on the absolute value of the aliases arising due to suboptimal TI. For a TU6 channel with duration L≦LB and pH=−pL=2,
We observe that the main error power is concentrated on the CIR, i.e. on B0. We further notice that Bk, for k≧1 is not monotonic with fD but exhibits an almost oscillating behaviour. This is related to the Jakes model and its particular time-domain correlation function.
About the alias detection method, parameters must be chosen in order to achieve a given error probability. In particular, for the maximum tap selection we have to choose ψmin,k and the cardinality of
In order to evaluate the performance of the channel duration estimator, we consider the absolute error
Δ=|{tilde over (L)}−L|, (38)
and in
For a better understanding the impact of the proposed technique on the system performance,
Number | Date | Country | Kind |
---|---|---|---|
09150802 | Jan 2009 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
6907026 | Akiyama | Jun 2005 | B2 |
6990153 | Farhang-Boroujeni et al. | Jan 2006 | B1 |
7440503 | Hoshi | Oct 2008 | B2 |
7894331 | Sadek et al. | Feb 2011 | B2 |
7995676 | Fite et al. | Aug 2011 | B2 |
7995688 | Hong et al. | Aug 2011 | B2 |
8121204 | Anderson et al. | Feb 2012 | B2 |
20050213680 | Atungsiri et al. | Sep 2005 | A1 |
20060269016 | Long et al. | Nov 2006 | A1 |
20070041116 | Kajiwara | Feb 2007 | A1 |
20070076804 | Sestok et al. | Apr 2007 | A1 |
20070211827 | Baggen et al. | Sep 2007 | A1 |
20080049598 | Ma et al. | Feb 2008 | A1 |
20080225936 | Hong et al. | Sep 2008 | A1 |
20080260052 | Hayashi | Oct 2008 | A1 |
20090180558 | Ma et al. | Jul 2009 | A1 |
20100040154 | Carbonelli et al. | Feb 2010 | A1 |
Number | Date | Country |
---|---|---|
2051425 | Apr 2009 | EP |
02067527 | Aug 2002 | WO |
2008084784 | Aug 2002 | WO |
2001117381 | Dec 2005 | WO |
Number | Date | Country | |
---|---|---|---|
20120020427 A1 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2010/050498 | Jan 2010 | US |
Child | 13182762 | US |