This disclosure concerns hydrogel implants and related methods for treating growth plate injury, particularly in pediatric patients.
No commercially available device and surgical method exists to prevent limb deformity after physeal injury, a significant pediatric orthopaedic problem. The physis (growth plate) is the cartilaginous interfacial tissue at the ends of limb bones that drives appendicular skeletal growth. 15% of long bone fractures in children involve the physis, with a 35% prevalence in children 10 to years-old. The overall incidence of physeal injury in the juvenile population is 2.4 to 4.6 per 1,000. Up to 75% of physeal injuries cause some growth disturbance, most often from bone that forms across the physis, bridging the epiphysis, and metaphysis (boney tether). In the lower limbs, tethers cause limb deformity, length discrepancy and substantial physical impairment.
Surgical procedures are available to correct these deformities but are associated with significant disadvantages. Distraction osteogenesis is highly invasive, painful, and prolonged (3-6 months). Epiphysiodesis (hardware implantation and/or physeal bar rotation/excision) sacrifices patient height and often requires osteotomy to reshape geometry or distraction to restore length. The Langenskiold procedure (autologous transplant of fat as an interpositional material) has a high risk of bony tether recurrence (65%-82%). Moreover, surgical treatment is very costly, both monetarily and psychologically. These surgical approaches restrict activity during a child's formative years, and subject them to painful procedures, repeated clinic visits, multiple surgeries, and lengthy rehabilitation.
Disclosed herein implantable material and methods for treatment of growth plate injuries and other purposes. Exemplary compositions comprise poly (ethylene glycol) (“PEG”), gelatin (“GEL”), and heparin (“HEP”). The PEG, GEL, and HEP can comprise various forms of these materials, such as methacrylated forms, etc. The compositions can be configured to treat a growth plate injury in a patient. Some embodiments are anti-osteogenic. Some embodiments are ant-mineralization.
The disclosed materials can be in a dry power form, in a liquid form, or in a solid hydrogel form. In the liquid form, compositions can be implanted into a patient, and can then be made into a solid hydrogel form via various mechanisms, such as application of light that reacts with a photoinitiator and causes crosslinking of polymers in situ.
In some methods, the materials can be implanted as a prophylactic treatment, for example to help prevent unwanted boney tether growth while a recent injury heals. In an example, the composition can be injected into a recent growth plate fracture to help the fracture heal properly. Alternatively and/or in addition, the materials can be implanted as an interpositional implant, such as to fill a void created by removal of diseased tissue, for example. For example, a boney tether in the growth plate zone can be excised and then a hydrogel material can be implanted in the void to prevent unwanted boney tethers from growing into the void area.
In some methods, it can be beneficial to have at least part of the implanted material be positioned in the epiphyseal zone, such that the implanted material moves along with the growth plate as the bone grows.
In some embodiments, the composition can comprise various other materials, such as LAP, saline solution, cells, growth factors, drugs, and/or other components. Cells can comprise chondrocytes, stem cells, etc. Anti-osteogenic drugs included can comprise dexamethasone, recombinant sclerostin, and/or midazolam. Growth suppressing drugs included can comprise any inhibitor of mammalian target of rapamycin (“mTOR”).
In some embodiments, the compositions can be pre-loaded in a syringe, such as in a liquid or powder form. In powder form, a solution can be added prior to injection into the growth plate area of a patient.
In some embodiments, an implanted hydrogel can comprise layers that mimic growth plate zonal architecture. For example, the hydrogel can include three layers comprising a proliferative zone (“PZ”) layer, a prehypertrophic zone (“PHZ”) layer, and a hypertrophic (“HZ”) layer, with the PHZ layer between the PZ layer and the HZ layer.
The foregoing and other objects, features, and advantages of the invention will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
Disclosed herein are materials and methods for treatment of growth plate injury, particularly in juvenile patients. These materials and methods can minimize osteogenesis and bony tether formation in the area of the growth plate, and can diminish derangement of limb growth at the physis, among other benefits.
In some methods, the implantable materials can be pre-formulated and provided to a surgeon (or other healthcare provider) in liquid form for implantation into an injury site in a patient. The liquid form material can be provided in a pre-filled syringe or other container. After the liquid material is injected or otherwise placed within the intended implantation site, the liquid material can be set/solidified.
In some cases, the materials can be provided as a dry powder contained in a syringe or other container. Such powder can be rehydrated/liquified with addition of saline or other liquid at the point-of-care, and the resulting liquid material can then be injected into the injury site. In some cases, the provided liquid or powder may be supplemented at the point of care with other components prior to implantation in a patient.
The injected/implanted liquid material can be set/solidify into a hydrogel within the patient. In some embodiments, the injected material can include a photoinitiator that causes the material to solidify when exposed to a light source. In other embodiments, the injected material can set within the patient without a photoinitiator.
Regardless of the manner of composing the material, the manner of placing the material into the patient, and the matter of setting/solidifying the material, the resultant implanted hydrogel can be used in various situations with great benefit. In some methods, the implanted hydrogel can be used in a prophylactic manner, such as where the material is injected within a physeal fracture (e.g., see fracture types in
The implanted hydrogel can also be used as an interpositional implant to fill a void in the area of the growth plate, such as after resection of bony tethers, sarcoma, or other diseased physeal tissue. The implanted material can fill the void and reduce the risk of mineralization or bony tether formation in the void area. In some such embodiments, the void can be created and/or shaped such that the implant can be placed to overlay the growth plate on the epiphyseal side. For example, a surgeon can remove all boney tissue within the growth plate that bridges the epiphysis and the metaphysis. A shallow pocket can be formed in the epiphysis wider than the resection region in the growth plate. The implant can then be placed to preferably overlay the growth plate on the epiphyseal side.
Whether implanted in a prophylactic manner, an interpositional manner, or otherwise, the implanted hydrogel can inhibit osteogenesis by progenitor cells, mineralization by hypertrophic chondrocytes, and mineralization by osteoblasts (
Other treatments for growth plate injury (see, e.g.,
Exemplary hydrogels disclosed herein can comprise a combination of poly(ethylene glycol) (“PEG”), gelatin (“GEL”), and heparin (“HEP”). Together, this combination can be referred to as “PGH”. In some embodiments, the PGH combination can comprise methacrylated poly(ethylene glycol) (“PEGDA”), methacrylated gelatin (“GEL-MA”), and methacrylated heparin (“HEP-MA”). See
The PEGDA can, for example, have a number average molecular weight (Me), sometimes referred to herein simply as just molecular weight or “mw”, that is equal to about 4,000 at methacrylation of 93% of terminal hydroxyl groups. The GEL-MA can, for example, have a mw=45,000 at methacrylation of near 100% of the lysine residues. The HEP-MA can, for example, have a mw=15,000 at methacrylation of 10% of available saccharide residues.
PGH hydrogels, as well as precursor compositions such as a powder preloaded in a syringe, can comprise various ratios of the constituent components PEDGA, GEL-MA, and HEP-MA. In some embodiments, the HEP-MA comprises at least 16% of a total mass of the PEGDA, the GEL-MA, and the HEP-MA combined. In some embodiments, the HEP-MA comprises at least 30% of a total mass of the PEGDA, the GEL-MA, and the HEP-MA combined. In some embodiments, the HEP-MA comprises at from 16% to 30% of a total mass of the PEGDA, the GEL-MA, and the HEP-MA combined. In some embodiments, a mass ratio of PEGDA:GEL-MA:HEP-MA is about 3:4:3. In some embodiments, a mass ratio of PEGDA:GEL-MA:HEP-MA is about 63:21:16. Some exemplary PGH hydrogels have a density of from 6% to 10% weight per volume. Some exemplary PGH hydrogels have a density of from 8% to 10% weight per volume. Some exemplary PGH hydrogels have a density of from 7.5% to 8.5% weight per volume.
In any of the embodiments disclosed herein, components of the hydrogel can be substituted with functionally analogous materials. For example, the heparin component, HEP-MA, can be substituted with chondroitin sulfate or any other highly sulfated proteoglycan. Heparin may be preferred because it is the most anionic and complexes with many growth factors due to similarity to heparan sulfate, but another highly sulfated proteoglycan may be used instead. For example, the gelatin component can be substituted with collagen. For example, the poly(ethylene glycol) component can be substituted with poly(vinyl alcohol).
The herein disclosed hydrogels can utilize any of various forms of crosslinking methods to solidify the hydrogel. In some examples, a photoinitiator such as LAP is included the hydrogel can be solidified by applying light, such as having 300-500 nm wavelengths. A number of light photo-initiating systems may be used to crosslink the polymers, including Norrish Type I and Type II and photocycloaddition systems. Other hydrogels can be physically or chemically crosslinkable (solidified) via photopolymerization, via non-photo chemical bonding (e.g., thiol-ene/thiol-Michael addition), and/or via physical reactions (e.g., hydrophilic-hydrophobic interaction). Examples of physically formed hydrogel materials include PIPAAm and poloxomer materials. In some embodiments, hydrogels can be crosslinked to form a hydrogels in situ using appropriate crosslinkers (e.g. tetrakis, genipin, transglutaminase), or via modification to provide active moieties, for example acrylated to render them crosslinkable via radicals generated with light (photocrosslinkable) and/or with persulfate salts (e.g., ammonium persulfate, potassium persulfate, sodium persulfate). Persulfate crosslinking rate can be controlled with addition of ascorbate.
More information regarding crosslinking methods, as well as compositions, formulations, uses, and other properties of hydrogels that are applicable to the technology disclosed herein, can be found in WO 2017/152112, published Jul. 26, 2018; WO 2019/183201, published Sep. 26, 2019; and WO 2019/241577, published Dec. 19, 2019, all of which are incorporated by reference herein in their entirety.
Any of the herein disclosed hydrogels or other materials can optionally also include various additional components, such as cells, growth factors, anti-osteogenic drugs, growth suppressing drugs, anti-inflammatory drugs, and/or other supplements.
Anti-osteogenic drugs can vary in structure and mechanism of actions. One type of anti-osteogenic drugs that can be included are corticosteroids and glucocorticoids, such as dexamethasone or prednisone. Dexamethasone inhibits bone formation, and a local short-term and low dose (e.g., at least 1 μM) delivery is needed for anti-tether effects using the herein disclosed technology. Another anti-osteogenic drug that can be included is sclerostin, e.g., human recombinant sclerostin. Sclerostin is a glycoprotein regulated by dexamethasone signaling that has narrow bioactivity, inhibiting bone formation and cartilage mineralization without impairing bone density and cartilage growth. Recombinant sclerostin can similarly be include in a low done (e.g., at least 1 μM). Another category of anti-osteogenic drugs that can be included are benzodiazepine derivatives, such as midazolam. Midazolam can inhibit chondrogenesis and osteogenesis by mesenchymal stem cells.
Growth suppressing drugs can include various cancer-fighting drugs. One example is Everolimus, along with other inhibitors of mammalian target of rapamycin (mTOR). Everolimus is a chemical immunosuppressant and is sometimes used in preventing organ transplant rejection and in treatment of certain tumors and cancers. It is more selective for the mTORC1 complex than the parent compound rapamycin. Inhibition of mTORC1 reduces cellular transcription and translation. The parent molecule, rapamycin, can diminish limb growth at the physis without necessarily altering mitosis, e.g. via decreased matrix synthesis and decreased chondrocyte differentiation (hypertrophy) via reduced Indian Hedge Hog secretion.
Any of the herein disclosed hydrogels or other materials can optionally also include cells, such as progenitor cells (e.g., bone marrow derived stem cells and/or chondrocytes) and related growth factors (e.g., TGFβ-1).
As noted above, the implanted PGH hydrogel can be used in a prophylactic manner, such as where the material is injected within a physeal fracture during reduction to reduce the risk of mineralization and/or bony tether formation in the fracture area while the bone heals. The cellular actions of the hydrogel include inhibition of hypertrophy by chondrocytes, osteogenic differentiation of mesenchymal progenitor cells, and mineralization by osteoblasts (cellular anti-tether mechanism). Differentiation of bone marrow derived stem cells (BMSCs) encapsulated within a hydrogel has been tested during in vitro culture and in vivo growth within subcutaneous implant pockets in mice. The hydrogel inhibited osteogenesis by goat BMSCs in vitro while permitting chondrogenesis, and enhanced chondrogenesis by human BMSCs in vivo while inhibiting mineralization compared to a gelatin bioink. Anti-mineralization, anti-osteogenic, and pro-chondrogenic effects of the PGH hydrogel arise from its unique composition of three polymers: gelatin, heparin, and poly(ethylene glycol).
Experimental data also demonstrates anti-osteogenic effects on differentiated osteoblasts (bone cells), as illustrated in
When the PGH hydrogel is used as an interpositional implant to fill a void in the area of the growth plate, the implant is preferably positioned to overlay the growth plate on the epiphyseal side, or at least such that part of the implant is on the epiphyseal side.
When accounting for implant placement, defects that had the majority of the hydrogel implanted in the epiphysis showed significantly more fat (
The PGH hydrogels disclosed herein can also be considered “anti-mineralization,” and can have the anti-mineralization properties such as promoting quiescence of stem cells, inhibiting osteogenic activity of osteoblasts, and effect on ion transport and mineral formation sans cells.
Only a few hydrogel implants showed chondrogenesis by the encapsulated goat BMSCs. Interestingly, the non-chondrogenic cells in these hydrogels can be categorized into two types: one had nucleus stained dark purple by hematoxylin, often found near proteoglycan producing BMSC derived chondrocytes; the other was not stained by hematoxylin, but Fast Green or eosin only. These “ghost cells” were seen in all remnant hydrogels, distributed throughout the scaffold, regardless of whether chondrogenesis occurred or not. DAPI stain showed that the “ghost cells” had nuclei, though the stain was much fainter compared to the hematoxylin positive cells (
For purposes of this description, certain aspects, advantages, and novel features of the embodiments of this disclosure are described herein. The disclosed methods, apparatuses, and systems should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and nonobvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The methods, apparatuses, and systems are not limited to any specific aspect or feature or combination thereof, nor do the disclosed embodiments require that any one or more specific advantages be present or problems be solved.
Features, integers, characteristics, or groups described in conjunction with a particular aspect, embodiment or example of the invention are to be understood to be applicable to any other aspect, embodiment or example described herein unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The invention is not restricted to the details of any foregoing embodiments. The invention extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed methods can be used in conjunction with other methods.
As used herein, the terms “a”, “an”, and “at least one” encompass one or more of the specified element. That is, if two of a particular element are present, one of these elements is also present and thus “an” element is present. The terms “a plurality of” and “plural” mean two or more of the specified element. As used herein, the term “and/or” used between the last two of a list of elements means any one or more of the listed elements. For example, the phrase “A, B, and/or C” means “A”, “B,”, “C”, “A and B”, “A and C”, “B and C”, or “A, B, and C.” As used herein, the term “coupled” generally means physically, chemically, electrically, magnetically, or otherwise coupled or linked and does not exclude the presence of intermediate elements between the coupled items absent specific contrary language.
In view of the many possible embodiments to which the principles of the disclosed technology may be applied, it should be recognized that the illustrated embodiments are only examples and should not be taken as limiting the scope of the disclosure. Rather, the scope of the disclosure is at least as broad as the following claims. We therefore claim all that comes within the scope of these claims and their equivalents.
This application claims the benefit of U.S. Provisional Patent Application No. 63/091,824, filed on Oct. 14, 2020, which is incorporated by reference herein in its entirety.
This invention was made with government support under AR062598 awarded by the National Institutes of Health. The government has certain rights in the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/051096 | 9/20/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63080890 | Sep 2020 | US |