The present invention relates to interpretation of gestures on a touch sensing device, and in particular to interpretation of gestures comprising pressure or force.
Touch sensing systems (“touch systems”) are in widespread use in a variety of applications. Typically, the touch systems are actuated by a touch object such as a finger or stylus, either in direct contact, or through proximity (i.e. without contact), with a touch surface. Touch systems are for example used as touch pads of laptop computers, in control panels, and as overlays to displays on e.g. hand held devices, such as mobile telephones. A touch panel that is overlaid on or integrated in a display is also denoted a “touch screen”. Many other applications are known in the art.
To an increasing extent, touch systems are designed to be able to detect two or more touches simultaneously, this capability often being referred to as “multi-touch” in the art.
There are numerous known techniques for providing multi-touch sensitivity, e.g. by using cameras to capture light scattered off the point(s) of touch on a touch panel, or by incorporating resistive wire grids, capacitive sensors, strain gauges, etc into a touch panel.
WO2011/028169 and WO2011/049512 disclose multi-touch systems that are based on frustrated total internal reflection (FTIR). Light sheets are coupled into a panel to propagate inside the panel by total internal reflection (TIR). When an object comes into contact with a touch surface of the panel, the propagating light is attenuated at the point of touch. The transmitted light is measured at a plurality of outcoupling points by one or more light sensors. The signals from the light sensors are processed for input into an image reconstruction algorithm that generates a 2D representation of interaction across the touch surface. This enables repeated determination of current position/size/shape of touches in the 2D representation while one or more users interact with the touch surface. Examples of such touch systems are found in U.S. Pat. No. 3,673,327, U.S. Pat. No. 4,254,333, U.S. Pat. No. 6,972,753, US2004/0252091, US2006/0114237, US2007/0075648, WO2009/048365, US2009/0153519, WO2010/006882, WO2010/064983, and WO2010/134865.
In touch systems in general, there is a desire to not only determine the location of the touching objects, but also to estimate the amount of force by which the touching object is applied to the touch surface. This estimated quantity is often referred to as “pressure”, although it typically is a force. The availability of force/pressure information opens up possibilities of creating more advanced user interactions with the touch screen, e.g. by enabling new gestures for touch-based control of software applications or by enabling new types of games to be played on gaming devices with touch screens.
From EP-2088501-A1 it is known to manipulate components with touch-based finger gestures that are detected with touch sensing technology or any other suitable technology. A dragging gesture is disclosed, comprising three phases: 1) touching the touch-sensitive component with a pointing device (e.g. a finger), 2) moving the pointing device while maintaining the contact with the sensing device, and 3) lifting the pointing device from the sensing device. A zooming gesture is also explained, implemented as a screwing motion or increased pressure by a finger. An increased pressure is here detected as an increased area on the screen.
From US-20110050576-A1 a pressure sensitive user interface for mobile devices is known. The mobile device may be configured to measure an amount of pressure exerted upon the touch sensitive display surface during a zoom in/out two-finger pinch touch/movement and adjust the degree of magnification accordingly. Different touch sensitive surfaces such as pressure, capacitance, or induction sensing surfaces can be used.
Examples of touch force estimation in connection to a FTIR based touch-sensing apparatus is disclosed in the Swedish application SE-1251014-5. An increased pressure is here detected by an increased contact, on a microscopic scale, between a touching object and a touch surface with increasing application force. This increased contact may lead to a better optical coupling between the transmissive panel and the touching object, causing an enhanced attenuation (frustration) of the propagating radiation at the location of the touching object.
The great capabilities of multi touch-sensing technology to fast detect a large plurality of touches and pressures, give the technical base for new and advanced gestures providing new interaction capabilities for one or several users.
The object of the invention is to provide a new gesture including pressure which enables interaction with an object presented on a GUI of a touch sensing device.
According to a first aspect, the object is at least partly achieved with a method according to the first independent claim. The method comprises: presenting a graphical interactive object via a graphical user interface, GUI, of a touch sensing device wherein the GUI is visible via a touch surface of the touch sensitive device; receiving touch input data indicating touch inputs on the touch surface, and determining from the touch input data:
With the method a user is allowed to interact with a graphical interactive object in advanced ways. For example may new games be played where a user can control the graphical interactive object directly via touch inputs to the GUI. No separate game controller is then needed, and the appearance of a touch sensing device on which the method operates can be cleaner. The game will also be more intuitive to play, as most users will understand to grab the graphical interactive object, move the fingers over the GUI to make the object follow the movement of the fingers and press on the object to make it react in a certain way. Several users may interact with different graphical interactive objects at the same time on the same GUI to together play advances games. The user experience will be greatly enhanced and more realistic than if interacting with the object via a game controller such as a game pad or joystick.
According to one embodiment, the step of processing the graphical interactive object comprising processing the graphical interactive object according to a first action when an increased pressure of the first touch input is determined, and/or processing the graphical interactive object according to a second action when an increased pressure of the second touch input is determined. According to a further embodiment, the step of processing the graphical interactive object comprises processing the graphical interactive object according to a third action when essentially simultaneous increased pressures of the first and second touch inputs are determined. By having these features, the user can still make the graphical interactive object react in several ways, even if the hand of the user already is occupied with the graphical interactive object.
According to a further embodiment, the grabbing input is determined by determining from said touch input data that the first and second positions are arranged in space and/or in time according to a certain rule or rules. For example, the first and second positions are arranged such that they coincide at least in some extent with the graphical interactive object during overlapping time periods. According to another example, the method comprises determining a line corresponding to a distance between the first and second positions wherein a grabbing input corresponds to first and second positions which during overlapping time periods are arranged such that the line coincides with said graphical interactive object. The effect of these features is that it can be determined in a plurality of ways that a user wants to interact with the graphical interactive object. The graphical interactive object might be one of a several different graphical interactive objects visible for the user via a GUI on a touch surface. It might be a purpose to have a certain gesture, thus the grabbing input, which some of the graphical interactive objects are configured to react to, but not everyone.
According to a another embodiment, the step of determining of movement of at least one of said first and second touch inputs comprising determining from said touch input data that at least one of said first and second touch inputs are arranged in space and/or in time in a manner corresponding to movement of the at least one of said first and second touch inputs. Thus, it can be determined that any of both of the first and second touch inputs are moving.
According to one embodiment, the method comprises determining a line corresponding to a distance between the first and second touch inputs and moving the interactive graphical object as a function of the line when movement of at least one of said first and second touch inputs is determined. Thus, a relationship between the first and second touch inputs can be determined such that the interactive graphical object can be moved in a natural way according to the movement of the first and second touch inputs.
According to a further embodiment, the touch input data comprises positioning data xnt, ynt and pressure data pnt. The positioning data may for example be a geometrical centre, a centre of mass, or a combination of both, of a touch input. The pressure data according to one embodiment is the total pressure, or force, of the touch input. According to another embodiment, the pressure data is a relative pressure, or force, of the touch input.
According to a second aspect, the object is at least partly achieved with a gesture interpretation unit comprising a processor configured to receive a touch signal s, comprising touch input data indicating touch inputs on a touch surface of a touch sensing device, the unit further comprises a computer readable storage medium storing instructions operable to cause the processor to perform operations comprising:
According to a third aspect, the object is at least partly achieved with a touch sensing device comprising:
According to one embodiment, the touch sensing device is an FTIR-based (Frustrated Total Internal Reflection) touch sensing device.
According to a fourth aspect, the object is at least partly achieved with a computer readable storage medium comprising computer programming instructions which, when executed on a processor, are configured to carry out the method as described herein.
Any of the above-identified embodiments of the method may be adapted and implemented as an embodiment of the second, third and/or fourth aspects.
Preferred embodiments are set forth in the dependent claims and in the detailed description.
Below the invention will be described in detail with reference to the appended figures, of which:
The touch surface 14 may be part of a touch sensitive display, a touch sensitive screen or a light transmissive panel 23 (
The touch surface 14 receives touch inputs from one or several users. The touch arrangement 2, the touch surface 14 and the touch control unit 15 together with any necessary hardware and software, depending on the touch technology used, detect the touch inputs. The touch arrangement 2, the touch surface 14 and touch control unit 15 may also detect touch input including movement of the touch inputs using any of a plurality of known touch sensing technologies capable of detecting simultaneous contacts with the touch surface 14. Such technologies include capacitive, resistive, infrared, and surface acoustic wave technologies. An example of a touch technology which uses light propagating inside a panel will be explained in connection with
The touch arrangement 2 is configured to generate and send the touch inputs as one or several signals sy to the touch control unit 15. The touch control unit 15 is configured to receive the one or several signals sy and comprises software and hardware to analyse the received signals sy, and to determine touch input data including sets of positions xnt, ynt with associated pressure Pt on the touch surface 14 by processing the signals sy. Each set of touch input data xnt, ynt, pnt may also include identification, an ID, identifying to which touch input the data pertain. Here “n” denotes the identity of the touch input. If the touch input is still or moved over the touch surface 14, without losing contact with it, a plurality of touch input data xnt, ynt, Pnt with the same ID will be determined. If the touch input is taken away from the touch surface 14, there will be no more touch input data with this ID. Touch input data from a touch inputs 4, 7 may also comprise an area ant of the touch. A position xnt, ynt referred to herein is then a centre of the area ant. A position may also be referred to as a location. The touch control unit 15 is further configured to generate one or several touch signals s, comprising the touch input data, and to send the touch signals s, to a processor 12 in the gesture interpretation unit 13. The processor 12 may e.g. be a computer programmable unit (CPU). The gesture interpretation unit 13 comprises a computer readable storage medium 11, which may include a volatile memory such as high speed random access memory (RAM-memory) and/or a non-volatile memory such as a flash memory.
The computer readable storage medium 11 comprises a touch module 16 (or set of instructions), and a graphics module 17 (or set of instructions). The computer readable storage medium 11 comprises computer programming instructions which, when executed on the processor 12, are configured to carry out the method according to any of the steps described herein. These instructions can be seen as divided between the modules 16, 17. The computer readable storage medium 11 may also store received touch input data comprising positions xnt, ynt on the touch surface 14, pressures Pt of the touch inputs, and their IDs, respectively. The touch module 16 includes instructions to determine from the touch input data if the touch inputs have certain characteristics, such as being in a predetermined relation to a graphical interactive object 1, and/or if one or several of the touch inputs are moving, and/or if continuous contact with the touch surface 14 is maintained or is stopped, and/or the pressure of the one or several touch inputs. The touch module 16 thus keeps track of the touch inputs. Determining movement of a touch input may include determining a speed (magnitude), velocity (magnitude and direction) and/or acceleration (magnitude and/or direction) of the touch input or inputs.
The graphics module 17 includes instructions for rendering and displaying graphics via the GUI. The graphics module 17 controls the position, movements, and actions etc. of the graphics. More specifically, the graphics module 17 includes instructions for displaying at least one graphical interactive object 1 (
The gesture interpretation unit 13 may thus be incorporated in any known touch sensing device 3 with a touch surface 14, wherein the device 3 is capable of presenting the graphical interactive object 1 via a GUI visible on the touch surface 14, detect touch inputs on the touch surface 14 and to generate and deliver touch input data to the processor 12. The gesture interpretation unit 13 is then incorporated into the device 3 such that it can process the graphical interactive object 1 in predetermined ways when certain touch data has been determined.
At first, the graphical interactive object 1 is presented via the GUI of the touch sensing device 3 (A1). The graphical interactive object 1 may be a graphical interactive object 1 in a game, e.g. an aeroplane, a car, an animated person etc. The user may now initiate interaction with the graphical interactive object 1 by making certain touch inputs on the touch surface 14. If the touch inputs correspond to a grabbing input, the user may further interact with the graphical interactive object 1 as long as continuous contact with the touch surface 14 is maintained. For making a grabbing input, the user makes a first touch input 4 on the touch surface 14 with a first object 5 (A2). The first touch input 4 to the touch surface 14 can then be determined, including the position x1t, y1t of the first object 5 on the touch surface 14(A3). The user now makes a second touch input 7 to the touch surface 14 with a second object 8 (A4). The second touch input to the touch surface 14 can then be determined, including the position x2t, y2t of the second object 8 on the touch surface 14 (A5). Thereafter it is determined if the first and second touch inputs 4, 7 corresponds to a grabbing input (A6). A grabbing input grabbing the graphical interactive object 1 corresponds to touch input data arranged in space and/or in time according to a certain rule or rules. To qualify for a grabbing input according to a first embodiment, the first object 5 and the second object 8 have to be present on the touch surface 14 during overlapping time periods. Overlapping time periods can be determined by comparing timing of the determined position x1t, y1t of the first object 5 and the position x2t, y2t of the second object 8. To qualify for a grabbing input according to a second embodiment, the positions x1t, y1t of the first object 5 and the position x2t, y2t of the second object 8 are arranged such that they coincide at least in some extent with the graphical interactive object 1 during overlapping time periods, thus, coincides with the location or position of the graphical interactive object 1. According to a third embodiment, the method comprises determining a line corresponding to a distance between the positions x1t, y1t of the first object 5 and the position x2t, y2t of the second object 8. This line is further illustrated in
If the first and second touch inputs 4, 7 do not correspond to a grabbing input, the method returns to determining a first and/or a second 4, 7 touch input. Depending on if one or both of the first and second objects 5, 8 has stopped touching the touch surface 14, or if none of the touch inputs 4, 7 are close to qualify for a grabbing input, the method returns to step A3 or A5.
The first and second touch inputs 4, 7 are illustrated in the flowchart as occurring in a specific order, but these touch inputs 4, 7 may appear in opposite order and/or simultaneously. The first and second touch inputs 4, 7 may thus also be determined in an opposite order and/or simultaneously.
If a grabbing input has been determined and while continuous contact of the first and second objects 4, 7 with the touch surface 14 is maintained (A7), the method continues as illustrated in the flowchart in
Further, the method determines from the touch input data if an increased pressure compared to a threshold of at least one of the first and second touch inputs 4, 7 has occurred (A10) while continuous contact of the first and second objects 5, 8 with the touch surface 14 is maintained. If an increased pressure has occurred, the graphical interactive object 1 is processed in response to the determined increased pressure (A11).
Thus, if the user increases the pressure of at least one of the first and second touch inputs 5, 8, the graphical interactive object 1 will react in response to the increased pressure or pressures. The increased pressure is determined by comparing pressure data pnt for a touch input with a threshold. The threshold may be different for the different touch inputs 5, 8. A pressure is in most cases related to a touch input, thus, the increased pressure will be a relative increase in pressure compared to a previous pressure value, or may be an increase in pressure compared to a function of a plurality of previous pressure values. Other statistical methods using previous pressure values may be used to determine if a pressure increase has occurred. Generally, a pressure increase may be determined using one of a plurality of known methods for determining an increase of a value based on a previous time series of the value. The pressure increase is according to a further embodiment an absolute increase and is determined compared to a pre-set pressure value. Thus, the threshold may be a previous pressure value, a function of a plurality of previous pressure values, a pre-set pressure value; or the threshold may be in any other ways statistically determined. As will later be explained, the herein mentioned pressure values may instead be force values. An increased pressure is thus determined and in response the graphical interactive object 1 is processed. The user may increase the pressure of at least one of the first and second touch objects 5, 8 several times and the graphical interactive object 1 will then be processed accordingly. For example, the graphical interactive object 1 may react several times, or may react in a certain manner after a certain number of subsequent pressure increases within a pre-set time.
According to one embodiment, the graphical interactive object 1 is processed according to a first action when an increased pressure of the first touch input 4 is determined. According to a further embodiment, the graphical interactive object 1 is processed according to a second action when an increased pressure of the second touch input 7 is determined. According to a still further embodiment, the graphical interactive object 1 is processed according to a third action when essentially simultaneous increased pressures of the first and second touch inputs 4, 7 are determined. An action may include making a state change of the graphical interactive object 1 such as making the graphical interactive object 1 start firing, placing a bomb or change colour, or making a certain movement of the graphical interactive object 1, such as moving to a certain “home”-place on the touch surface 14 or GUI.
The method continues to determine if movement of any or both of the first and second touch inputs 4, 7 has occurred (A8), and if a pressure increase of any or both of the first and second touch inputs has occurred (A10), and so on. Thus, the two branches of the flowchart in
According to one embodiment, for processing the graphical interactive object 1, it is a prerequisite that movement of the first and second touch inputs has halted. Thus, a user may move the graphical interactive object 1, halt the movement, and press to for example fire. The action may then be another action than the previous actions.
In the text and figures it is referred to only one graphical interactive object 1, but it is understood that a plurality of independent graphical interactive objects 1 may be displayed via the GUI at the same time and that one or several users may interact with the different graphical interactive objects 1 independently of each other as explained herein.
The graphical interactive object 1 may also include indicators such as flashing circles to indicate for the user where to place his fingers to qualify for a grabbing input. The processor 12 may then be configured to match the positions of the circles and the positions of the touch input data to determine if a grabbing input has occurred.
In
As explained before, the invention can be used together with several kinds of touch technologies. One kind of touch technology based on FTIR will now be explained. The touch technology can advantageously be used together with the invention to deliver touch input data Xnt, ynt, pnt, to the processor 12 of the gesture interpretation unit 13.
In
As shown in the
The location of the touching objects 21, 22 may be determined by measuring the energy of light transmitted through the panel 15 on a plurality of detection lines. This may be done by e.g. operating a number of spaced apart light emitters 19 to generate a corresponding number of light sheets into the panel 25, and by operating the light detectors 20 to detect the energy of the transmitted energy of each light sheet. The operating of the light emitters 19 and light detectors 20 may be controlled by a touch processor 26. The touch processor 26 is configured to process the signals from the light detectors 20 to extract data related to the touching object or objects 21, 22. The touch processor 26 is part of the touch control unit 15 as indicated in the figures. A memory unit (not shown) is connected to the touch processor 26 for storing processing instructions which, when executed by the touch processor 26, performs any of the operations of the described method.
The light detection arrangement may according to one embodiment comprise one or several beam scanners, where the beam scanner is arranged and controlled to direct a propagating beam towards the light detector(s).
As indicated in
The detectors 20 collectively provide an output signal, which is received and sampled by the touch processor 26. The output signal contains a number of sub-signals, also denoted “projection signals”, each representing the energy of light emitted by a certain light emitter 19 and received by a certain light sensor 20. Depending on implementation, the processor 12 may need to process the output signal for separation of the individual projection signals. As will be explained below, the processor 12 may be configured to process the projection signals so as to determine a distribution of attenuation values (for simplicity, referred to as an “attenuation pattern”) across the touch surface 14, where each attenuation value represents a local attenuation of light.
Each frame starts by a data collection step B1, in which measurement values are obtained from the light detectors 20 in the FTIR system, typically by sampling a value from each of the aforementioned projection signals. The data collection step B1 results in one projection value for each detection line. It may be noted that the data may, but need not, be collected for all available detection lines in the FTIR system. The data collection step B1 may also include pre-processing of the measurement values, e.g. filtering for noise reduction.
In a reconstruction step B2, the projection values are processed for generation of an attenuation pattern. Step B2 may involve converting the projection values into input values in a predefined format, operating a dedicated reconstruction function on the input values for generating an attenuation pattern, and possibly processing the attenuation pattern to suppress the influence of contamination on the touch surface (fingerprints, etc.).
In a peak detection step B3, the attenuation pattern is then processed for detection of peaks, e.g. using any known technique. In one embodiment, a global or local threshold is first applied to the attenuation pattern, to suppress noise. Any areas with attenuation values that fall above the threshold may be further processed to find local maxima. The identified maxima may be further processed for determination of a touch shape and a center position, e.g. by fitting a two-dimensional second-order polynomial or a Gaussian bell shape to the attenuation values, or by finding the ellipse of inertia of the attenuation values. There are also numerous other techniques as is well known in the art, such as clustering algorithms, edge detection algorithms, standard blob detection, water shedding techniques, flood fill techniques, etc. Step B3 results in a collection of peak data, which may include values of position, attenuation, size, and shape for each detected peak. The attenuation may be given by a maximum attenuation value or a weighted sum of attenuation values within the peak shape.
In a matching step B4, the detected peaks are matched to existing traces, i.e. traces that were deemed to exist in the immediately preceding frame. A trace represents the trajectory for an individual touching object on the touch surface as a function of time. As used herein, a “trace” is information about the temporal history of an interaction. An “interaction” occurs when the touch object affects a parameter measured by a sensor. Touches from an interaction detected in a sequence of frames, i.e. at different points in time, are collected into a trace. Each trace may be associated with plural trace parameters, such as a global age, an attenuation, a location, a size, a location history, a speed, etc. The “global age” of a trace indicates how long the trace has existed, and may be given as a number of frames, the frame number of the earliest touch in the trace, a time period, etc. The attenuation, the location, and the size of the trace are given by the attenuation, location and size, respectively, of the most recent touch in the trace. The “location history” denotes at least part of the spatial extension of the trace across the touch surface, e.g. given as the locations of the latest few touches in the trace, or the locations of all touches in the trace, a curve approximating the shape of the trace, or a Kalman filter. The “speed” may be given as a velocity value or as a distance (which is implicitly related to a given time period). Any known technique for estimating the tangential speed of the trace may be used, taking any selection of recent locations into account. In yet another alternative, the “speed” may be given by the reciprocal of the time spent by the trace within a given region which is defined in relation to the trace in the attenuation pattern. The region may have a pre-defined extent or be measured in the attenuation pattern, e.g. given by the extent of the peak in the attenuation pattern.
The matching step B4 may be based on well-known principles and will not be described in detail. For example, step B4 may operate to predict the most likely values of certain trace parameters (location, and possibly size and shape) for all existing traces and then match the predicted values of the trace parameters against corresponding parameter values in the peak data produced in the peak detection step B3. The prediction may be omitted. Step B4 results in “trace data”, which is an updated record of existing traces, in which the trace parameter values of existing traces are updated based on the peak data. It is realized that the updating also includes deleting traces deemed not to exist (caused by an object being lifted from the touch surface 14, “touch up”), and adding new traces (caused by an object being put down on the touch surface 14, “touch down”).
Following step B4, the process returns to step B1. It is to be understood that one or more of steps B1-B4 may be effected concurrently. For example, the data collection step B1 of a subsequent frame may be initiated concurrently with any one of the steps B2-B4.
The result of the method steps B1-B4 is trace data, which includes data such as positions (xnt, ynt) for each trace. This data has previously been referred to as touch input data.
The current attenuation of the respective trace can be used for estimating the current application force for the trace, i.e. the force by which the user presses the corresponding touching object against the touch surface. The estimated quantity is often referred to as a “pressure”, although it typically is a force. The process is described in more detail in the above-mentioned application No. 1251014-5. It should be recalled that the current attenuation of a trace is given by the attenuation value that is determined by step B2 (
According to one embodiment, a time series of estimated force values is generated that represent relative changes in application force over time for the respective trace. Thereby, the estimated force values may be processed to detect that a user intentionally increases or decreases the application force during a trace, or that a user intentionally increases or decreases the application force of one trace in relation to another trace.
Thus, each trace now also has force values, thus, the trace data includes positions (xnt, ynt) and forces (also referred to as pressure) (pnt) for each trace. These data can be used as touch input data to the gesture interpretation unit 13 (
The present invention is not limited to the above-described preferred embodiments. Various alternatives, modifications and equivalents may be used.
Therefore, the above embodiments should not be taken as limiting the scope of the invention, which is defined by the appending claims.
This application claims priority under 35 U.S.C. §119 to U.S. application No. 61/765,166 filed on Feb. 15, 2013, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
61765166 | Feb 2013 | US |