The present invention is related to U.S. patent application Ser. No. 12/833,817, filed Jul. 9, 2010, U.S. patent application Ser. No. 12/833,836, filed Jul. 9, 2010, and U.S. patent application Ser. No. 12/833,845, filed Jul. 9, 2010, the disclosures of which are herein incorporated by this reference in its entirety.
1. Field of the Invention
The invention relates, in general, to the field of radio frequency identification (RFID) systems. More particularly, the invention relates in part to an RFID transponder incorporating FRAM memory. The invention also relates to a modified serial interface that has utility within and beyond RFID applications.
2. Discussion of the Related Art
As is well known in the art, a basic RFID system includes three components: an antenna or coil; a transceiver with decoder, i.e., RFID reader; and a transponder, i.e., RFID tag, programmed with unique information.
RFID tags are categorized as either active or passive. Active RFID tags are powered by an internal battery and are typically read/write, i.e., tag data can be rewritten and/or modified. Passive RFID tags operate without a separate external power source and obtain operating power generated from the reader.
An example of a typical passive RFID tag is shown in
While EEPROM memory has served in passive RFID tag applications to date, the demands for greater data throughput into and out of the RFID are increasing. This can be seen for example in factory environments, and in collecting highway tolls. The EEPROM based passive RFID tags, are slow and may not be suited for the higher throughput applications. Alternative, faster memories technologies such as FRAM (“Ferroelectric Random Access Memory”) memory exist that are ideally suited for these new higher speed RFID applications. However, the entire protocol associated with transferring data input and out of the RFID tag is, generally speaking, EEPROM-related. To take advantage of alternative memory technologies, such as FRAM memory, what is desired are extensions to the existing data protocol that is optimized for operating a passive RFID tag incorporating FRAM memory.
The EPC Global Generation 2 standard includes a published method of doing Block Writes to memory. This method is inefficient when considering the capability of faster memory technologies, such as FRAM memory.
Accordingly, the present invention is directed to an interrupt controller circuit for an RFID application that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
According to the present invention, a memory circuit includes a memory, a memory access control circuit coupled to the memory, an RFID interface coupled to the memory access control circuit, a secondary interface coupled to the memory access control circuit, and an interrupt manager coupled to the memory access control circuit, the RFID interface, and the secondary interface.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
In the drawings:
Referring now to
Referring now to
The serial interface is typically coupled to a microprocessor 312, which is in communication with various control inputs associated with the RFID application 300. A typical application 300 could be a metering application, or a control application for a factory. The RFID integrated circuit 314 in a typical embedded application would be interrogated from time to time with a handheld reader (not shown in
Referring now to
Referring now to
In
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
One possible use of increased user memory space on an RFID device is to store a pedigree or other sequential set of tracking information. One way to store this information in the prior art might be to read the device memory until a vacant location is found. This is clearly inefficient. Memory storage could be better managed if the RFID system had a known location to use as an address pointer. Then, the RFID system could read the known location to determine the next available memory location. Still, this requires multiple memory accesses and multiple RFID command/response rounds. This slows throughput on, for example, an assembly line.
A first memory storage technique 1300 according to the prior art is shown in the flow chart of
A second memory storage technique 1400 according to the prior art is shown in the flow chart of
According to the present invention, a memory pointer is located at a fixed read/writeable memory location. The user determines the range of his pedigree buffer and initializes the memory pointer to the lowest value in that range. A second memory location serves as the trigger address for the indirect write. When a user wants to write to the next location in the pedigree buffer, that write data is directed to the trigger address instead, and the controller will automatically write to the location pointed to by the memory pointer. When that write is complete, the controller increments the memory pointer to the next available location. Also, the controller will manage the behavior of subsequent memory accesses by interpreting the two associated control bits. These can operationally allow the pedigree buffer to automatically wrap back to the beginning for a case where much data is expected, but only the most recent records are necessary, or can be used to lock the data in locations below the pointer so that they cannot be overwritten by another operation, including a direct write to the memory.
A portion of a memory 1200 using the pointer according to the present invention is shown in
While the following description of the present invention is in reference to the Gen 2 EPC (Generation 2 Electronic Product Code) protocol, it is apparent to those skilled in the art that the present invention may be easily extended to include other RFID protocols as well. A block diagram 1100 of a state machine, memory, and associated circuitry for carrying out the pointer method of the present invention is shown in
The state machine 1102 shown in
The method 1500 for operating the memory pointer circuit shown in
The command structure 1600 of the EPC Global BlockWrite command is shown. The timing sequence of the command is indicated in the bit fields as shown in
For EEPROM or Flash memory technologies, BlockWrites are difficult given the slow write times of those technologies. They further require the use of an internal buffer to save all of the data prior to checking the message CRC.
A traditional BlockWrite method according to the prior art is shown in
The method of the present invention includes several improvements. First, by using a stored address pointer, the address is always known. Second, since the user can point the starting address at a known safe block, there is no need for an intermediate buffer as in the prior art. The data can be written to the safe area, and the CRC computed as is normally done. If it matches, the data is retained and the address pointer is updated. If it does not, the address pointer is kept and the write can be repeated. The main advantage of the invention, however, is that using it (in conjunction with FRAM or other high speed nonvolatile memory) enables writes to be performed “on-the-fly” and without excessive area penalty, even though the EPC global protocol for Block Writes does not adequately support arbitrarily long, verified writes.
The BlockWrite method of the present invention is shown in a flow chart 1800 of
RFID devices with secondary interfaces such as the embedded application shown in
The method of the present invention allows a simple, effective means of memory access control for an RFID circuit having two primary access ports as shown in
According to the present invention, an RFID reader initiates an interrupt by writing data to two known addresses in the available memory space. The order is not important, but the data from the two writes must satisfy some relationship. In the first implementation, the two 16-bit words must XOR to a hexadecimal value of 0x1234. Also, the data is only transferred for comparison at the first write to each location after a reset. A reset will also occur at the end of the process as well as at power-on.
If the data does satisfy this condition, a rising edge interrupt is sent out via the serial port chip select. This pin is generally an input, but for this purpose is an output. The external controller will sense this rising edge (or high level) as an interrupt. The proper response is to issue two full clock cycles on the serial port clock pin. This will acknowledge the interrupt and cause the RFID device to release the full serial interface port for subsequent access. At the same time, it will disable the RF interface from being able to attempt a memory access.
When the external serial controller is finished with its transactions, it sends a specific op code or command which the RFID device recognizes as the end of the serial controller's access session. The serial bus is reconfigured to an inert state, so that the serial controller can no longer control it, and the RFID device resumes its normal activity. The interrupt controller will be reset to allow an additional interchange if desired.
Referring now to
Referring now to
Referring now to
Flow chart 2002 again describes the operations pertaining to the RFID tag or integrated circuit. At step 2044 the interrupt is cleared, and at step 2046 RFID reception is again enabled.
The memory access control system of the present invention does not have a sophisticated means of coordinating access to the memory between the two different interfaces. Instead, the RFID side is chosen to be the master, which controls all accesses. In the present invention, the secondary serial interface is told when it can access the memory by the RFID master.
The interrupt method of the present invention is used to wake up the external device which communicates via the serial interface. An acknowledge sequence is used to assure reception of the interrupt and lock out the RFID while the serial interface is in control of the memory. This prevents a case where the RFID alone sets the interrupt condition, but the serial interface never responds, and the RFID is forever locked out. Instead, the lockout is under control of the serial interface, and ensures that there cannot be a case where the two interfaces fight for access to the memory. When the serial interface is finished, an Interrupt End op-code is used to re-allow the RFID to have access to the memory as well as blocking further serial access until the next interrupt cycle.
The memory access control block is essentially a set of multiplexers. The RFID and the Serial interfaces both provide Address, Data and Select controls. Normally, the multiplexers steer the RFID controls to the memory. During an interrupt session, the multiplexers are uniformly switched to the Serial controls and the RFID controls are blocked. If the memory is in the middle of an access cycle, there is a feedback mechanism from the FRAM memory which does not allow this switch to occur before the access is complete.
The second advantage of this method according to the present invention is that it allows the RFID to communicate directly with the serial interface at the time of its choosing in a closed loop. That is, since it controls the interrupt, it can initiate the activity of the serial interface. Without an interrupt, the serial interface would interact with the memory on its own cadence, and the RFID interface would have to continually check the status.
It will be apparent to those skilled in the art that various modifications and variation can be made in the present invention without departing from the spirit or scope of the invention. As would be apparent to those skilled in the art equivalent embodiments of the present invention can be realized in firmware, software, or hardware, or any possible combination thereof In addition, although representative block diagrams are shown for an aid in understanding the invention, the exact boundaries of the blocks may be changed and combined or separated out as desired for a particular application or implementation. Finally, although FRAM memory is described and claimed, the present invention is also applicable to any other high speed non-volatile memory technology. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3184660 | Preston | May 1965 | A |
3569802 | Brauer et al. | Mar 1971 | A |
3579063 | Wasa et al. | May 1971 | A |
3819990 | Hayashi et al. | Jun 1974 | A |
4141022 | Sigg et al. | Feb 1979 | A |
4149301 | Cook | Apr 1979 | A |
4149302 | Cook | Apr 1979 | A |
4636908 | Yoshihara et al. | Jan 1987 | A |
4675715 | Lepselter et al. | Jun 1987 | A |
4700457 | Matsukawa | Oct 1987 | A |
4707897 | Rohrer et al. | Nov 1987 | A |
4757028 | Kondoh et al. | Jul 1988 | A |
4759823 | Asselanis et al. | Jul 1988 | A |
4809225 | Dimmler et al. | Feb 1989 | A |
4811078 | Tigelaar et al. | Mar 1989 | A |
4851895 | Green et al. | Jul 1989 | A |
4853893 | Eaton et al. | Aug 1989 | A |
4860254 | Pott et al. | Aug 1989 | A |
4873644 | Fujii et al. | Oct 1989 | A |
4873664 | Eaton | Oct 1989 | A |
4888733 | Mobley | Dec 1989 | A |
4893272 | Eaton et al. | Jan 1990 | A |
4910708 | Eaton et al. | Mar 1990 | A |
4914627 | Eaton et al. | Apr 1990 | A |
4918654 | Eaton et al. | Apr 1990 | A |
4937650 | Shinriki et al. | Jun 1990 | A |
4959745 | Suguro | Sep 1990 | A |
4982309 | Shepherd | Jan 1991 | A |
5003428 | Shepherd | Mar 1991 | A |
5005102 | Larson | Apr 1991 | A |
5024964 | Rohrer et al. | Jun 1991 | A |
5031144 | Persky | Jul 1991 | A |
5036382 | Yamaha | Jul 1991 | A |
5040046 | Chhabra et al. | Aug 1991 | A |
5043049 | Takenaka | Aug 1991 | A |
5046043 | Miller et al. | Sep 1991 | A |
5070036 | Stevens | Dec 1991 | A |
5099305 | Takenaka | Mar 1992 | A |
5119154 | Gnadinger | Jun 1992 | A |
5122477 | Wolters et al. | Jun 1992 | A |
5124014 | Foo et al. | Jun 1992 | A |
5139971 | Giridhar et al. | Aug 1992 | A |
5142437 | Kammerdiner et al. | Aug 1992 | A |
5146299 | Lampe et al. | Sep 1992 | A |
5155573 | Abe et al. | Oct 1992 | A |
5170242 | Stevens et al. | Dec 1992 | A |
5189503 | Suguro et al. | Feb 1993 | A |
5191510 | Huffman | Mar 1993 | A |
5192704 | Mcdavid et al. | Mar 1993 | A |
5206788 | Larson et al. | Apr 1993 | A |
5212620 | Evans, Jr. et al. | May 1993 | A |
5216572 | Larson et al. | Jun 1993 | A |
5227855 | Momose | Jul 1993 | A |
5229309 | Kato | Jul 1993 | A |
5231058 | Maeda et al. | Jul 1993 | A |
5266355 | Wernberg et al. | Nov 1993 | A |
5271955 | Maniar | Dec 1993 | A |
5273927 | Gnadinger | Dec 1993 | A |
5286681 | Maeda et al. | Feb 1994 | A |
5293075 | Onishi et al. | Mar 1994 | A |
5293510 | Takenaka | Mar 1994 | A |
5303186 | Yamauchi | Apr 1994 | A |
5307305 | Takasu | Apr 1994 | A |
5319246 | Nagamine et al. | Jun 1994 | A |
5334554 | Lin et al. | Aug 1994 | A |
5335138 | Sandhu et al. | Aug 1994 | A |
5350705 | Brassington et al. | Sep 1994 | A |
5371700 | Hamada | Dec 1994 | A |
5375085 | Gnade et al. | Dec 1994 | A |
5376590 | Machida et al. | Dec 1994 | A |
5381364 | Chern et al. | Jan 1995 | A |
5382817 | Kashihara et al. | Jan 1995 | A |
5383150 | Nakamura et al. | Jan 1995 | A |
5390143 | Manning | Feb 1995 | A |
5395095 | Marino et al. | Mar 1995 | A |
5396095 | Wolters et al. | Mar 1995 | A |
5397446 | Ishihara et al. | Mar 1995 | A |
5400275 | Abe et al. | Mar 1995 | A |
5416735 | Onishi et al. | May 1995 | A |
5416736 | Kosa et al. | May 1995 | A |
5438023 | Argos, Jr. et al. | Aug 1995 | A |
5440173 | Evans, Jr. et al. | Aug 1995 | A |
5459353 | Kanazawa | Oct 1995 | A |
5466629 | Mihara et al. | Nov 1995 | A |
5479316 | Smrtic et al. | Dec 1995 | A |
5481490 | Watanabe et al. | Jan 1996 | A |
5495117 | Larson | Feb 1996 | A |
5495439 | Morihara | Feb 1996 | A |
5502321 | Matsushita | Mar 1996 | A |
5506748 | Hoshiba | Apr 1996 | A |
5523595 | Takenaka et al. | Jun 1996 | A |
5525528 | Perino et al. | Jun 1996 | A |
5530668 | Chern et al. | Jun 1996 | A |
5532953 | Ruesch et al. | Jul 1996 | A |
5536672 | Miller et al. | Jul 1996 | A |
5554559 | Wolters et al. | Sep 1996 | A |
5559052 | Lee et al. | Sep 1996 | A |
5578867 | Argos, Jr. et al. | Nov 1996 | A |
5583068 | Jones et al. | Dec 1996 | A |
5608725 | Grube et al. | Mar 1997 | A |
5612238 | Sato et al. | Mar 1997 | A |
5621681 | Moon | Apr 1997 | A |
5624864 | Arita et al. | Apr 1997 | A |
5638319 | Onishi et al. | Jun 1997 | A |
5679969 | Evans, Jr. et al. | Oct 1997 | A |
5696394 | Jones et al. | Dec 1997 | A |
5716875 | Jones, Jr. et al. | Feb 1998 | A |
5731608 | Hsu et al. | Mar 1998 | A |
5750419 | Zafar | May 1998 | A |
5789303 | Leung et al. | Aug 1998 | A |
5801415 | Lee et al. | Sep 1998 | A |
5804850 | Evans, Jr. et al. | Sep 1998 | A |
5838605 | Bailey | Nov 1998 | A |
5851844 | Ooms et al. | Dec 1998 | A |
5858851 | Yamagata et al. | Jan 1999 | A |
5866926 | Takenaka | Feb 1999 | A |
5890199 | Downs | Mar 1999 | A |
5902131 | Argos et al. | May 1999 | A |
5909624 | Yeager et al. | Jun 1999 | A |
5953619 | Miyazawa et al. | Sep 1999 | A |
5960252 | Matsuki et al. | Sep 1999 | A |
5960279 | Chen et al. | Sep 1999 | A |
5963466 | Evans, Jr. | Oct 1999 | A |
5985713 | Bailey | Nov 1999 | A |
6010927 | Jones, Jr. et al. | Jan 2000 | A |
6010969 | Vaartstra | Jan 2000 | A |
6020233 | Kim | Feb 2000 | A |
6051858 | Uchida et al. | Apr 2000 | A |
6097622 | Shimizu et al. | Aug 2000 | A |
6140173 | Wolters et al. | Oct 2000 | A |
6172386 | Jung et al. | Jan 2001 | B1 |
6218197 | Kasai | Apr 2001 | B1 |
6281023 | Eastep et al. | Aug 2001 | B2 |
6281534 | Arita et al. | Aug 2001 | B1 |
6498741 | Matsudera et al. | Dec 2002 | B2 |
6901494 | Zumkehr et al. | May 2005 | B2 |
7405660 | Diorio et al. | Jul 2008 | B2 |
7475273 | Gredone et al. | Jan 2009 | B2 |
7484662 | Schmidtberg et al. | Feb 2009 | B2 |
7538678 | Jung et al. | May 2009 | B2 |
7652637 | Taki et al. | Jan 2010 | B2 |
7661010 | DeFazio et al. | Feb 2010 | B2 |
7742348 | Schuessler | Jun 2010 | B2 |
20050088285 | Jei | Apr 2005 | A1 |
20080143487 | Hulvey | Jun 2008 | A1 |
20090276089 | Bartholomew | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
4107165 | Oct 1991 | DE |
448151 | Sep 1991 | EP |
0469934 | Feb 1992 | EP |
0485086 | May 1992 | EP |
0513894 | Nov 1992 | EP |
0642167 | Mar 1995 | EP |
0917204 | May 1999 | EP |
5748247 | Mar 1982 | JP |
59110122 | Jun 1984 | JP |
2183570 | Jul 1990 | JP |
2186669 | Jul 1990 | JP |
0208978 | Aug 1990 | JP |
2232973 | Sep 1990 | JP |
2288367 | Nov 1990 | JP |
08335673 | Dec 1996 | JP |
09162369 | Jun 1997 | JP |
Entry |
---|
“Use of Conducting Oxides As A Diffusion Barrier in Shallow Junction Semiconductor Devices,” IBM Technical Disclosure Bulletin, vol. 30, No. 8, Jan. 1988, pp. 436-437. |
C. Ting, “New Sturcture for Contact Metallurgy,” IBM Technical Disclosure Bulleting, vol. 25, No. 12, Mar. 1983, pp. 6698-6399. |
Chapman, S.P., et al., “Tuning PZT DO Fabrication Processes by Optimizing Imprint”, abstract, Ninth International Symposium on Integrated Ferroelectrics, Santa Fe, New Mexico, Mar. 3, 1997. |
Chin-An Chang, Deposition of (100) Au., Ag, Pt, Pb and Fe on (100) Si Using Differential Metal Seed Layers, J. Vac. Sci. Technol. A, vol. 9, No. 1, Jan./Feb. 1991. |
In Seon Park, et al., “Ultra-thin EBL (Encapsulated Barrier Layer) for Ferroelectric Capacitor,” IEEE, 1997, pp. 25.6.1-25.6.4. |
J. Kudo, et al., “A High Stability Electrode Technology for Stacked SrBi2Ta2O9 Capacitors Applicable to Advanced Ferroelectric Memory,” IEEE, pp. 25.4, 1-25.4.4, 1997. |
J. Scott, “Ferroelectric Memory Applications,” IEEE 1989 Ultrasonics Symposium, Oct. 3, 1989. |
Kim, D., et al., “Effects of Substrate Modification on the Growth and Characteristics of MOCVD PZT”, pp. 67-79, Ninth International Symposium on Integrated Ferroelectrics, Santa Fe, New Mexico, Mar. 3, 1997. |
Kim, D., et al., “MOCVD Grown and Characterization of PZT Thin Films”, abstract, Ninth International Symposium on Integrated Ferroelectrics, Santa Fe, New Mexico, Mar. 1997. |
S.F. Vogel and I.C. Barlow, “Sputtered Plantinum as Substrate for Ferroelectric Film Deposition,” J. Vac. Sci. Technol., vol. 10, No. 5, Sep./Oct. 1973. |
IBM Technical Disclosure Bulletin, “Low Charging Conformal Phosphorous Silicon Glass Passivation Process,” Jun. 6, 1995, p. 367. |
USPTO Advisory Action for U.S. Appl. No. 07/867,238 dated Dec. 7, 1993; 12 pages. |
USPTO Advisory Action for U.S. Appl. No. 08/728,740 dated Aug. 12, 1998; 4 pages. |
USPTO Advisory Action for for U.S. Appl. No. 09/085,280 dated Aug. 29, 2000; 1 page. |
USPTO Final Rejection for U.S. Appl. No. 07/867,238 dated Sep. 29, 1993; 9 pages. |
USPTO Final Rejection for U.S. Appl. No. 08/166,796 dated Jun. 22, 1994; 10 pages. |
USPTO Final Rejection for U.S. Appl. No. 08/728,740 dated Jun. 2, 1998; 6 pages. |
USPTO Final Rejection for U.S. Appl. No. 09/085,280 dated Jun. 20, 2000; 4 pages. |
USPTO Non Final Office Action for U.S. Appl. No. 09/356,534 dated Jun. 20, 2000; 9 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 08/166,796 dated Mar. 8, 1994; 9 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 08/238,802 dated Aug. 26, 1994; 9 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 08/303,134 dated Nov. 10, 1994; 11 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 08/828,157 dated Mar. 23, 1999; 11 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 09/085,280 dated Feb. 28, 2000; 9 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 09/164,952 dated Aug. 3, 2000; 7 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 09/283,166 dated Jul. 14, 2000; 7 pages. |
USPTO Non Final Rejection for U.S. Appl. No. 09/783,496 dated May 13, 2002; 11 pages. |
USPTO Notice of Allowability for U.S. Appl. No. 09/783,496 dated May 16, 2003; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 08/238,802 dated Feb. 10, 1995; 9 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 08/303,134 dated May 16, 1995; 6 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 08/700,076 dated Feb. 1, 1999; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 08/728,740 dated Sep. 28, 1998; 3 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 08/828,157 dated Oct. 6, 1999; 4 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 09/085,280 dated Dec. 18, 2000; 6 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 09/164,952 dated Jan. 16, 2001; 6 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 09/177,392 dated Aug. 8, 2000; 8 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 09/283,166 dated Feb. 15, 2001; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 09/356,534 dated Oct. 10, 2000; 5 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 09/505,106 dated Jul. 27, 2000; 10 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 09/641,091 dated Oct. 19, 2001; 13 pages. |
USPTO Notice of Allowance for U.S. Appl. No. 09/783,496 dated Nov. 19, 2002; 10 pages. |
USPTO Restriction Requirement for U.S. Appl. No. 07/867,238 dated Jun. 11, 1993; 12 pages. |
USPTO Restriction Requirement for U.S. Appl. No. 08/700,076 dated Nov. 12, 1998; 10 pages. |
USPTO Restriction Requirement for U.S. Appl. No. 08/728,740 dated Jan. 15, 1998; 5 pages. |
USPTO Restriction Requirement for U.S. Appl. No. 08/728,740 dated Mar. 19, 1998; 7 pages. |
USPTO Restriction Requirement for U.S. Appl. No. 08/828,157 dated Jun. 22, 1999; 5 pages. |
USPTO Restriction Requirement for U.S. Appl. No. 09/164,952 dated Jul. 5, 2000; 4 pages. |
USPTO Restriction Requirement for U.S. Appl. No. 09/177,392 dated Feb. 24, 2000; 5 pages. |
USPTO Restriction Requirement for U.S. Appl. No. 09/177,392 dated May 16, 2000; 5 pages. |
USPTO Restriction Requirement for U.S. Appl. No. 09/641,091 dated Aug. 24, 2001; 4 pages. |
Number | Date | Country | |
---|---|---|---|
20120007723 A1 | Jan 2012 | US |