The present invention generally relates to systems and methods for assisting vehicles to safely perform intersection entering operations.
Intersections between two-way highways and divided highways and minor roadways are often unsignalized, particularly in rural areas. Such unsignalized intersections are generally intersections that do not include an active gap regulating system (e.g., a stoplight) that operates to regulate gaps between vehicles traveling on the highway. Such unsignalized intersections also include thru-stop intersections that include a stop sign (or a yield sign) regulating the flow of traffic along the minor roadway, but do not include traffic regulation along the highway.
Unlike signalized intersections, unsignalized intersections do not regulate the flow of traffic along the highway (main roadway). As a result, the unsignalized intersection provides no assistance to the driver of the vehicle positioned at the intersection on the minor roadway (hereinafter “entering vehicle”) regarding whether an intersection entering operation can be safely performed. As used herein, intersection entering operations include, for example, merging into an immediate lane of the highway (i.e., making a right turn), crossing the lanes of the highway and continuing along the minor roadway, and crossing one or more of the lanes of the highway and merging into a lane of the highway (i.e., making a left turn). Accordingly, it is up to the driver of the entering vehicle to determine when a sufficient gap exists between the vehicles approaching the intersection along the main roadway for the driver to safely perform a desired intersection entering operation.
Accidents often occur at unsignalized intersections. Such accidents can be the result of factors that are not in the control of the entering vehicle's driver, such as poor visibility situations, error on the part of the driver of the approaching vehicle (i.e., driving without lights at night, speeding, etc.), or a mechanical problem with the entering vehicle, for example.
However, such accidents can also be a result of the entering vehicle's driver failing to recognize that an insufficient gap exists between the intersection and an oncoming vehicle to safely perform an intersection entering operation. For example, the entering vehicle's driver may misinterpret the lane in which an approaching vehicle is occupying, or underestimate the gap between the entering vehicle and the approaching vehicle including a speed of the approaching vehicle and a distance the approaching vehicle is from the intersection.
There is a continuing need to improve the safety of our roads including at unsignalized intersections. To that end, there exists a need to provide entering drivers with assistance in selecting and identifying an appropriate gap between the unsignalized intersection and approaching vehicles along the main roadway that would allow the driver to safely perform an intersection entering operation.
The present invention is generally directed to systems and methods for assisting a driver of an entering vehicle to safely perform an intersection entering operation. The system includes at least one vehicle sensor and a gap estimator. The vehicle sensor is configured to obtain vehicle information on vehicles approaching the intersection along a main roadway. The gap estimator is configured to estimate gap information relating to a gap between the vehicles based on the vehicle information. The gap information includes a length of the gap, a location of the gap, and a velocity of the gap.
Another aspect of the present invention is directed to a method of obtaining information for use in assisting a driver of an entering vehicle to safely enter an intersection. In the method, vehicle information is obtained on vehicles traveling toward the intersection on a main roadway. Next, gap information is estimated relating to a gap between the vehicles based on the vehicle information. The gap information includes a length of the gap, a location of the gap, and a velocity of the gap.
Other features and benefits that characterize embodiments of the present invention will be apparent upon reading the following detailed description and review of the associated drawings.
Embodiments of the present invention are generally directed to systems and methods that are designed to generate information that can be used to assist a driver of an entering vehicle to safely enter an unsignalized intersection.
Unsignalized Intersections
Examples of unsignalized intersections 100 are provided in the simplified illustration of
In the exemplary unsignalized intersection 100 of
In the exemplary unsignalized intersection 100 of
For the intersection 100 of
Overview of the Present Invention
The present invention can be used to assist the driver of the entering vehicle 106, or possibly the entering vehicle itself, to safely enter the unsignalized intersection 100 without the need for active vehicle gap regulation. Accordingly, the present invention is designed to provide the safety benefits of a regulated intersection (i.e., fewer crashes, opportunities for all drivers to enter/cross the traffic stream, etc.) while minimizing the expense of installing such systems and preventing disruption of the traffic row in the main roadway.
Intersection Assistance System
One embodiment of the present invention is directed to an intersection assistance system 130, embodiments of which are shown in
The vehicle sensors 132 are positioned upstream of the intersection 100 relative to the direction the vehicles 102 are traveling. One or more vehicle sensors 132 are used to cover a predetermined length of the main roadway 104, which depends on the expected speed of the vehicles 102 traveling along the main roadway 104 and the data processing capabilities of the system 130. Accordingly, the area of coverage provided by the vehicle sensors 132 must be larger for roadways having faster speed limits than those having slower ones.
The vehicle sensors 132, which will be discussed in greater detail below, are generally configured to track the vehicles traveling in one or more of the lanes of the main roadway 104 toward the intersection 100 and thereby obtain tracking data or vehicle information on the vehicles 102. The vehicle information or tracking data obtained by the vehicle sensors 132 can provide, or be processed to provide, a position (relative to the intersection and/or roadway) and a length of each of the vehicles 102 as they travel along the main roadway toward the intersection 100. Information on gaps located between the vehicles approaching the intersection can then be determined, as will be discussed below in greater detail.
Vehicle Sensors
For the intersection of
Alternatively, one or more vehicle sensors 132 (first vehicle sensors) are configured to obtain vehicle information on multiple lanes (such as first and second lanes 118 and 120) of the main roadway 104, as illustrated in
The vehicle sensors 132 can be point detection sensors or continuous detection sensors. Point detection sensors include inductive loops, cameras, and laser diode retro-reflective presence detectors. One problem with such point sensors is that they only provide discreet speed/location data, which makes vehicle tracking with such sensors difficult.
Continuous detectors include radar sensors and camera arrays. Continuous sensors have an advantage of allowing for the trajectory of the vehicles to be tracked rather simply in accordance with conventional methods.
Visible light and infrared cameras, while potentially useful as vehicle sensors, have drawbacks that make them less desirable than radar detectors or sensors. These drawbacks include a limited field of view and the potential inability to be used to provide fast and accurate vehicle tracking.
Accordingly, the vehicle sensors 132 preferably utilize continuous vehicle sensors in the form of a radar sensors. One radar sensor that is suitable for use as a vehicle sensor for the system 130 of the present invention is the Eaton® Vorad® EVT-300 radar sensor, which offers all-weather performance at an operating frequency of 24.5 GHz for automotive applications and is less expensive than competing sensors (e.g., Autocruise® LR radar sensor, and Delphi® ACC 3 radar sensor).
The vehicle sensor or sensors 132 can be located in various positions to obtain the desired coverage of the lane or lanes of the main roadway 104. For example, it is possible for a single vehicle sensor (radar sensor or camera) 132 to track multiple vehicles 102 and thereby provide sufficient vehicle information such that the system 130 can provide the desired assistance to a driver of an entering vehicle 106, particularly when the expected speed of the approaching vehicles 102 in the main roadway 104 is slow. However, for faster expected vehicle speeds along the main roadway 104, multiple vehicle sensors 132 can be used to provide sufficient coverage of the main roadway 104 that would allow the system 130 to produce useful and reliable intersection assistance for an entering vehicle 106.
The locations of the vehicle sensor or sensors 132 used to monitor or track vehicles approaching the intersection 100 from a given direction can vary based on the type of sensor used, the coverage area required, the topography of the land near the intersection 100, the number of sensors 132 being used, and other factors. In accordance with one embodiment of the invention, the vehicle sensors (first or second) 132 are located alongside the main roadway 104 (
Gap Estimator
The gap estimator 134 is configured to perform step 142 of the method, in which the gap estimator 134 receives the vehicle information or tracking data (signals 143) from the vehicle sensors 132 and use the vehicle information to estimate gap information relating to gaps between the vehicles 102 approaching the intersection 100. In accordance with one embodiment of the invention, the gap information includes a length of the gap (L1), a location of the gap (preferably relative to the intersection), and a velocity the gap is traveling toward the intersection.
Thus, for the exemplary intersection of
Additionally, one embodiment of the system 130 of
With regard to the intersection 100 of
Tracking Data Compensations and Fault Detection
It may be necessary to improve the vehicle information or tracking data provided by the vehicle sensors 132 to the gap estimators 134 in order to improve the accuracy and speed at which the gap estimators 134 can estimate the gap information. In accordance with one embodiment of the invention, the system 130 includes a geospatial database 152 (
For instance, the geospatial database 152 may include object data corresponding to a tree that is located adjacent to the main roadway 104, from which a precise location and properties (height, width, etc.) is obtainable. If that tree is within the range of a radar sensor based vehicle sensor 132, the vehicle information produced by the radar sensor would include the position of the tree.
In order to reduce the amount of object data contained in the geospatial database 152, some object data define boundaries of non-vehicle traveling areas in order to eliminate the need to define each of the objects contained within the non-vehicle traveling area. Thus, for example, some of the object data may correspond to a boundary of a median of the main roadway, within which no vehicles can travel, making it unnecessary to define each object (e.g., a tree, a signpost, etc.) that exists within the median. The vehicle information or tracking data obtained by the vehicle sensors 132 can then be filtered by eliminating all detected targets within the vehicle information that are located within the boundary defined by the object data.
The filtering of the vehicle information by the gap estimator 134 using the object data in the geospatial database 152 is performed by comparing the object data to the vehicle information produced by the vehicle sensors 132. Object data and detected targets defined by the vehicle information that correlate with each other (i.e., appear to correspond to the same real world objects), are eliminated or filtered out as being non-vehicle related. The gap estimator 134 then processes the remaining filtered targets of the vehicle information to estimate the gap information.
An example of a suitable geospatial database for use with the present invention is described in U.S. patent application Ser. No. 10/091,182, which is incorporated herein by reference in its entirety.
As mentioned above, the gap estimators 134 are configured to process the vehicle tracking information obtained by the vehicle sensors 132 and estimate gap information based thereon. The gap estimators 134 are preferably configured to maintain a flow balance within the coverage area (as indicated by shading) of the intersection (i.e., number of cars in=number of cars out+number of cars stopped). However, problems can arise when a vehicle is “lost” or is no longer tracked by the vehicle sensors 132. This can occur if a vehicle stops within a gap between the coverage of the vehicle sensors 132, such as gap 160 (
In accordance with one embodiment of the invention, the gap estimators 134 are configured to implement a Kalman filter-based vehicle tracker where each vehicle 102 entering the vicinity of the intersection 100, or coverage area provided by the vehicle sensors 132, is assigned a unique ID, and the location, speed, and lane of travel of the vehicle 102 are tracked for the entire time the vehicle 102 is within the confines of the coverage area. If a vehicle “disappears” from the view of the vehicle sensor or sensors 132, the vehicle's position, speed, acceleration, heading, and lane of travel are estimated by the Kalman filter-based tracker using prior vehicle trajectory data to form an estimated vehicle target. When the actual vehicle 102 “reappears” in the field of view of the vehicle sensors 132, the trajectory of the estimated vehicle target is compared to the detected vehicle 102 as provided by the vehicle sensor 132. A good correlation between the estimated vehicle target and the detected target or vehicle 102 result in the unification of the two targets, whereas poor correlation results in the assignment of a new ID to the newly detected target. This approach is conservative, as safety critical systems should be.
This Kalman filter-based vehicle tracker aspect of the gap estimator provides fault detection/fault tolerance capability to the system 130. The likely fault of the vehicle sensors 132 will be the loss of a vehicle sensor 132 due to component failure or vehicle collision. In this case, the processing of the vehicle sensor data either by the gap estimator 134 or the vehicle sensor 132 will not identify vehicle targets 102 on the main roadway 104. In the absence of this data, the vehicle tracker function of the gap estimator 134 will continue to estimate the trajectory of vehicles 102 within the field of view of the vehicle sensors 132 and when the vehicles 102 move into the field of view of an operational vehicle sensor 132, the Kalman filter will rectify the estimated vehicle target and the detected target, thereby tolerating faults. Preferably, a diagnostic algorithm runs in the background, monitoring discrepancies between vehicle sensor data (vehicle information) and the Kalman filter-based estimator. The frequent loss of data in a single vehicle sensor zone indicates a vehicle sensor fault, which, once detected, the system 130 preferably automatically reports the problem via a radio signal, an email message, etc., to have the system serviced.
Intersection State Controller
One embodiment of the system 130 of the present invention includes an intersection state controller 170 (
With the gap information 174 (position, length and velocity) of the gaps in the main roadway 104 established by the one or more gap estimators 134, the intersection state controller 170 can use the gap information to determine when each lane gap of the main roadway 104 will overlay the intersection 100. Thus, a first lane gap period defined by starting and ending times when the first lane gap 144 (
The intersection state controller 170 is further configured to compare the lane gap periods or gap overlaying periods to corresponding threshold gap periods to determine the state output 172. In general, the threshold gap periods are set based on an estimated period of time that one or more lane gaps must exist at the intersection 100, or proximate thereto, for the entering vehicle 106 to perform an intersection entering operation (i.e., merge into a lane of the roadway, cross lanes of the roadway, cross lanes of the roadway and merge into a lane of the roadway) safely.
Each threshold gap period can be a fixed period that is set based on empirical data or a variable period. The empirical data used to set the threshold gap periods generally includes the period of time required for the system 130 to determine the lane gap periods and/or gap overlaying periods, make the comparison between the lane gap periods or gap overlaying periods and the threshold gap period, and display or communicate information corresponding to the state output to the entering vehicle or the driver of the entering vehicle. Additionally, the threshold gap period must take into account a period of time required for the driver of the entering vehicle to react to the state output communication and perform the intersection entering operation.
The variance of a threshold gap period, as will be explained in greater detail below, can be based on weather conditions at the intersection 100, road conditions at the intersection 100, the type of entering vehicle 106, entering vehicle driver information, and other factors.
Additionally, the threshold gap periods can vary depending on the intersection entering operation to be performed by the driver of the entering vehicle 106. For example, a threshold gap period that is set for a lane merging operation, during which the entering vehicle 106 merges into a lane of the main roadway 104, may be longer than the threshold gap period set for a lane crossing operation.
Lane Merging
For a lane merging operation, in which the entering vehicle, such as entering vehicle 106A is positioned to merge (i.e., make a right turn) into a lane (first lane 110 of
Lane Crossing
Some intersection entering operations require the intersection state controller 170 to analyze the lane gap periods corresponding to multiple lanes of the roadway 104. For instance, when the entering vehicle (such as 106B) is positioned to cross one or more lanes of the main roadway 104 of
Lane Crossing and Merging
Another possible lane entering operation to be performed by the entering vehicle 106 is a combination of a lane crossing and a lane merging. For instance, the entering vehicle 106 may wish to cross the first lane 110 and make a left turn to merge into the second lane 112 of the main roadway 104 of
In accordance with one embodiment of the invention, a two-part threshold gap period may be implemented, in which a first threshold gap period is established for the crossing of the first lane 110 and the entering of the second lane 112, and a second threshold gap period is established to cover the completion of the merger of the entering vehicle 106 into the second lane 112. Here, the first threshold gap period is set in accordance with a period of time that is required to allow the entering vehicle 106 to safely cross the first lane 110 and enter the second lane 112, after which there is no longer a concern as to whether the first lane gap 144 still overlies the intersection 100. Subsequently, the only concern is whether the second lane gap 146 still remains at, or proximate to, the intersection 100 such that the entering vehicle 106 can safely complete a merger into that lane. Thus, the second threshold gap period is set in accordance with the estimated time period required for the entering vehicle 106 to safely complete the merger into the second lane 112.
State Output Communication
The state output 172 generated by the intersection state controller 170 is preferably communicated to the driver of the entering vehicle 106, or to the entering vehicle 106 itself, such that the state output 172 can be used to ensure that the intersection entering operation can be performed safely. In accordance with one embodiment of the invention, information regarding the state output (clear or unclear state output) is provided to the driver of the entering vehicle 106 on a display 180 located at the intersection 100, or provided to the entering vehicle 106, which in turn produces the information on a display 182 that is located within the entering vehicle 106, as shown in
Furthermore, it is envisioned that entering vehicles could be equipped to perform fully automated driving operations including intersection entering operations. The system 130 of the present invention could be used to communicate the state output 172 to such an entering vehicle 106, which in turn could perform the intersection entering operation when the state output 172 from the intersection state controller 170 indicates that it is safe to do so.
State Output Variables
The state output 172 produced by the intersection state controller 170 can also be based on information that is in addition to the gap information 174. Such additional information can include entering vehicle information, entering driver information, and/or environment information, which will be explained below in greater detail. In general, such additional information is obtained by sensors of the system 130 and is used to vary the threshold gap period or periods that are used by the intersection state controller 170 to determine the state output 172.
Entering Vehicle Sensor
In accordance with one embodiment of the invention, the system 130 includes an entering vehicle sensor (EVS) 190 that is configured to obtain information regarding the entering vehicle 106 and/or a driver of the entering vehicle 106 that can be provided to the intersection state controller 107, as indicated by signal 192, and used in the determination of the state output 172. The entering vehicle sensor 190 may comprise a plurality of sensors configured to obtain the desired information.
One embodiment of the entering vehicle sensor 190 includes one or more vehicle presence sensors (e.g., point detection sensors) for detecting the presence of an entering vehicle 106 at the intersection. Exemplary vehicle presence sensors 194 are shown in
In accordance with another embodiment of the invention, the entering vehicle sensor 190 includes sensors configured to establish a vehicle type for the entering vehicle 106. Height information for the entering vehicle can be acquired using a vertical scan of the entering vehicle 106, which is fused with a length/position information determined by a horizontal scan of the entering vehicle 106. The collected vehicle information can then be used to classify the entering vehicle 106 as belonging to one or more categories or vehicle types including a large vehicle, a small vehicle, a passenger vehicle, a semi-tractor, a utility vehicle, a tractor, a motorcycle, a motor home, and a trailer hauling vehicle. Other vehicle types can also be used.
In accordance with one embodiment of the invention, the intersection state controller 170 varies the threshold gap period according to the vehicle type. For instance, if the entering vehicle information indicates that the entering vehicle is a large vehicle or a semi-tractor, the intersection state controller 170 will increase the threshold gap period to accommodate for the likely longer period of time that is required for the entering vehicle 106 to safely perform the desired intersection entering operation. On the other hand, if the entering vehicle information indicates that the entering vehicle is a small vehicle or a motorcycle, the intersection state controller 170 can decrease the threshold gap period to accommodate for the likely shorter period of time that is required for the entering vehicle 106 to safely perform the desired intersection entering operation.
In accordance with another embodiment of the invention, the vehicle type and/or driver information is provided directly to the entering vehicle sensor 190 of the system 130 by the driver of the entering vehicle 106 through a suitable interface, which can then be used in the determination of the state output 172 produced by the intersection state controller 170. In accordance with another embodiment of the invention, such driver/vehicle information can be stored in memory 198 (e.g., a Radio Frequency Identification or RFID tag, or smart card) on the entering vehicle 106 and communicated to the entering vehicle sensor 190 automatically through the interface through a wireless communication. Alternatively, the vehicle sensor 190 can include a license plate scanner configured to “read” the license plate of the entering vehicle and obtain the corresponding driver/vehicle information from a database.
In addition to the vehicle type described above, the vehicle information communicated from the driver/entering vehicle can include a make/model of the entering vehicle, a year of the entering vehicle, an engine/transmission characteristic of the entering vehicle, road-tire friction levels for the entering vehicle, a license plate number, a vehicle identification, and other entering vehicle information. The driver information can include an indication as to the intersection entering operation the driver wishes to perform (e.g., a left turn, a right turn, or a crossing), driver demographics (e.g., age, gender, information regarding driving habits), a driving record for the driver, a driver's license number, an identification of the driver, and a driver setting (e.g., predefined threshold gap periods for particular intersection entering operations). As above, this information can be used by the intersection state controller 170 to determine the threshold gap periods and, thus, the state output 172.
Environment Sensor
In accordance with yet another embodiment of the invention, the system 130 includes an environment sensor 200 (
In accordance with another embodiment of the invention, the environment information includes road information relating to the main and minor roadways 104 and 108 of the intersection 100. Examples of road information include a moisture content of the roadways, a temperature of the roadways, a moisture type on the roadways, and a traction level for the roadways. Such road information is generally used to increase the threshold gap periods used by the intersection state controller 170 to determine the state output 172. For instance, when the road information indicates that the roadways have a high moisture content, the intersection state controller can increase the threshold gap periods to accommodate for the potential slippery conditions that may exist, which can necessitate a longer period of time to complete an intersection entering operation.
Communications between the devices of system 130 can be accomplished through either hard-wired connections or wireless transmission, in accordance with conventional methods.
Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. For example, it should be understood that the components of the system 130 of the present invention illustrated as blocks in
The present application claims the benefit of U.S. provisional patent application ser. No. 60/528,313, filed Dec. 10 2003, and is a continuation-in-part of U.S. patent application Ser. No. 10/091,182, filed Mar. 5, 2002, now U.S. Pat. No. 7,072,764, the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4120566 | Sanci et al. | Oct 1978 | A |
5214757 | Mauney et al. | May 1993 | A |
5231379 | Wood et al. | Jul 1993 | A |
5291338 | Bezard et al. | Mar 1994 | A |
5381338 | Wysocki et al. | Jan 1995 | A |
5414439 | Groves et al. | May 1995 | A |
5444442 | Sadakata et al. | Aug 1995 | A |
5497271 | Mulvanny et al. | Mar 1996 | A |
5499325 | Dugan, Jr. | Mar 1996 | A |
5517419 | Lanckton et al. | May 1996 | A |
5543789 | Behr et al. | Aug 1996 | A |
5652705 | Spiess | Jul 1997 | A |
5734358 | Sumiyoshi | Mar 1998 | A |
5761630 | Sekine et al. | Jun 1998 | A |
5765116 | Wilson-Jones et al. | Jun 1998 | A |
5808566 | Behr et al. | Sep 1998 | A |
5826212 | Nagai | Oct 1998 | A |
5848373 | DeLorme et al. | Dec 1998 | A |
5872526 | Tognazzini | Feb 1999 | A |
5926117 | Gunji et al. | Jul 1999 | A |
5949331 | Schofield et al. | Sep 1999 | A |
5951620 | Ahrens et al. | Sep 1999 | A |
5953722 | Lampert et al. | Sep 1999 | A |
5966132 | Kakizawa et al. | Oct 1999 | A |
5978737 | Pawlowski et al. | Nov 1999 | A |
5999635 | Higashikubo et al. | Dec 1999 | A |
5999878 | Hanson et al. | Dec 1999 | A |
6038496 | Dobler et al. | Mar 2000 | A |
6038559 | Ashby et al. | Mar 2000 | A |
6047234 | Cherveny et al. | Apr 2000 | A |
6049295 | Sato | Apr 2000 | A |
6104316 | Behr et al. | Aug 2000 | A |
6107944 | Behr et al. | Aug 2000 | A |
6120460 | Abreu | Sep 2000 | A |
6122593 | Friederich et al. | Sep 2000 | A |
6144335 | Rogers et al. | Nov 2000 | A |
6157342 | Okude et al. | Dec 2000 | A |
6161071 | Shuman et al. | Dec 2000 | A |
6166698 | Turnbull et al. | Dec 2000 | A |
6184823 | Smith et al. | Feb 2001 | B1 |
6188957 | Bechtolsheim et al. | Feb 2001 | B1 |
6192314 | Khavakh et al. | Feb 2001 | B1 |
6208934 | Bechtolsheim et al. | Mar 2001 | B1 |
6212474 | Fowler et al. | Apr 2001 | B1 |
6218934 | Regan | Apr 2001 | B1 |
6226389 | Lemelson et al. | May 2001 | B1 |
6249742 | Friederich et al. | Jun 2001 | B1 |
6253151 | Ohler et al. | Jun 2001 | B1 |
6272431 | Zamojdo et al. | Aug 2001 | B1 |
6278942 | McDonough | Aug 2001 | B1 |
6289278 | Endo et al. | Sep 2001 | B1 |
6297516 | Forrest et al. | Oct 2001 | B1 |
6298303 | Khavakh et al. | Oct 2001 | B1 |
6308177 | Israni et al. | Oct 2001 | B1 |
6314365 | Smith | Nov 2001 | B1 |
6314367 | Ohler et al. | Nov 2001 | B1 |
6361321 | Huston et al. | Mar 2002 | B1 |
6370475 | Breed et al. | Apr 2002 | B1 |
6385539 | Wilson et al. | May 2002 | B1 |
6405132 | Breed et al. | Jun 2002 | B1 |
6438491 | Farmer | Aug 2002 | B1 |
6486856 | Zink | Nov 2002 | B1 |
6526352 | Breed et al. | Feb 2003 | B1 |
6587778 | Stallard et al. | Jul 2003 | B2 |
6690268 | Schofield et al. | Feb 2004 | B2 |
20020036584 | Jocoy et al. | Mar 2002 | A1 |
20020184236 | Donath et al. | Dec 2002 | A1 |
20030023614 | Newstrom et al. | Jan 2003 | A1 |
20030128182 | Donath et al. | Jul 2003 | A1 |
20040066376 | Donath et al. | Apr 2004 | A1 |
Number | Date | Country |
---|---|---|
1 096 229 | Mar 2000 | EP |
Number | Date | Country | |
---|---|---|---|
20050174257 A1 | Aug 2005 | US |
Number | Date | Country | |
---|---|---|---|
60528313 | Dec 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10091182 | Mar 2002 | US |
Child | 11009941 | US |