A fluid dispensing system can dispense fluid towards a target. In some examples, a fluid dispensing system can include a printing system, such as a two-dimensional (2D) printing system or a three-dimensional (3D) printing system. A printing system can include printhead devices that include fluidic actuators to cause dispensing of printing fluids.
Some implementations of the present disclosure are described with respect to the following figures.
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements. The figures are not necessarily to scale, and the size of some parts may be exaggerated to more clearly illustrate the example shown. Moreover, the drawings provide examples and/or implementations consistent with the description; however, the description is not limited to the examples and/or implementations provided in the drawings.
In the present disclosure, use of the term “a,” “an”, or “the” is intended to include the plural forms as well, unless the context clearly indicates otherwise. Also, the term “includes,” “including,” “comprises,” “comprising,” “have,” or “having” when used in this disclosure specifies the presence of the stated elements, but do not preclude the presence or addition of other elements.
A fluid dispensing device can include fluidic actuators that when activated cause dispensing (e.g., ejection or other flow) of a fluid. For example, the dispensing of the fluid can include ejection of fluid droplets by activated fluidic actuators from respective nozzles of the fluid dispensing device. In other examples, an activated fluidic actuator (such as a pump) can cause fluid to flow through a fluid conduit or fluid chamber. Activating a fluidic actuator to dispense fluid can thus refer to activating the fluidic actuator to eject fluid from a nozzle or activating the fluidic actuator to cause a flow of fluid through a flow structure, such as a flow conduit, a fluid chamber, and so forth.
In some examples, the fluidic actuators include thermal-based fluidic actuators including heating elements, such as resistive heaters. When a heating element is activated, the heating element produces heat that can cause vaporization of a fluid to cause nucleation of a vapor bubble (e.g., a steam bubble) proximate the thermal-based fluidic actuator that in turn causes dispensing of a quantity of fluid, such as ejection from an orifice of a nozzle or flow through a fluid conduit or fluid chamber. In other examples, a fluidic actuator may be a deflecting-type fluidic actuator such as a piezoelectric membrane based fluidic actuator that when activated applies a mechanical force to dispense a quantity of fluid.
In examples where a fluid dispensing device includes nozzles, each nozzle can include an orifice through which fluid is dispensed from a fluid chamber, in response to activation of a fluidic actuator. Each fluid chamber provides the fluid to be dispensed by the respective nozzle. In other examples, a fluid dispensing device can include a microfluidic pump that has a fluid chamber.
Generally, a fluidic actuator can be an ejecting-type fluidic actuator to cause ejection of a fluid, such as through an orifice of a nozzle, or a non-ejecting-type fluidic actuator to cause displacement of a fluid.
In some examples, a fluid dispensing device can be in the form of a fluidic die. A “die” refers to an assembly where various layers are formed onto a substrate to fabricate circuitry, fluid chambers, and fluid conduits. Multiple fluidic dies can be mounted or attached to a support structure.
In some examples, a fluidic die can be a printhead die, which can be mounted to a print cartridge, a carriage assembly, and so forth. A printhead die includes nozzles through which a printing fluid (e.g., an ink, a liquid agent used in a 3D printing system, etc.) can be dispensed towards a target (e.g., a print medium such as a paper sheet, a transparency foil, a fabric, etc., or a print bed including 3D parts being formed by a 3D printing system to build a 3D object).
A fluidic die includes fluidic elements and circuitry that control fluid dispensing operations of the fluidic elements. The circuitry includes logic that is responsive to address signals and control signals to produce output signals that control switching elements used for activating respective fluidic actuators in the fluid elements.
A fluidic element includes flow structures that provide for fluid flow in the fluidic element. Examples of flow structures include any or some combination of the following: a fluid chamber that stores a fluid to be dispensed by the fluid element, an orifice through which fluid can pass from the fluid chamber to a region outside the fluid chamber, a fluid feed hole that is used to communicate fluid between a fluid flow conduit and the fluid chamber in the fluid element, a fluid channel to transport fluid, and a fluidic actuator that when activated causes dispensing of a fluid by the fluid element (a fluidic actuator can include a thermal-based fluidic actuator or a deflecting-type fluidic actuator, for example).
In some examples, a fluidic die includes fluidic elements contained in fluidic architecture regions that do not include circuitry with active devices. In such examples, the fluidic die is partitioned into the fluidic architecture regions and circuit regions that are outside of the fluidic architecture regions. The circuit regions include circuit elements that include active devices.
As used here, an “active device” can refer to a device that can be switched between different states, such as an on state at which electrical current flows through the device, and off state at which electrical current does not flow through the device (or the amount of electrical current flow is negligible or below a specified threshold). An example of an active device is a transistor, such as a field effect transistor (FET). A transistor has a gate that is connected to a signal (“gate signal”) to control the state of the transistor. When the gate signal is at an active level (e.g., a low voltage or a high voltage depending on the type of transistor used), the transistor turns on to conduct electrical current between two other nodes of the transistor (e.g., a drain node and a source node of an FET). On the other hand, if the gate signal is at an inactive level (e.g., a high voltage or a low voltage depending on the type of transistor used), then no electrical current flows through the transistor (or the amount of electrical current through the transistor is negligible or below a specified threshold). In some cases, the gate signal to the transistor can be set at an intermediate level between the active level or the inactive level, which causes the transistor to conduct an intermediate amount of electrical current.
Another example of an active device is a diode. If the voltage across two nodes of the diode exceeds a threshold voltage, then the diode turns on to conduct electrical current through the diode. However, if the voltage across that the two nodes of the diode is less than the threshold voltage, and the diode remains off.
Partitioning a fluidic die between fluidic architecture regions and circuit regions may simplify the interface between the circuit elements and the fluidic elements, or may be performed because of the arrangement of fluid feed slots in the fluidic die. A fluid feed slot refers to a fluid conduit that may run along an entire actuator column of the fluidic die. The fluid feed slot is used to carry fluid to and from the fluidic elements of the fluidic die.
Certain types of fluidic dies may employ a sparse arrangement of fluidic elements (the fluidic elements are arranged in patterns of lower density than fluidic elements in other fluidic dies). If a fluidic die has a sparse arrangement of fluidic elements, then the fluidic architecture regions would consume a larger area of the fluidic die than fluidic architecture regions of a fluidic die with a denser arrangement of fluidic elements. Given the same size of a fluidic die and assuming a same quantity of fluidic elements is used (compared to another fluidic die with a denser arrangement of fluidic elements), the larger fluidic architecture regions of the sparse arrangement would result in smaller circuit regions in the fluidic die, which leads to greater compaction of circuit elements. In some cases, there may not be sufficient space for circuit elements in a fluidic die with a sparse arrangement of fluidic elements.
In accordance with some implementations of the present disclosure, as shown in
The different axes include a first axis 106 and a second axis 108 that is substantially orthogonal to the first axis 106. The first axis 106 and the second axis 108 are substantially orthogonal if the first axis 106 has an angle with respect to the second axis 108 that is in any of the following ranges: between 45° and 135°, between 60° in 120°, between 75° and 115°, and so forth.
Each circuit element in
In further examples, the active devices of a circuit element C can be used to implement analog circuitry. As noted above, examples of active devices include transistors and diodes, or any other device that can be switched between different states in response to an input signal.
In the example of
In some examples, a first quantity of circuit elements interspersed in regions between the fluidic cells 104 along the axis 106 is greater than a specified number (e.g., 10, 20, etc.), and a second quantity of circuit elements interspersed in regions between the fluidic cells 104 along the axis 108 is greater than a specified number (e.g., 10, 20, etc.).
Each fluidic cell 104 includes a respective fluid feed hole 112 and a fluid chamber 114 into which a fluid can be fed through the fluid feed hole 112, in the example of
Although specific flow structures have been identified as being part of the fluidic cell 104, it is noted that in other examples, additional or alternative types of flow structures can be included in each fluidic cell 104.
In the example of
The fluidic die 102 has multiple outer edges 102-1, 102-2, 102-3, and 102-4, which collectively form a general rectangle (when viewed from the top or bottom) in the example of
In some examples, either the first dimension or the second dimension of the multiple dimensions along which the array of fluid feed holes 112 is arranged can be parallel to an outer edge (one of 102-1, 102-2, 102-3, and 102-4) of the fluidic die 102. In further examples, both the first dimension and the second dimension are parallel to respective outer edges of the fluidic die 102.
In addition, each of multiple fluid feed holes along the first dimension (e.g., along the axis 106) is distinct from multiple fluid feed holes along the second dimension (e.g., along the axis 108). For example, in the first row 150 of the array of fluidic cells 104 shown in
In some examples, the fluidic die 102 can be mounted on a support structure (e.g., a print cartridge, a carriage, etc.), which is relatively moveable with respect to a target to which fluid of the fluidic die 102 is to be dispensed. For example, the target can be a print substrate onto which printing fluid is to be dispensed in a 2D printing system, or a 3D build part onto which liquid agents are to be dispensed during a 3D build operation of a 3D printing system. The fluidic die 102 is relatively moveable with respect to the target if either or both of the fluidic die 102 and the target is (are) moveable. In some examples, the fluidic die 102 is relatively moveable with respect to the target along a direction that is parallel to either axis 106 or 108.
Regions that are without flow structures are provided between successive fluidic cells 104 along both the first axis 106 and the second axis 108. Such regions are not used by the fluidic cells 104 for fluid flow. The circuit elements are placed in the regions between the fluidic cells 104. As a result, the circuit elements are interspersed with the fluidic cells 104 along both the axes 106 and 108. The elements of the fluidic cells 104 being interspersed with the circuit elements result in an alternating arrangement of fluidic elements and circuit elements along the different axes 106 and 108.
By alternating the fluidic elements with the circuit elements in multiple different axes, more space on the substrate 110 of the fluidic die 102 is provided to accommodate the circuit elements while still allowing for a sparse arrangement of the fluidic cells 104, in some examples.
The fluidic cells 104 and the circuit elements are formed on a common substrate, i.e., the substrate 110 of the fluidic die 102. The substrate 110 can be a silicon substrate, or a substrate formed of another semiconductor material or a different material. Forming the fluidic cells 104 and the circuit elements on a common substrate refers to forming layers of the fluidic cells 104 and the circuit elements as part of an integrated circuit processing flow for a single integrated circuit device, which in
The fluidic cell 204 can be arranged in similar manner as the fluidic cell 104 of
The fluidic cell 204 includes an orifice layer 206 in which an orifice 207 (or multiple orifices) is (are) formed. A chamber layer 208 is provided under the orifice layer 206, and the chamber layer 208 defines a fluid chamber 210. The layers 206 and 208 can include any of various different types of materials, such as epoxy, silicon, and so forth.
A fluidic actuator 212 is formed over the layer 218 in the fluid chamber 210. If the fluidic actuator is a resistive heater, the fluidic actuator 212 can be formed using a thin film of an electrically resistive material (such as tungsten-silicon nitride, polysilicon or any other material that exhibits electrical resistivity). Activation of the fluidic actuator 212 causes fluid in the fluid chamber 210 to be expelled through the orifice 207.
In some examples, the circuit element layers 202 are formed on the substrate (including layers 224 and 218) of the fluidic die 200 before various layers of the fluidic cell 204. A layer is on the substrate if the layer is directly on the substrate, or if the layer is supported by the substrate through other layer(s). The chamber layer 208 is formed over the layer 218 as well as over thin film layers (the thin film layer for the fluidic actuator 212 and the thin film interconnect layer 230). Thus, in
In the example of
The pressure in the high pressure chamber 220 and the pressure in the low pressure chamber 222 can be controlled by respective pressure regulators (not shown). The high pressure chamber 220 has a pressure that is higher than the pressure of the low pressure chamber 222.
The arrangement of the fluidic cell 204 allows for fluid recirculation along fluid path 226. Fluid can flow from the high pressure chamber 220 into the inlet fluid feed hole 214, which is then passed to the fluid chamber 210. The fluid exits from the fluid chamber 210 through the outlet fluid feed hole 216 to the low pressure chamber 222.
Recirculation can be performed to carry any contaminants that may be in the fluid chamber 210 out of the fluid chamber 210. In other examples, recirculation of fluid through the fluid chamber 210 can be performed for other purposes.
Although a specific arrangement is shown in
The circuit element layers 202 are formed in a region 250 that is devoid of flow structures of the fluid cell 204. The region 250 is between successive fluidic cells 204 in each of multiple axes, such as axes 106 and 108 shown in
The interposer 240 is a structure that is attached to the fluidic die 200. The interposer 240 can include fluid flow channels (not shown) to communicate fluid with the chambers 220 and 222. The interposer 240 can be a die that is separate from the fluidic die 200.
Along the orthogonal axis 308, the fluidic cells 304 are lined up generally parallel to the axis 308.
Each fluidic cell 304 includes fluid feed holes 310 and 312 (e.g., similar to the fluid feed holes 214 and 216 shown in
The process 400 includes forming (at 402) layers for circuit elements on a substrate, where each circuit element of the circuit elements includes an active device (e.g., a transistor or a diode).
The process 400 includes forming (at 404) layers for fluidic elements over the layers for the circuit elements, where the fluidic elements are to dispense a fluid, an arrangement of the fluidic elements across the substrate has regions without flow structures between successive fluidic elements, and each fluidic element of the fluidic elements includes a fluidic actuator and a fluid chamber.
The process 400 includes interspersing (at 406) the circuit elements in the regions between the fluidic elements along different axes of the fluidic die.
The process 400 includes forming (at 408) an array of fluid feed holes in a plurality of dimensions to communicate the fluid with the fluidic elements, where each of multiple fluid feed holes along a first dimension of the plurality of dimensions is distinct from multiple fluid feed holes along a second dimension of the plurality of dimensions.
The fluidic die 500 further includes circuit elements 510 on the substrate 502. The circuit elements 510 are interspersed between the fluidic elements 504 along each of the first axis 506 and the second axis 508. Each circuit element 510 of the circuit elements 510 includes an active device. The circuit elements 510 include greater than 10 first circuit elements along the first axis 506 in first regions between successive first fluidic elements 504, and greater than 10 second circuit elements along the second axis 508 in second regions between successive second fluidic elements 504.
The fluidic elements 504 and the circuit elements 510 include integrated circuit layers commonly formed on the substrate 502.
Interspersed arrangements of fluidic elements and circuit elements according to some examples of the present disclosure may provide various benefits. For example, greater space is provided on the substrate of a fluidic die to accommodate circuit elements in a sparse arrangement of fluidic elements. Also, circuit elements being placed closer to fluidic elements can reduce parasitic impedances in signals transmitted by the circuit elements. Interspersing circuit elements with fluidic elements allows for a greater density of the circuit elements without increasing the overall size of a fluidic die.
In the foregoing description, numerous details are set forth to provide an understanding of the subject disclosed herein. However, implementations may be practiced without some of these details. Other implementations may include modifications and variations from the details discussed above. It is intended that the appended claims cover such modifications and variations.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/057109 | 10/23/2020 | WO |