Interspinous process spacer diagnostic balloon catheter and methods of use

Information

  • Patent Grant
  • 8317831
  • Patent Number
    8,317,831
  • Date Filed
    Wednesday, January 13, 2010
    14 years ago
  • Date Issued
    Tuesday, November 27, 2012
    12 years ago
Abstract
An interspinous process spacer diagnostic balloon catheter and method. The balloon catheter has a main expandable member, a distal expandable member and a proximal expandable member that all can be expanded from a collapsed configuration to an expanded configuration and then collapsed again to a collapsed configuration. The device can be used to determine whether a particular patient is a candidate for implantation of an interspinous process spacer to treat the symptoms of lumbar spinal stenosis and the size of such a spacer if indicated.
Description
BACKGROUND

This invention relates generally to the treatment of spinal conditions, and more particularly, to the treatment of spinal stenosis using devices for implantation between adjacent spinous processes.


The clinical syndrome of neurogenic intermittent claudication due to lumbar spinal stenosis is a frequent source of pain in the lower back and extremities, leading to impaired walking, and causing other forms of disability in the elderly. Although the incidence and prevalence of symptomatic lumbar spinal stenosis have not been established, this condition is the most frequent indication of spinal surgery in patients older than 65 years of age.


Lumbar spinal stenosis is a condition of the spine characterized by a narrowing of the lumbar spinal canal. With spinal stenosis, the spinal canal narrows and pinches the spinal cord and nerves, causing pain in the back and legs. It is estimated that approximately 5 in 10,000 people develop lumbar spinal stenosis each year. For patients who seek the aid of a physician for back pain, approximately 12%-15% are diagnosed as having lumbar spinal stenosis.


Common treatments for lumbar spinal stenosis include physical therapy (including changes in posture), medication, and occasionally surgery. Changes in posture and physical therapy may be effective in flexing the spine to decompress and enlarge the space available to the spinal cord and nerves—thus relieving pressure on pinched nerves. Medications such as NSAIDS and other anti-inflammatory medications are often used to alleviate pain, although they are not typically effective at addressing spinal compression, which is the cause of the pain.


Surgical treatments are more aggressive than medication or physical therapy, and in appropriate cases surgery may be the best way to achieve lessening of the symptoms of lumbar spinal stenosis. The principal goal of surgery is to decompress the central spinal canal and the neural foramina, creating more space and eliminating pressure on the spinal nerve roots. The most common surgery for treatment of lumbar spinal stenosis is direct decompression via a laminectomy and partial facetectomy. In this procedure, the patient is given a general anesthesia as an incision is made in the patient to access the spine. The lamina of one or more vertebrae is removed to create more space for the nerves. The intervertebral disc may also be removed, and the adjacent vertebrae may be fused to strengthen the unstable segments. The success rate of decompressive laminectomy has been reported to be in excess of 65%. A significant reduction of the symptoms of lumbar spinal stenosis is also achieved in many of these cases.


More recently, a different surgical technique has been developed in which the vertebrae are distracted and an interspinous process spacer is implanted between adjacent spinous processes to maintain the desired separation between the segments. Currently, patient selection is based on history, physical examination, and imaging. These diagnostic modalities might be sensitive and specific to lumbar spinal stenosis, but they are limited in their ability to identify the proper interspinous process spacer candidate. Properly selecting the patients to receive an interspinous process spacer is important in assuring positive outcomes following implantation of the spacer.


It would thus be advantageous for a diagnostic device and procedure to be used to determine (i) whether an interspinous process spacer would provide relief for the patient, and (ii) the size of such a spacer that would be necessary to provide such relief. Such a diagnostic procedure could be performed in a doctor's office or other outpatient setting in addition to a standard hospital setting.


SUMMARY

The interspinous process spacer diagnostic balloon catheter (the “balloon catheter”) described herein may be disposable. It may be inserted percutaneously into the interspinous space to temporarily decompress the identified spinal motion segment and allow a physician to determine whether the patient is an appropriate candidate for implantation of an interspinous process spacer. A method of diagnosing patients to determine if they are appropriate candidates for implantation of an interspinous process spacer is also disclosed herein.


The interspinous process spacer diagnostic balloon catheter has a main expandable member having a first collapsed configuration that allows percutaneous delivery of the distal portion of the balloon catheter to the appropriate site in the patient. The main expandable member can be expanded to different diameters, which is controlled by the physician, to provide the physician with control over the amount of decompression or distraction provided to the particular patient being diagnosed. In addition, two additional expandable members are located adjacent to the main expandable member, with one of the additional expandable members located on the proximal side of the main expandable member and the second additional expandable member located on the distal side of the main expandable member. The two additional expandable members, when expanded, hold the main expandable member in the proper location between adjacent spinous processes. The main expandable member may be formed from a relatively non-compliant material while the additional expandable members may be formed from a relatively compliant material.


A method of using the balloon catheter described herein is also provided. Once the main expandable member is properly located within the patient, the additional expandable members are expanded first to lock the main expandable member in place between adjacent spinous processes. Thereafter, the main expandable member is expanded to an initial size. At that point, the balloon catheter can be manipulated to allow the patient to become ambulatory to determine if the symptoms of lumbar spinal stenosis have been alleviated. If not, the main expandable member can be expanded to a second size, the device manipulated, and the patient becomes ambulatory to determine the effect of the device on the patient. This process would continue until the symptoms have been allieviated or until the main expandable member reaches some upper limit on its size. Thereafter, all of the expandable members can be deflated to their initial collapsed configuration and the balloon catheter removed from the patient. If the patient realizes relief from the symptoms of lumbar spinal stenosis during the diagnostic procedure, the physician can schedule a follow up surgical procedure to implant an appropriately sized interspinous process spacer as determined during the diagnostic procedure. If the patient does not obtain relief, the physician may determine that the patient may not be a candidate for implantation of an interspinous process spacer and evaluate other options for the patient.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of an interspinous process spacer diagnostic balloon catheter in the fully expanded configuration;



FIG. 2A is a cross-sectional view taken along line 2-2 of the interspinous process spacer diagnostic balloon catheter shown in FIG. 1 illustrating one configuration for the catheter lumens;



FIG. 2B is a cross-sectional view taken along line 2-2 of the interspinous process spacer diagnostic balloon catheter shown in FIG. 1 illustrating a second configuration for the catheter lumens;



FIG. 2C is a cross-sectional view taken along line 2-2 of the interspinous process spacer diagnostic balloon catheter shown in FIG. 1 illustrating a third configuration for the catheter lumens;



FIG. 2D is a cross-sectional view taken along line 2-2 of the interspinous process spacer diagnostic balloon catheter shown in FIG. 1 illustrating a fourth configuration for the catheter lumens;



FIG. 3 is a cross-sectional view taken along line 3-3 of the interspinous process spacer diagnostic balloon catheter shown in FIG. 1 with the expandable members in the collapsed configuration and providing a schematic view of a portion of a spine where the interspinous process spacer diagnostic balloon catheter would be placed;



FIG. 4 is an enlarged cross-sectional view of the distal portion of the interspinous process spacer diagnostic balloon catheter shown in FIG. 3;



FIG. 5 is a cross-sectional view similar to FIG. 3 but with the proximal and distal expandable members in an expanded configuration;



FIG. 6 is an enlarged cross-sectional view of the distal portion of the interspinous process spacer diagnostic balloon catheter shown in FIG. 5;



FIG. 7 is a cross-sectional view similar to FIG. 5 but with the main, central expandable member in the expanded configuration as well;



FIG. 8 is a cross-sectional view of the distal portion of the interspinous process spacer diagnostic balloon catheter shown in FIG. 7; and



FIG. 9 is a flowchart describing a diagnostic method using an interspinous process spacer diagnostic balloon catheter.





DETAILED DESCRIPTION

As used in this specification and the appended claims, the singular forms “a,” “an” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, the term “a member” is intended to mean a single member or a combination of members, and “a material” is intended to mean one or more materials, or a combination thereof. Furthermore, the words “proximal” and “distal” refer to directions closer to and away from, respectively, an operator (e.g., surgeon, physician, nurse, technician, etc.) who would insert the medical device into the patient, with the tip-end (i.e., distal end) of the device inserted inside a patient's body first. Thus, for example, the device end first inserted inside the patient's body would be the distal end of the device, while the device end last to enter the patient's body would be the proximal end of the device.


As used in this specification and the appended claims, the term “body” when used in connection with the location where the device is to be placed to treat lumbar spinal stenosis, or to teach or practice implantation methods for the device, means a mammalian body. For example, a body can be a patient's body, or a cadaver, or a portion of a patient's body or a portion of a cadaver.


As used in this specification and the appended claims, the term “parallel” describes a relationship, given normal manufacturing or measurement or similar tolerances, between two geometric constructions (e.g., two lines, two planes, a line and a plane, two curved surfaces, a line and a curved surface or the like) in which the two geometric constructions are substantially non-intersecting as they extend substantially to infinity. For example, as used herein, a line is said to be parallel to a curved surface when the line and the curved surface do not intersect as they extend to infinity. Similarly, when a planar surface (i.e., a two-dimensional surface) is said to be parallel to a line, every point along the line is spaced apart from the nearest portion of the surface by a substantially equal distance. Two geometric constructions are described herein as being “parallel” or “substantially parallel” to each other when they are nominally parallel to each other, such as for example, when they are parallel to each other within a tolerance. Such tolerances can include, for example, manufacturing tolerances, measurement tolerances or the like.


As used in this specification and the appended claims, the terms “normal”, perpendicular” and “orthogonal” describe a relationship between two geometric constructions (e.g., two lines, two planes, a line and a plane, two curved surfaces, a line and a curved surface or the like) in which the two geometric constructions intersect at an angle of approximately 90 degrees within at least one plane. For example, as used herein, a line is said to be normal, perpendicular or orthoganal to a curved surface when the line and the curved surface intersect at an angle of approximately 90 degrees within a plane. Two geometric constructions are described herein as being “normal”, “perpendicular”, “orthogonal” or “substantially normal”, “substantially perpendicular”, “substantially orthogonal” to each other when they are nominally 90 degrees to each other, such as for example, when they are 90 degrees to each other within a tolerance. Such tolerances can include, for example, manufacturing tolerances, measurement tolerances or the like.


One embodiment of the interspinous process spacer diagnostic balloon catheter 100 is shown in the figures. Balloon catheter 100 is configured for unilateral insertion into the patient without requiring distraction of tissue on the contralateral side.


Balloon catheter 100 includes a main expandable member (“main balloon”) 20, a distal expandable member (“distal balloon”) 25a, and a proximal expandable member (“proximal balloon”) 25b. All of these expandable members may be balloons formed from a relatively low compliant plastic such as nylon, polyethylene (PE) or polyethylene terephthalate (PET). Compliance is quantified based on the amount of change from the initially formed dimensions. Lower compliant materials are capable of stretching between about 5% to about 50% before failure, while a more compliant material such as polyurethane is capable of a change of about 300%. Generally, the lower the compliance of the balloon the higher its pressure capacity. Nylon and PET balloons are capable of withstanding a maximum pressure of about 300 psi. In contrast, a more compliant polyurethane balloon is capable of withstanding a maximum pressure of only about 125 psi.


Main balloon 20 may be formed from a lower compliant material so that its inflation pattern is well controlled and understood. The inflation pattern, e.g. balloon diameter at specific volumes, will be used to determine the height of the interspinous space and thus the size of any permanent interspinous process spacer that is to be implanted into the patient to treat the condition. Also, the higher pressure capability of the lower compliant material may be instrumental in separating the spinous processes and maintaining the interspinous space. In contrast, distal balloon 25a and proximal balloon 25b may be formed from a more compliant material such as polyurethane, silicone or a thermoplastic rubber elastomer sold under the ChronoPrene™ trademark. Distal balloon 25a and proximal balloon 25b should be capable of expanding to a significantly larger diameter as compared to main balloon 20. A compliant material helps to minimize the profile of the distal portion of balloon catheter 100 and reduce the size of the incision necessary to access the particular location in the patient's anatomy. However, it is also within the scope of this invention to form distal balloon 25a and proximal balloon 25b from a less compliant material similar to the material used to form main balloon 20. This would facilitate catheter assembly, but the resulting device would require a larger access channel. Main balloon 20, distal balloon 25a and proximal balloon 25b are configured so they can move from a collapsed or closed configuration as illustrated in FIG. 3 to an expanded or deployed configuration as illustrated in FIGS. 1 and 8.


Main balloon 20, distal balloon 25a and proximal balloon 25b are affixed to a catheter 30 in a standard manner. For example, adhesives, thermal bonding, laser bonding or adhesive-lined heat shrinking may be used. In order to facilitate bonding of main balloon 20 to catheter tube 30, main balloon 20 may be formed from a three layer balloon tube where the middle layer is a less compliant material and the top and bottom layers are a more compliant material similar to the material used to form distal balloon 25a and proximal balloon 25b.


Distal balloon 25a and proximal balloon 25b may be inflated independently of main balloon 20. This would allow distal balloon 25a and proximal balloon 25b to be inflated first to lock balloon catheter 100 in place with main balloon 20 located between the desired adjacent spinous processes. Main balloon 20 could then be inflated separately and independently. Independent control of main balloon 20 may be necessary to correctly size the interspinous space. Alternatively, distal balloon 25a, main balloon 20 and proximal balloon 25b may be combined as a single balloon. Such a unitary configuration would mean that the single balloon would have a dumbbell shape with larger diameter distal and proximal portions and a smaller diameter central portion that all would be inflated simultaneously.


Catheter tube 30 includes various lumens extending therethrough and that are used to expand the various balloons of balloon catheter 100. For example, as shown in FIG. 2A, a first lumen 31 is in fluid communication with both distal balloon 25a and proximal balloon 25b, while second lumen 32 is in fluid communication with main balloon 20. By having first lumen 31 in fluid communication with both distal balloon 25a and proximal balloon 25b, both balloons can be inflated simultaneously. Second lumen 32 is separate to allow main balloon 20 to be inflated separately once the physician locks the distal portion of balloon catheter 100 in place. In addition, a guide wire lumen 37 extends through catheter tube 30 to allow balloon catheter 100 to be inserted percutaneously over a guide wire. As shown in FIG. 2A, first lumen 31 extends around a portion of the axis of catheter tube 30, second lumen 32 extends around a separate portion of the axis of catheter tube 30 and guide wire lumen 37 is disposed coaxially between first lumen 31 and second lumen 32. If desired, distal balloon 25a and proximal balloon 25b could be in fluid communication with separate lumens. This will allow greater flexibility to the physician to initially position and adjust the specific location of the distal portion of balloon catheter 100 in the patient. For example, as shown in FIG. 2D, first lumen 31 could be split into two separate lumens 31a and 31b where lumen 31a could be in fluid communication with proximal balloon 25b and lumen 31b could be in fluid communication with distal balloon 25a or vice versa. These separate lumens would allow proximal balloon 25b to be inflated first, and deflated if necessary to reposition the distal portion of balloon catheter 100. Thereafter, distal balloon 25b could be inflated. Alternatively, distal balloon 25a could be inflated, and deflated if necessary, before proximal balloon 25b is inflated. Alternatively, the lumens may be oriented so they are all coaxial. See FIG. 2B. In this embodiment, first lumen 31′ could be coaxially disposed within catheter tube 30, with second lumen 32′ coaxially disposed between first lumen and guidewire lumen 37. In another embodiment, see FIG. 2C, a single lumen 35 may be in fluid communication with main balloon 20, distal balloon 25a and proximal balloon 25b. Single lumen 35 may be coaxially disposed about guidewire lumen 37. Alternatively a lumen configuration as should in FIG. 2A could be used without the need for second lumen 32.


The proximal end of catheter tube 30 is connected to a hub 40 having at least one port therein. The number of ports used depends on the lumen configuration desired for balloon catheter 100. Where a single lumen is used to inflate all three balloons, a single port is needed, in addition to any access device desired for the guidewire, if used. If two lumens are used, two ports are used. And where three lumens are used to inflate the three balloons, three ports are used. As an illustration, where the lumen configuration of FIG. 2A is used, a first port 41, a second port 42 and a guidewire port 47 are located on hub 40. First port 41 and second port 42 may each include a luer lock on its proximal end to allow an inflation device, such as a syringe to be locked on to each port. Guidewire port 47 allows a guide wire to extend completely through catheter tube 30 to facilitate proper placement of balloon catheter 100 between adjacent spinous processes as described more fully hereinafter. First port 41 and second port 42 each include seals, not shown, that allow independent control of the relevant balloons.


In the collapsed configuration, main balloon 20, distal balloon 25a and proximal balloon 25b each has a reduced profile that facilitates insertion of the distal end of balloon catheter 100 into the patient into the targeted interspinous space. If desired, a guidewire 50, may be first inserted into the patient so that it extends between the adjacent spinous processes under investigation. Balloon catheter 100 may then be inserted into the patient over the guidewire, with the guidewire extending through guidewire lumen 37, such that distal balloon 25a extends past the adjacent spinous processes of interest and is distal of the distal lateral faces of the superior spinous process and inferior spinous process. In this position, main balloon 20 is located between the adjacent spinous processes and proximal balloon 25b is located proximal of the other lateral faces of the superior spinous process and the inferior spinous process. At this point, distal balloon 25a and proximal balloon 25b may be expanded or “inflated” by injecting biocompatible fluid, such as saline, through first lumen 31 where the lumen configuration of FIG. 2A is used. Alternatively, where distal balloon 25a and proximal balloon 25b are to be inflated separately, such as by using the lumen configuration as shown in FIG. 2D, either distal balloon 25a or proximal balloon 25b may be inflated first to temporarily hold the distal portion of balloon catheter 100 in place while the physician confirms that the distal portion is properly located. If not, the initially inflated balloon may be deflated to allow the physician to properly relocate the distal portion of balloon catheter 100. This process may be repeated until the physician is satisfied with the placement of balloon catheter 100. Once fully inflated, distal balloon 25a and proximal balloon 25b will have a height that is greater than the space between the adjacent spinous processes, and greater than the height of main balloon 20 when it is fully inflated. Since distal balloon 25a and proximal balloon 25b are relatively compliant, they can conform better to the surrounding anatomy to hold balloon catheter 100 in place. Thus, with distal balloon 25a and proximal balloon 25b fully inflated, balloon catheter 100 is held in place in the patient's anatomy such that main balloon 20 is located between the adjacent spinous processes.


With main balloon 20 properly positioned, the physician can then inflate main balloon 20 by injecting a biocompatible fluid, such as saline, through second lumen 32 when the lumen configuration of FIG. 2A is used. Main balloon 20 has a predetermined geometry at fixed volumes. Thus, during inflation of main balloon 20, the physician will note the volume of fluid that is injected into main balloon 20. At a first volume corresponding to a particular diameter for main balloon 20, the physician will allow the patient to become ambulatory and seek feedback from the patient to determine if the amount of distraction represented by the first volume of fluid injected into main balloon 20 provides pain relief for the patient. If there is no pain relief, the physician can inject an additional volume of fluid into main balloon 20 representing a larger diameter for main balloon 20. The physician again allows the patient to become ambulatory and seeks feedback from the patient regarding any pain relief. This process continues until the patient experiences pain relief of the maximum rated volume of fluid has been injected into main balloon 20. If the patient experiences pain relief, the injected volume of fluid can be matched to the geometry of a permanent interspinous process spacer that would be permanently implanted in the patient. If the patient does not experience pain relief the physician may determine that the patient is not a candidate for the implantation of an interspinous process device.


The geometry of main balloon 20 includes a diameter that represents the distance between the adjacent spinous processes. The geometry also includes a width for main balloon 20 that should be approximately the width of a typical spinous process, or slightly larger. This ensures that main balloon 20 is provided with enough surface area to engage the adjacent spinous processes and also prevents force from concentrating along a smaller portion of the adjacent spinous processes. In such a situation, it is possible for osteoporotic bone, or bone that has been weakened, such as by disease or trauma, to fracture. The performance characteristics of main balloon 20, distal balloon 25a and proximal balloon 25b should be balanced against the desire to have a small profile for balloon catheter 100 when main balloon 20, distal balloon 25a and proximal balloon 25b are folded to facilitate the insertion of balloon catheter 100 to the proper location in the patient's anatomy.



FIG. 9 is a flow chart illustrating a method of using an interspinous process spacer diagnostic balloon catheter to determine whether a particular patient is a candidate for implantation of an interspinous process spacer to alleviate the symptoms of lumbar spinal stenosis. The interspinous process space under investigation is first accessed with a guidewire or a trocar such that the distal end of the guidewire or trocar is adjacent to the desired location. Balloon catheter 100 is then inserted percutaneously over the guidewire or through the trocar to position main balloon 20 in the interspinous space. If desired, the guidewire or trocar can be removed from the patient. Distal balloon 25a and proximal balloon 25b are ultimately expanded to hold the distal portion of balloon catheter 100 in place. Main balloon 20 is then expanded to a first expanded diameter. The patient then walks to determine if main balloon 20 has any affect on the lumbar spinal stenosis symptoms. If the pain has been alleviated, the physician notes the volume of fluid used to expand main balloon 20 and thus can determine the diameter of main balloon with that volume of fluid injected into main balloon 20. Fluid is then withdrawn from main balloon 20 so it collapses and balloon catheter 100 can then be removed from the patient. The physician uses the information from this diagnostic procedure to determine the size of an interspinous process spacer that can be used to treat the patient and schedules a follow up procedure to implant such a device. If the pain is not alleviated, the physician may expand main balloon 20 to a second expanded diameter. The patient then walks again to determine if there has been any pain relief. This process continues until the patient obtains relief or until main balloon 20 has reached its maximum rated diameter. If main balloon 20 reaches its maximum rated diameter, or if the physician so judges, the physician can conclude that the patient is not a candidate for an interspinous process spacer to treat lumbar spinal stenosis. The physician can then evaluate other treatment options for the patient.


Instead of using a single device having an expandable member that is expanded to different diameters, different devices having different sized expandable members may be inserted into the patient and then removed and replaced with a larger expandable member if the previous expandable member did not provide relief. This process is less desirable because of the additional material and process steps that need to be used and performed in order to achieve the information obtained using the method described above.


Balloon catheter 100 may be used in connection with a living patient for the treatment of various spinal disorders. Balloon catheter 100 may also be used in a non-living object, such as within a cadaver, model, and the like. The non-living object may be for one or more of testing, training, and demonstration purposes.


The elements of balloon catheter 100 may be positioned in the patient to contact various vertebral members. This contact may include direct contact with balloon catheter 100 actually touching the vertebral members, and may also include indirect contact with balloon catheter 100 actually touching the surrounding ligaments and tissue. In both instances, balloon catheter 100 includes a similar effectiveness for treating the spinal disorder for which it was implanted.


The interspinous process spacer diagnostic balloon catheter may be carried out in other specific ways than those herein set forth without departing from the scope and essential characteristics described herein. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.

Claims
  • 1. An interspinous process spacer diagnostic balloon catheter, comprising: an elongate member;a main expandable member connected to a distal portion of the elongate member and configured for disposal between adjacent spinous processes, the main expandable member comprises a height equal to a distance between adjacent spinous processes and a width substantially equal to the width of a typical spinous process;a distal expandable member connected to a distal portion of the elongate member adjacent to a distal end of the main expandable member and configured for disposal on a distal side of adjacent spinous processes;a proximal expandable member connected to a distal portion of the elongate member adjacent to a proximal end of the main expandable member and configured for disposal adjacent spinous processes on an opposite side of the distal expandable member; anda plurality of lumens disposed in the elongate member in communication with one or more of the main expandable member, the distal expandable member and the proximal expandable member,wherein the proximal and distal expandable members each have a height that is greater than the distance between adjacent spinous processes and greater than the height of the main expandable member,wherein the distal expandable member and the proximal expandable member are configured to lock the diagnostic balloon catheter in place.
  • 2. The catheter of claim 1 wherein the main expandable member is formed from a relatively non-compliant material.
  • 3. The catheter of claim 1 wherein the distal expandable member and the proximal expandable member are formed from a relatively compliant material.
  • 4. The catheter of claim 2 wherein the distal expandable member and the proximal expandable member are formed from a relatively compliant material.
  • 5. The catheter of claim 4 wherein the main expandable material is formed from a three layer material having a middle layer, an inner layer and an outer layer.
  • 6. The catheter of claim 5 wherein the middle layer is a relatively non-compliant material.
  • 7. The catheter of claim 6 wherein the inner layer and the outer layer are a relatively compliant material.
  • 8. The catheter of claim 1 wherein the lumens are coaxial.
  • 9. The catheter of claim 1 wherein the elongate member defines at least two lumens extending therein wherein one lumen is in fluid communication with the distal expandable member and the proximal expandable member and one lumen is in fluid communication with the main expandable member.
  • 10. The catheter of claim 9 wherein the two lumens extend coaxially in the elongate member.
  • 11. The catheter of claim 1 wherein the elongate member defines one lumen extending therein wherein the one lumen is in fluid communication with the distal expandable member, the main expandable member and the proximal expandable member.
  • 12. The catheter of claim 11 wherein the lumen extends coaxially in the elongate member.
  • 13. The catheter of claim 1 wherein the elongate member defines at least three lumens extending therein wherein one lumen is in fluid communication with the distal expandable member, one lumen is in fluid communication with the main expandable member and one lumen is in fluid communication with the proximal expandable member.
  • 14. A method of diagnosing a spinal disorder of a patient, comprising: unilaterally inserting an expandable member while in a closed orientation into an interspinous space between adjacent spinous processes of the patient, with the expandable member in a closed configuration;inflating expanding the expandable member to a first expanded diameter size;thereafter, identifying whether the patient experiences pain relief when the expandable member is expanded to the first expanded size and disposed in the interspinous space diameter;thereafter, deflating the expandable member to collapse collapsing the expandable member to a size smaller than the first expanded size;thereafter, removing the expandable member from the interspinous space;thereafter, implanting an interspinous process spacer into the Interspinous space, the spacer selected based on whether the patient experiences pain relief when the expandable member is expanded to the first expanded size patient.
  • 15. The method of claim 14 further comprising expanding the expandable member to a second expanded size after identifying whether the patient experiences pain relief when the expandable member is expanded to the first size, and prior to the removing the expandable member.
  • 16. The method of claim 14 wherein the expandable member is a central portion of a diagnostic spacer, and wherein the diagnostic spacer further comprises a distal balloon section and a proximal balloon section disposed on opposing lateral sides of the central portion, the method further comprising: after the inserting and prior to the identifying, expanding at least one of the proximal and distal balloon sections by inflation thereof.
  • 17. The method of claim 16 wherein the expanding the at least one of the proximal and distal balloon sections occurs prior to the inflating of the expandable member.
  • 18. The method of claim 14 wherein the expandable member is a central portion of a diagnostic spacer, and wherein the diagnostic spacer further comprises a distal balloon section and a proximal balloon section disposed on opposing lateral sides of the central portion, the method further comprising: after the inserting and prior to the identifying, expanding both the proximal and distal balloon sections by inflation thereof independently of the inflating of the expandable section.
  • 19. The method of claim 14 wherein identifying whether the patient experiences pain relief comprises receiving feedback from the patient after the patient has become ambulatory with the first expandable member expanded to the first size.
  • 20. The method of claim 14 further comprising selecting the interspinous process spacer based on both the first expanded size and whether the patient experiences pain relief with the expandable member expanded to the first size.
US Referenced Citations (437)
Number Name Date Kind
624969 Peterson May 1899 A
1153797 Kegreisz Sep 1915 A
1516347 Pataky Nov 1924 A
1870942 Beatty Aug 1932 A
2077804 Morrison Apr 1937 A
2299308 Creighton Oct 1942 A
2485531 Dzus et al. Oct 1949 A
2607370 Anderson Aug 1952 A
2677369 Knowles May 1954 A
2685877 Dobelle Aug 1954 A
3065659 Eriksson et al. Nov 1962 A
3108595 Overment Oct 1963 A
3397699 Kohl Aug 1968 A
3426364 Lumb Feb 1969 A
3648691 Lumb et al. Mar 1972 A
3779239 Fischer et al. Dec 1973 A
3860969 Arion Jan 1975 A
3867728 Stubstad et al. Feb 1975 A
4011602 Rybicki et al. Mar 1977 A
4237875 Termanini Dec 1980 A
4257409 Bacal et al. Mar 1981 A
4274324 Giannuzzi Jun 1981 A
4289123 Dunn Sep 1981 A
4327736 Inoue May 1982 A
4401112 Rezaian Aug 1983 A
4499636 Tanaka Feb 1985 A
4519100 Wills et al. May 1985 A
4553273 Wu Nov 1985 A
4554914 Kapp et al. Nov 1985 A
4573454 Hoffman Mar 1986 A
4573966 Weikl et al. Mar 1986 A
4592341 Omagari et al. Jun 1986 A
4599086 Doty Jul 1986 A
4604995 Stephens et al. Aug 1986 A
4610662 Weikl et al. Sep 1986 A
4611582 Duff Sep 1986 A
4632101 Freedland Dec 1986 A
4636217 Ogilvie et al. Jan 1987 A
4646998 Pate Mar 1987 A
4657550 Daher Apr 1987 A
4662808 Camilleri May 1987 A
4686970 Dove et al. Aug 1987 A
4704057 McSherry Nov 1987 A
4721103 Freedland Jan 1988 A
4759769 Hedman et al. Jul 1988 A
4787378 Sodhi Nov 1988 A
4822226 Kennedy Apr 1989 A
4827918 Olerud May 1989 A
4834600 Lemke May 1989 A
4863476 Shepperd Sep 1989 A
4886405 Blomberg Dec 1989 A
4892545 Day et al. Jan 1990 A
4913144 Del Medico Apr 1990 A
4931055 Bumpus et al. Jun 1990 A
4932975 Main et al. Jun 1990 A
4969887 Sodhi Nov 1990 A
4969888 Scholten et al. Nov 1990 A
5000166 Karpf Mar 1991 A
5011484 Breard Apr 1991 A
5019042 Sahota May 1991 A
5035712 Hoffman Jul 1991 A
5047055 Bao et al. Sep 1991 A
5059193 Kuslich Oct 1991 A
5092866 Breard et al. Mar 1992 A
5098433 Freedland Mar 1992 A
5112306 Burton et al. May 1992 A
5171278 Pisharodi Dec 1992 A
5171280 Baumgartner Dec 1992 A
5201734 Cozad et al. Apr 1993 A
5267999 Olerud Dec 1993 A
5290312 Kojimoto et al. Mar 1994 A
5306275 Bryan Apr 1994 A
5306310 Siebels Apr 1994 A
5312405 Korotko et al. May 1994 A
5316422 Coffman May 1994 A
5330429 Noguchi et al. Jul 1994 A
5342305 Shonk Aug 1994 A
5356423 Tihon et al. Oct 1994 A
5358487 Miller Oct 1994 A
5360430 Lin Nov 1994 A
5366455 Dove Nov 1994 A
5370697 Baumgartner Dec 1994 A
5390683 Pisharodi Feb 1995 A
5395370 Muller et al. Mar 1995 A
5401269 Buttner-Janz et al. Mar 1995 A
5403316 Ashman Apr 1995 A
5415661 Holmes May 1995 A
5437672 Alleyne Aug 1995 A
5437674 Worcel et al. Aug 1995 A
5439463 Lin Aug 1995 A
5454812 Lin Oct 1995 A
5456689 Kresch et al. Oct 1995 A
5458641 Ramirez Jimenez Oct 1995 A
5460610 Don Michael Oct 1995 A
5480442 Bertagnoli Jan 1996 A
5496318 Howland et al. Mar 1996 A
5518498 Lindenberg et al. May 1996 A
5540689 Sanders et al. Jul 1996 A
5549679 Kuslich Aug 1996 A
5554191 Lahille et al. Sep 1996 A
5562662 Brumfield et al. Oct 1996 A
5562735 Margulies Oct 1996 A
5562736 Ray et al. Oct 1996 A
5571192 Schonhoffer Nov 1996 A
5609634 Voydeville Mar 1997 A
5609635 Michelson Mar 1997 A
5628756 Barker, Jr. et al. May 1997 A
5630816 Kambin May 1997 A
5645597 Krapiva Jul 1997 A
5645599 Samani Jul 1997 A
5653762 Pisharodi Aug 1997 A
5653763 Errico et al. Aug 1997 A
5658335 Allen Aug 1997 A
5665122 Kambin Sep 1997 A
5674295 Ray et al. Oct 1997 A
5676702 Ratron Oct 1997 A
5685826 Bonutti Nov 1997 A
5690649 Li Nov 1997 A
5693100 Pisharodi Dec 1997 A
5702391 Lin Dec 1997 A
5702395 Hopf Dec 1997 A
5702452 Argenson et al. Dec 1997 A
5702454 Baumgartner Dec 1997 A
5702455 Saggar Dec 1997 A
5707390 Bonutti Jan 1998 A
5716416 Lin Feb 1998 A
5723013 Jeanson et al. Mar 1998 A
5725341 Hofmeister Mar 1998 A
5746762 Bass May 1998 A
5749916 Richelsoph May 1998 A
5755797 Baumgartner May 1998 A
5800547 Schafer et al. Sep 1998 A
5800549 Bao et al. Sep 1998 A
5810815 Morales Sep 1998 A
5836948 Zucherman et al. Nov 1998 A
5849004 Bramlet Dec 1998 A
5860977 Zucherman et al. Jan 1999 A
5888196 Bonutti Mar 1999 A
5941881 Barnes Aug 1999 A
5964730 Williams et al. Oct 1999 A
5976186 Bao et al. Nov 1999 A
5980523 Jackson Nov 1999 A
6022376 Assell et al. Feb 2000 A
6048342 Zucherman et al. Apr 2000 A
6066154 Reiley et al. May 2000 A
6068630 Zucherman et al. May 2000 A
6074390 Zucherman et al. Jun 2000 A
6102922 Jakobsson et al. Aug 2000 A
6126689 Brett Oct 2000 A
6126691 Kasra et al. Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6132464 Martin Oct 2000 A
6190413 Sutcliffe Feb 2001 B1
6190414 Young Feb 2001 B1
6214037 Mitchell et al. Apr 2001 B1
6214050 Huene Apr 2001 B1
6245107 Ferree Jun 2001 B1
6293949 Justis et al. Sep 2001 B1
6336930 Stalcup et al. Jan 2002 B1
6348053 Cachia Feb 2002 B1
6352537 Strnad Mar 2002 B1
6364883 Santilli Apr 2002 B1
6371987 Weiland et al. Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6402751 Hoeck et al. Jun 2002 B1
6419703 Fallin et al. Jul 2002 B1
6419704 Ferree Jul 2002 B1
6432130 Hanson Aug 2002 B1
6436140 Liu et al. Aug 2002 B1
6440169 Elberg et al. Aug 2002 B1
6447513 Griggs Sep 2002 B1
6447546 Bramlet et al. Sep 2002 B1
6451019 Zucherman et al. Sep 2002 B1
6485456 Kletschka Nov 2002 B1
6500178 Zucherman et al. Dec 2002 B2
6511508 Shahinpoor et al. Jan 2003 B1
6514256 Zucherman et al. Feb 2003 B2
6520991 Huene Feb 2003 B2
6527803 Crozet et al. Mar 2003 B1
6554833 Levy Apr 2003 B2
6572653 Simonson Jun 2003 B1
6582433 Yun Jun 2003 B2
6582467 Teitelbaum et al. Jun 2003 B1
6592585 Lee et al. Jul 2003 B2
6610069 Euteneuer et al. Aug 2003 B2
6626944 Taylor Sep 2003 B1
6645207 Dixon et al. Nov 2003 B2
6669729 Chin Dec 2003 B2
6685742 Jackson Feb 2004 B1
6695842 Zucherman et al. Feb 2004 B2
6699246 Zucherman et al. Mar 2004 B2
6709435 Lin Mar 2004 B2
6723126 Berry Apr 2004 B1
6730126 Boehm, Jr. et al. May 2004 B2
6733531 Trieu May 2004 B1
6733533 Lozier May 2004 B1
6733534 Sherman May 2004 B2
6736818 Perren et al. May 2004 B2
6743257 Castro Jun 2004 B2
6758863 Estes et al. Jul 2004 B2
6761720 Senegas Jul 2004 B1
6770096 Bolger et al. Aug 2004 B2
6783530 Levy Aug 2004 B1
6835205 Atkinson et al. Dec 2004 B2
6902580 Fallin et al. Jun 2005 B2
6905512 Paes et al. Jun 2005 B2
6946000 Senegas et al. Sep 2005 B2
6958077 Suddaby Oct 2005 B2
6969404 Ferree Nov 2005 B2
6981975 Michelson Jan 2006 B2
7011685 Arnin et al. Mar 2006 B2
7041136 Goble et al. May 2006 B2
7048736 Robinson et al. May 2006 B2
7070598 Lim et al. Jul 2006 B2
7081120 Li et al. Jul 2006 B2
7087055 Lim et al. Aug 2006 B2
7087083 Pasquet et al. Aug 2006 B2
7097648 Globerman et al. Aug 2006 B1
7097654 Freedland Aug 2006 B1
7101375 Zucherman et al. Sep 2006 B2
7163558 Senegas et al. Jan 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7217293 Branch, Jr. May 2007 B2
7238204 Le Couedic et al. Jul 2007 B2
7306628 Zucherman et al. Dec 2007 B2
7335203 Winslow et al. Feb 2008 B2
7377942 Berry May 2008 B2
7431735 Liu et al. Oct 2008 B2
7442208 Mathieu et al. Oct 2008 B2
7442210 Segal et al. Oct 2008 B2
7445637 Taylor Nov 2008 B2
7458981 Fielding et al. Dec 2008 B2
7582106 Teitelbaum et al. Sep 2009 B2
7604652 Arnin et al. Oct 2009 B2
7611316 Panasik et al. Nov 2009 B2
7621950 Globerman et al. Nov 2009 B1
7641673 Le Couedic et al. Jan 2010 B2
7658752 Labrom et al. Feb 2010 B2
7666205 Weikel et al. Feb 2010 B2
7749252 Zucherman et al. Jul 2010 B2
7771456 Hartmann et al. Aug 2010 B2
7824431 McCormack Nov 2010 B2
7862615 Carli et al. Jan 2011 B2
7901430 Matsuura et al. Mar 2011 B2
7927354 Edidin et al. Apr 2011 B2
7942847 Stupecky et al. May 2011 B2
8147526 Auyoung Apr 2012 B2
20010016743 Zucherman et al. Aug 2001 A1
20010049527 Cragg Dec 2001 A1
20020082600 Shaolian et al. Jun 2002 A1
20020143331 Zucherman et al. Oct 2002 A1
20020177866 Weikel et al. Nov 2002 A1
20030040746 Mitchell et al. Feb 2003 A1
20030045940 Eberlein et al. Mar 2003 A1
20030065330 Zucherman et al. Apr 2003 A1
20030153915 Nekozuka et al. Aug 2003 A1
20030176925 Paponneau Sep 2003 A1
20040010312 Enayati Jan 2004 A1
20040010316 William et al. Jan 2004 A1
20040064094 Freyman Apr 2004 A1
20040083002 Belef et al. Apr 2004 A1
20040087947 Lim et al. May 2004 A1
20040097931 Mitchell May 2004 A1
20040098015 Weikel et al. May 2004 A1
20040106995 LeCouedic et al. Jun 2004 A1
20040117017 Pasquet et al. Jun 2004 A1
20040133204 Davies Jul 2004 A1
20040133280 Trieu Jul 2004 A1
20040158248 Ginn Aug 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040172029 Lerch Sep 2004 A1
20040186577 Ferree Sep 2004 A1
20040199255 Mathieu et al. Oct 2004 A1
20040260239 Kusleika Dec 2004 A1
20040260397 Lambrecht et al. Dec 2004 A1
20050004592 Criscuolo Jan 2005 A1
20050010293 Zucherman et al. Jan 2005 A1
20050015140 deBeer Jan 2005 A1
20050033434 Berry Feb 2005 A1
20050049590 Alleyne et al. Mar 2005 A1
20050049708 Atkinson et al. Mar 2005 A1
20050056292 Cooper Mar 2005 A1
20050085814 Sherman et al. Apr 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050165398 Reiley Jul 2005 A1
20050203512 Hawkins et al. Sep 2005 A1
20050203519 Harms et al. Sep 2005 A1
20050203624 Serhan et al. Sep 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050245937 Winslow Nov 2005 A1
20050261768 Trieu Nov 2005 A1
20050267579 Reiley et al. Dec 2005 A1
20050273166 Sweeney Dec 2005 A1
20050288672 Ferree Dec 2005 A1
20060004447 Mastrorio et al. Jan 2006 A1
20060004455 Leonard et al. Jan 2006 A1
20060015181 Elberg Jan 2006 A1
20060047282 Gordon Mar 2006 A1
20060064165 Zucherman et al. Mar 2006 A1
20060084983 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084987 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060085074 Raiszadeh Apr 2006 A1
20060089654 Lins et al. Apr 2006 A1
20060089719 Trieu Apr 2006 A1
20060095136 McLuen May 2006 A1
20060106381 Ferree et al. May 2006 A1
20060106397 Lins May 2006 A1
20060111728 Abdou May 2006 A1
20060116690 Pagano Jun 2006 A1
20060122620 Kim Jun 2006 A1
20060129239 Kwak Jun 2006 A1
20060136060 Taylor Jun 2006 A1
20060142858 Colleran et al. Jun 2006 A1
20060149136 Seto et al. Jul 2006 A1
20060149242 Kraus et al. Jul 2006 A1
20060182515 Panasik et al. Aug 2006 A1
20060184247 Edidin et al. Aug 2006 A1
20060184248 Edidin et al. Aug 2006 A1
20060195102 Malandain Aug 2006 A1
20060217726 Maxy et al. Sep 2006 A1
20060224159 Anderson Oct 2006 A1
20060224241 Butler et al. Oct 2006 A1
20060235387 Peterman Oct 2006 A1
20060235532 Meunier et al. Oct 2006 A1
20060241601 Trautwein et al. Oct 2006 A1
20060241613 Bruneau et al. Oct 2006 A1
20060241643 Lim et al. Oct 2006 A1
20060241757 Anderson Oct 2006 A1
20060247623 Anderson et al. Nov 2006 A1
20060247640 Blackwell et al. Nov 2006 A1
20060264938 Zucherman et al. Nov 2006 A1
20060265074 Krishna et al. Nov 2006 A1
20060271044 Petrini et al. Nov 2006 A1
20060271049 Zucherman et al. Nov 2006 A1
20060271061 Beyer et al. Nov 2006 A1
20060282075 Labrom et al. Dec 2006 A1
20060282079 Labrom et al. Dec 2006 A1
20060293662 Boyer, II et al. Dec 2006 A1
20060293663 Walkenhorst et al. Dec 2006 A1
20070005064 Anderson et al. Jan 2007 A1
20070010813 Zucherman et al. Jan 2007 A1
20070032790 Aschmann et al. Feb 2007 A1
20070043362 Malandain et al. Feb 2007 A1
20070043363 Malandain et al. Feb 2007 A1
20070049935 Edidin et al. Mar 2007 A1
20070073289 Kwak et al. Mar 2007 A1
20070100340 Lange et al. May 2007 A1
20070112330 Palasis May 2007 A1
20070123861 Dewey et al. May 2007 A1
20070142915 Altarac et al. Jun 2007 A1
20070151116 Malandain Jul 2007 A1
20070162000 Perkins Jul 2007 A1
20070162136 O'Neil et al. Jul 2007 A1
20070167945 Lange et al. Jul 2007 A1
20070173822 Bruneau et al. Jul 2007 A1
20070173823 Dewey et al. Jul 2007 A1
20070173832 Tebbe et al. Jul 2007 A1
20070191833 Bruneau et al. Aug 2007 A1
20070191834 Bruneau et al. Aug 2007 A1
20070191837 Trieu Aug 2007 A1
20070191838 Bruneau et al. Aug 2007 A1
20070198091 Boyer et al. Aug 2007 A1
20070225807 Phan et al. Sep 2007 A1
20070225810 Colleran et al. Sep 2007 A1
20070233068 Bruneau et al. Oct 2007 A1
20070233074 Anderson et al. Oct 2007 A1
20070233076 Trieu Oct 2007 A1
20070233081 Pasquet et al. Oct 2007 A1
20070233084 Betz et al. Oct 2007 A1
20070233089 DiPoto et al. Oct 2007 A1
20070250060 Anderson et al. Oct 2007 A1
20070270823 Trieu et al. Nov 2007 A1
20070270824 Lim et al. Nov 2007 A1
20070270825 Carls et al. Nov 2007 A1
20070270826 Trieu et al. Nov 2007 A1
20070270827 Lim et al. Nov 2007 A1
20070270828 Bruneau et al. Nov 2007 A1
20070270829 Carls et al. Nov 2007 A1
20070270834 Bruneau et al. Nov 2007 A1
20070270874 Anderson Nov 2007 A1
20070272259 Allard et al. Nov 2007 A1
20070276368 Trieu et al. Nov 2007 A1
20070276369 Allard et al. Nov 2007 A1
20070276493 Malandain et al. Nov 2007 A1
20070276496 Lange et al. Nov 2007 A1
20070276497 Anderson Nov 2007 A1
20070282443 Globerman et al. Dec 2007 A1
20080021457 Anderson et al. Jan 2008 A1
20080021460 Bruneau et al. Jan 2008 A1
20080058934 Malandain et al. Mar 2008 A1
20080097446 Reiley et al. Apr 2008 A1
20080114357 Allard et al. May 2008 A1
20080114358 Anderson et al. May 2008 A1
20080114456 Dewey et al. May 2008 A1
20080147190 Dewey et al. Jun 2008 A1
20080161818 Kloss et al. Jul 2008 A1
20080167685 Allard et al. Jul 2008 A1
20080177306 Lamborne et al. Jul 2008 A1
20080183209 Robinson et al. Jul 2008 A1
20080183211 Lamborne et al. Jul 2008 A1
20080183218 Mueller et al. Jul 2008 A1
20080195152 Altarac et al. Aug 2008 A1
20080208341 McCormack et al. Aug 2008 A1
20080215094 Taylor Sep 2008 A1
20080221685 Altarac et al. Sep 2008 A9
20080234824 Youssef et al. Sep 2008 A1
20080243250 Seifert et al. Oct 2008 A1
20080262617 Froehlich et al. Oct 2008 A1
20080281359 Abdou Nov 2008 A1
20080281360 Vittur et al. Nov 2008 A1
20080281361 Vittur et al. Nov 2008 A1
20090062915 Kohm et al. Mar 2009 A1
20090099610 Johnson et al. Apr 2009 A1
20090105766 Thompson et al. Apr 2009 A1
20090105773 Lange et al. Apr 2009 A1
20090234389 Chuang et al. Sep 2009 A1
20090240283 Carls et al. Sep 2009 A1
20090264927 Ginsberg et al. Oct 2009 A1
20090270802 Nishide et al. Oct 2009 A1
20090270918 Attia et al. Oct 2009 A1
20090292316 Hess Nov 2009 A1
20090326538 Sennett et al. Dec 2009 A1
20100036419 Patel et al. Feb 2010 A1
20100121379 Edmond May 2010 A1
20100191241 McCormack et al. Jul 2010 A1
20100204732 Aschmann et al. Aug 2010 A1
20100211101 Blackwell et al. Aug 2010 A1
20100241167 Taber et al. Sep 2010 A1
20100318190 Collins et al. Dec 2010 A1
20110054531 Lamborne et al. Mar 2011 A1
20110144692 Saladin et al. Jun 2011 A1
20110166600 Lamborne et al. Jul 2011 A1
Foreign Referenced Citations (66)
Number Date Country
2821678 Nov 1979 DE
3922044 Feb 1991 DE
4012622 Jul 1991 DE
202006018978 Feb 2007 DE
0322334 Feb 1992 EP
0767636 Jan 1999 EP
1004276 May 2000 EP
1011464 Jun 2000 EP
1138268 Oct 2001 EP
1148850 Oct 2001 EP
1148851 Oct 2001 EP
1302169 Apr 2003 EP
1330987 Jul 2003 EP
1552797 Jul 2005 EP
1854433 Nov 2007 EP
1905392 Apr 2008 EP
1982664 Oct 2008 EP
2623085 May 1989 FR
2625097 Jun 1989 FR
2681525 Mar 1993 FR
2700941 Aug 1994 FR
2703239 Oct 1994 FR
2707864 Jan 1995 FR
2717675 Sep 1995 FR
2722087 Jan 1996 FR
2722088 Jan 1996 FR
2724554 Mar 1996 FR
2725892 Apr 1996 FR
2730156 Aug 1996 FR
2731643 Sep 1996 FR
2775183 Aug 1999 FR
2799948 Apr 2001 FR
2816197 May 2002 FR
02-224660 Sep 1990 JP
09-075381 Mar 1997 JP
2003079649 Mar 2003 JP
988281 Jan 1983 SU
1484348 Jun 1989 SU
WO 9426192 Nov 1994 WO
WO 9426195 Nov 1994 WO
WO 9718769 May 1997 WO
WO 9820939 May 1998 WO
WO 9926562 Jun 1999 WO
WO 9959669 Nov 1999 WO
WO 0044319 Aug 2000 WO
WO 0154598 Aug 2001 WO
WO 03057055 Jul 2003 WO
WO 2004047689 Jun 2004 WO
WO 2004047691 Jun 2004 WO
WO 2004084743 Oct 2004 WO
WO 2004084768 Oct 2004 WO
WO 2004110300 Dec 2004 WO
WO 2005002474 Jan 2005 WO
WO 2005009300 Feb 2005 WO
WO 2005011507 Feb 2005 WO
WO 2005044118 May 2005 WO
WO 2005048856 Jun 2005 WO
WO 2005110258 Nov 2005 WO
WO 2006064356 Jun 2006 WO
WO 2007034516 Mar 2007 WO
WO 2007052975 May 2007 WO
WO 2009083276 Jul 2009 WO
WO 2009083583 Jul 2009 WO
WO 2009098536 Aug 2009 WO
WO 2009149079 Dec 2009 WO
WO 2012035275 Mar 2012 WO
Related Publications (1)
Number Date Country
20110172596 A1 Jul 2011 US