The present invention generally relates to medical devices, in particular, implants for placement between adjacent interspinous processes of a patient's spine.
With spinal stenosis, the spinal canal narrows and pinches the spinal cord and nerves, causing pain in the back and legs. Typically, with age, a person's ligaments may thicken, intervertebral discs may deteriorate and facet joints may break down—all contributing to the condition of the spine characterized by a narrowing of the spinal canal. Injury, heredity, arthritis, changes in blood flow and other causes may also contribute to spinal stenosis.
Doctors have been at the forefront with various treatments of the spine including medications, surgical techniques and implantable devices that alleviate and substantially reduce debilitating pain associated with the back. In one surgical technique, a spacer is implanted between adjacent interspinous processes of a patient's spine. The implanted spacer opens the spinal canal, maintains the desired distance between vertebral body segments, increases the neural foramen space and as a result, avoids impingement of nerves and relieves pain. For suitable candidates, an implantable interspinous spacer may provide significant benefits in terms of pain relief.
Any surgery is an ordeal. However, the type of device and how it is implanted has an impact. For example, one consideration when performing surgery to implant an interspinous spacer is the size of the incision that is required to allow introduction of the device. Small incisions and minimally invasive techniques are generally preferred as they affect less tissue and result in speedier recovery times. As such, there is a need for interspinous spacers that work well with surgical techniques that are minimally invasive for the patient. The present invention sets forth such a spacer and associated instrumentation.
According to one aspect of the invention, an implantable spacer for placement between adjacent interspinous processes in a spinal motion segment is disclosed. The spacer includes a body defining a longitudinal passageway and a longitudinal axis. The spacer further includes a first arm and a second arm connected to the body and capable of rotation with respect to the body. Each arm has a pair of extensions and configured for containing a spinous process therein. Each arm has a proximal camming surface. The spacer further includes an actuator assembly connected to the body. The actuator assembly includes an actuator having a proximal end and a distal end. The actuator has at least one bearing surface at the distal end that is configured to engage each camming surface. The actuator is connected to the body and configured to move inside the longitudinal passageway relative to the body to contact each camming surface with the at least one bearing surface and thereby move the arms from an undeployed configuration in which the arms are substantially parallel to the longitudinal axis of the body to a deployed configuration in which the arms are substantially perpendicular to the longitudinal axis of the body to contain adjacent spinous processes when in the deployed configuration.
According to another aspect of the invention, an insertion instrument configured for delivering a spacer to an interspinous process space of a patient and deploying the spacer from an undeployed configuration to at least one deployed configuration to relieve pain is disclosed. The spacer includes a body, at least one arm connected to and movable with respect to the body and a spacer actuator having a proximal end and a distal end disposed at least partially inside the body. The spacer actuator is configured to move the at least one arm from an undeployed configuration to at least one deployed configuration. The insertion instrument includes a handle assembly, a first assembly connected to the handle assembly, a second assembly connected to the handle assembly and a third assembly connected to the handle assembly. The first assembly is configured to connect to the body of the spacer at the distal end of the insertion instrument. The first assembly has a first control at the handle assembly configured to connect and release the body of the spacer and the first assembly. The second assembly is configured to connect to the proximal end of the actuator of the spacer at the distal end of the insertion instrument. The second assembly has a second control at the handle assembly configured to connect and release the actuator and the second assembly. The third assembly is configured to move the second assembly relative to the body of the spacer for arranging the spacer from an undeployed configuration to at least one deployed configuration.
According to another aspect of the invention, a method for implanting a spacer between a superior spinous process and an adjacent inferior spinous process of a patient's spine is disclosed. The method includes the step of providing a spacer. The spacer includes a body having a proximal end, a distal end, and a longitudinal axis. The spacer also includes a first arm and a second arm connected to the body at the distal end. The first and second arms are configured to contain the superior and inferior spinous processes. The spacer further includes an actuator configured to move the first and second arms from a low-profile undeployed configuration in which the first and second arms extend parallel to longitudinal axis to at least one deployed configuration in which the first and second arms are transverse to the longitudinal axis. The method includes the step of inserting the spacer into an interspinous process space from the posterior side of the patient and may be inserted through the superspinous ligament while in the undeployed configuration. The method includes the step of arranging the spacer into at least one deployed configuration.
Other advantages will be apparent from the description that follows, including the drawings and claims.
The invention is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity.
Before the subject devices, systems and methods are described, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.
It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a spinal segment” may include a plurality of such spinal segments and reference to “the screw” includes reference to one or more screws and equivalents thereof known to those skilled in the art, and so forth.
All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
The present invention is described in the accompanying figures and text as understood by a person having ordinary skill in the field of spinal implants and implant delivery instrumentation.
With reference to
Turning now to
The inside of the body 12 defines an arm receiving portion 24 and an actuator assembly receiving portion 26 with features formed in each of the left and right body pieces 20, 22 that together define the arm and actuator assembly receiving portions 24, 26. In one variation, the arm receiving portion 24 includes slots 28 that receive pins formed on the arms 14, 16 such that the pins rotate and/or translate inside the slots 28. The actuator assembly receiving portion 26 includes a passageway 30. Other features include a tongue 31a and groove 31b for mating with the opposite clamshell.
The outside of the body 12 defines a ledge 32 along at least a portion of the periphery. Notches 34 are formed with the ledge 32 at opposite locations as shown in
Turning now to
The superior and inferior arms 14, 16 are movably or rotatably connected to the body 12, for example by hinge means or the like to provide rotational movement from an undeployed configuration to a deployed configuration that arcs through approximately a 90 degree range or more. The arms 14, 16 are rotationally movable between at least an undeployed, collapsed or folded state (as shown in
Turning now to
Another variation of the actuator 48 is shown in
With reference to
Turning now to
The inside of the body 12 defines an arm receiving portion 24 and an actuator assembly receiving portion 26 with features formed therein that together define the arm and actuator assembly receiving portions 24, 26. In one variation, the arm receiving portion 24 includes slots 28 that receive one or more pins to capture the arms 14, 16 such that the arms can hinge about the pin. As shown in
Still referencing
Turning now to
The superior and inferior arms 14, 16 are movably or rotatably connected to the body 12, for example by a pin or hinge means or the like to provide rotational movement to and from an undeployed configuration to a deployed configuration that arcs through approximately a 90 degree range or more. The arms 14, 16 are rotationally movable between at least an undeployed, collapsed or folded state (as shown in
Turning now to
General assembly of the spacers 10 discussed above will now be described. The arms 14, 16 are disposed in the arm receiving portion 24 of one body piece. The other of the left or right body piece 20, 22 is securely connected/welded to the one body piece thereby capturing the arms 14, 16 inside the arm receiving portion 24 such that the arms 14, 16 are capable of at least rotational movement with respect to the body 12 and in one variation, capable of rotational movement and translation with respect to the body 12. In the variation in which the body 12 is made of one piece, the arms 14, 16 are movably connected to the body 12 with a pin. The actuator assembly 18 is inserted into the passageway 30 of the body 12 and a pin 52 is passed through the body 12 and into the slot 61 of the actuator 48 securing the actuator assembly 18 to the body 12 such that the actuator 48 is allowed to slide with respect to the body 12.
To deliver and deploy the spacer 10 within the patient, the spacer 10 is releasably attached to a delivery instrument at the proximal end of the spacer 10 via notches 34. The delivery instrument will now be described in greater detail.
Turning now to
The first subassembly 102 is configured to releasably clamp to the body 12 of the spacer 10 at a distal end 108 of the insertion instrument. Still referencing
The second subassembly 104 is configured to releasably clamp to the actuator 48 of the spacer 10 at the distal end 108 of the insertion instrument 100. The second subassembly 104 includes a second clamp shaft 120 and a second outer shaft 122 configured for relative motion with respect to one another via a second control 124 located at the handle assembly 106. The second control 124 is threaded to the second outer shaft 122 such that rotation of the second control 124 moves the second outer shaft 122 along the longitudinal axis 116 of the insertion instrument 100. Reverse rotation of the second control 124 reverses the direction of translation of the second outer shaft 122. The second clamp shaft 120 is shown in
The third subassembly 105 is configured to translate the entire second subassembly 104 with respect to the handle assembly 106 (or, in another variation, with respect to the first subassembly 102) to thereby translate the actuator 48 of a spacer 10 with respect to the body 12 of the spacer to arrange the spacer to and from deployed and undeployed configurations. The third subassembly 105 includes a proximally located third control 128 configured in the form of a removable drive handle threaded to the second assembly 104 and configured for effecting relative motion of the second assembly 104 with respect to the handle assembly 106 wherein rotation of the drive handle 128 moves the second assembly 104 along the longitudinal axis 116 of the insertion instrument 100. Reverse rotation of the drive handle 128 reverses the direction of translation of the second assembly 104. Because the second assembly 104 is connected to the actuator 48 of the spacer 10 such longitudinal translation effects translation of the actuator 48 with respect to the body 12 of the spacer 10. In one variation, the third assembly 105 further includes a fourth control 130 for adjusting the position of the second assembly 104 relative to the handle assembly 106 such that differently-sized spacers are easily connectable to the insertion instrument at the distal end. For example, as shown in
Other features of the insertion instrument 100 include a lock 132 configured to lock the first and second subassemblies 102, 104 into position to prevent accidental release of the spacer body 12 or spacer actuator 12. A direction indicator 134 is provided on the instrument 100 for orientating the instrument 100 with respect to the patient anatomy. In one variation, for example, the direction indicator 134 indicates a cephalad orientation. Various depth markings 136 are also provided as well as connection arrows for lining up the spacer with respect to the instrument.
Turning now to
Turning now to
Turning now to
To deliver and deploy the spacer 10 within the patient, the spacer 10 is releasably attached to a delivery instrument 100 at the proximal end of the spacer 10 as described. A small midline or lateral-to-midline incision is made in the patient for minimally-invasive percutaneous delivery. In one variation, the supraspinous ligament is split longitudinally along the direction of the tissue fibers to create an opening for the instrument. Dilators may be further employed to create the opening. In the undeployed state with the arms 14, 16 in a closed orientation and attached to a delivery instrument, the spacer 10 is inserted into a port or cannula, if one is employed, which has been operatively positioned in an interspinous space within a patient's back and the spacer is passed through the cannula to the interspinous space between two adjacent vertebral bodies. The spacer 10 is advanced beyond the end of the cannula or, alternatively, the cannula is pulled proximately to uncover the spacer 10 connected to the instrument 100. Once in position, the third control 128 and/or fourth control 130 is rotated to begin the deployment of at least one of the superior arm 14 and inferior arm 16 or both simultaneously.
Turning to
Even further advancement of the second subassembly 104 from the first deployed configuration results in the spacer assuming a second deployed configuration shown in
Following deployment, the lock 132 is released to permit rotation of the first and second controls 114, 124 which are rotated in the opposite direction to release the body 12 and the actuator 48 from the instrument 100, respectively. The insertion instrument 100, thus released from the spacer, is removed from the patient leaving the spacer 10 implanted in the interspinous process space as shown in
Any of the spacers disclosed herein are configured for implantation employing minimally invasive techniques including through a small percutaneous incision and may or may not be through the supraspinous ligament. Implantation through the supraspinous ligament involves selective dissection of the supraspinous ligament in which the fibers of the ligament are separated or spread apart from each other in a manner to maintain as much of the ligament intact as possible. This approach avoids crosswise dissection or cutting of the ligament and thereby reduces the healing time and minimizes the amount of instability to the affected spinal segment. While this approach is ideally suited to be performed through a posterior or midline incision, the approach may also be performed through one or more incisions made laterally of the spine with or without affect to the supraspinous ligament. Of course, the spacer may also be implanted in a lateral approach that circumvents the supraspinous ligament altogether.
Other variations and features of the various mechanical spacers are covered by the present invention. For example, a spacer may include only a single arm which is configured to receive either the superior spinous process or the inferior spinous process. The surface of the spacer body opposite the side of the single arm may be contoured or otherwise configured to engage the opposing spinous process wherein the spacer is sized to be securely positioned in the interspinous space and provide the desired distraction of the spinous processes defining such space. The additional extension of the arms) subsequent to their initial deployment in order to seat or to effect the desired distraction between the vertebrae may be accomplished by expanding the body portion of the device instead of or in addition to extending the individual extension members 14, 16. In another variation, the spacer is configured such that arms are bifurcated side-to-side, instead of top-to-bottom for independent lateral deployment. For example in such a variation, the spacer includes a left arm and a right arm, instead of a superior arm and an inferior arm. The right arm includes extensions 42a and 44a and the left arm includes extensions 42b and 44b wherein extensions 42a and 44b are deployed independently of extension 42b, 44b on the other side of the spacer. This variation allows for the spacer to be inserted in the same manner as described above and one arm is deployed on one side of the both the superior and inferior spinous processes and the second arm is subsequently deployed on the other side of both the superior and inferior spinous processes.
The extension arms of the subject device may be configured to be selectively movable subsequent to implantation, either to a fixed position prior to closure of the access site or otherwise enabled or allowed to move in response to normal spinal motion exerted on the device after deployment. The deployment angles of the extension arms may range from less than 90 degrees (relative to the longitudinal axis defined by the device body) or may extend beyond 90 degrees. Each extension member may be rotationally movable within a range that is different from that of the other extension members. Additionally, the individual superior and/or inferior extensions 42a, 42b, 44a, 44b may be movable in any direction relative to the strut or bridge extending between an arm pair or relative to the device body in order to provide shock absorption and/or function as a motion limiter, or serve as a lateral adjustment particularly during lateral bending and axial rotation of the spine. The manner of attachment or affixation of the extensions to the arms may be selected so as to provide movement of the extensions that is passive or active or both. In one variation, the saddle or distance between extensions 42a and 42b or between 44a and 44b can be made wider to assist in seating the spinous process and then narrowed to secure the spinous process positioned between extensions 42a and 42b or between 44a and 44b.
The preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.
This application is a divisional of U.S. patent application Ser. No. 13/616,547 entitled “Interspinous Spacer” filed on Sep. 14, 2012, now U.S. Pat. No. 9,572,603, which is a continuation of U.S. patent application Ser. No. 12/148,104 entitled “Interspinous Spacer” filed on Apr. 16, 2008, now U.S. Pat. No. 8,292,922, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/923,971 entitled “Interspinous spacer” filed on Apr. 17, 2007 and U.S. Provisional Patent Application Ser. No. 60/923,841 entitled “Spacer insertion instrument” filed on Apr. 16, 2007 and is a continuation-in-part of U.S. patent application Ser. No. 11/593,995 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Nov. 7, 2006, now U.S. Pat. No. 8,425,559, which is a continuation-in-part of U.S. patent application Ser. No. 11/582,874 entitled “Minimally invasive tooling for delivery of interspinous spacer” filed on Oct. 18, 2006, now U.S. Pat. No. 8,128,662, which is a continuation-in-part of U.S. patent application Ser. No. 11/314,712 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Dec. 20, 2005, now U.S. Pat. No. 8,152,837, which is a continuation-in-part of U.S. patent application Ser. No. 11/190,496 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Jul. 26, 2005, now U.S. Pat. No. 8,409,282, which is a continuation-in-part of U.S. patent application Ser. No. 11/079,006 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Mar. 10, 2005, now U.S. Pat. No. 8,012,207, which is a continuation-in-part of U.S. patent application Ser. No. 11/052,002 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Feb. 4, 2005, now U.S. Pat. No. 8,317,864, which is a continuation-in-part of U.S. patent application Ser. No. 11/006,502 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Dec. 6, 2004, now U.S. Pat. No. 8,123,807, which is a continuation-in-part of U.S. patent application Ser. No. 10/970,843 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Oct. 20, 2004, now U.S. Pat. No. 8,167,944, all of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2248054 | Becker | Jul 1941 | A |
2677369 | Knowles | May 1954 | A |
2933114 | Bystrom | Apr 1960 | A |
3242120 | Steuber | Mar 1966 | A |
3486505 | Morrison | Dec 1969 | A |
3648691 | Lumb et al. | Mar 1972 | A |
3780733 | Martinez-Manzor | Dec 1973 | A |
3986383 | Petteys | Oct 1976 | A |
4545374 | Jacobson | Oct 1985 | A |
4632101 | Freedland | Dec 1986 | A |
4685447 | Iversen et al. | Aug 1987 | A |
4799484 | Smith et al. | Jan 1989 | A |
4863476 | Shepperd | Sep 1989 | A |
4895564 | Farrell | Jan 1990 | A |
4986831 | King et al. | Jan 1991 | A |
5011484 | Breard et al. | Apr 1991 | A |
5015247 | Michelson | May 1991 | A |
5019081 | Watanabe | May 1991 | A |
5040542 | Gray | Aug 1991 | A |
5059193 | Kuslich | Oct 1991 | A |
5092866 | Breard et al. | Mar 1992 | A |
5178628 | Otsuka et al. | Jan 1993 | A |
5180393 | Commarmond et al. | Jan 1993 | A |
5182281 | Frigola-Constansa et al. | Jan 1993 | A |
5188281 | Fujiwara et al. | Feb 1993 | A |
5192281 | de la Caffiniere | Mar 1993 | A |
5195526 | Michelson | Mar 1993 | A |
5298253 | LeFiles et al. | Mar 1994 | A |
5368594 | Martin et al. | Nov 1994 | A |
5390683 | Pisharodi | Feb 1995 | A |
5415661 | Holmes | May 1995 | A |
5456722 | McLeod et al. | Oct 1995 | A |
5462738 | LeFiles et al. | Oct 1995 | A |
5472452 | Trott | Dec 1995 | A |
5484437 | Michelson | Jan 1996 | A |
5487739 | Aebischer et al. | Jan 1996 | A |
5489308 | Kuslich et al. | Feb 1996 | A |
5496318 | Howland et al. | Mar 1996 | A |
5531748 | de la Caffiniere et al. | Jul 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5591165 | Jackson | Jan 1997 | A |
5609634 | Voydeville et al. | Mar 1997 | A |
5609636 | Kohrs et al. | Mar 1997 | A |
5645599 | Samani et al. | Jul 1997 | A |
5654599 | Casper | Aug 1997 | A |
5658335 | Allen | Aug 1997 | A |
5658337 | Kohrs et al. | Aug 1997 | A |
5674295 | Ray et al. | Oct 1997 | A |
5700264 | Zucherman et al. | Dec 1997 | A |
5725582 | Bevan et al. | Mar 1998 | A |
5741253 | Michelson | Apr 1998 | A |
5746720 | Stouder, Jr. | May 1998 | A |
5762629 | Kambin | Jun 1998 | A |
5836948 | Zucherman et al. | Nov 1998 | A |
5860977 | Zucherman et al. | Jan 1999 | A |
5863948 | Epstein et al. | Jan 1999 | A |
5876404 | Zucherman et al. | Mar 1999 | A |
RE36211 | Nonomura et al. | May 1999 | E |
5904636 | Chen et al. | May 1999 | A |
5904686 | Zucherman et al. | May 1999 | A |
5928207 | Pisano et al. | Jul 1999 | A |
5948017 | Taheri | Sep 1999 | A |
5972015 | Scribner et al. | Oct 1999 | A |
6039761 | Li et al. | Mar 2000 | A |
6045552 | Zucherman et al. | Apr 2000 | A |
6048342 | Zucherman et al. | Apr 2000 | A |
6048345 | Berke et al. | Apr 2000 | A |
6066154 | Reiley et al. | May 2000 | A |
6068630 | Zucherman et al. | May 2000 | A |
6074390 | Zucherman et al. | Jun 2000 | A |
6080155 | Michelson | Jun 2000 | A |
6080157 | Cathro et al. | Jun 2000 | A |
6090112 | Zucherman et al. | Jul 2000 | A |
6096038 | Michelson | Aug 2000 | A |
6102928 | Bonutti | Aug 2000 | A |
D433193 | Gaw et al. | Oct 2000 | S |
6132464 | Martin et al. | Oct 2000 | A |
6149642 | Gerhart et al. | Nov 2000 | A |
6149652 | Zucherman et al. | Nov 2000 | A |
6152926 | Zucherman et al. | Nov 2000 | A |
6156038 | Zucherman et al. | Dec 2000 | A |
6159215 | Urbahns et al. | Dec 2000 | A |
6179873 | Zientek | Jan 2001 | B1 |
6183471 | Zucherman et al. | Feb 2001 | B1 |
6190387 | Zucherman et al. | Feb 2001 | B1 |
6225048 | Soderberg-Naucler et al. | May 2001 | B1 |
6235030 | Zucherman et al. | May 2001 | B1 |
6238397 | Zucherman et al. | May 2001 | B1 |
6264651 | Underwood et al. | Jul 2001 | B1 |
6264656 | Michelson | Jul 2001 | B1 |
6267765 | Taylor et al. | Jul 2001 | B1 |
6270498 | Michelson | Aug 2001 | B1 |
6280444 | Zucherman et al. | Aug 2001 | B1 |
6312431 | Asfora | Nov 2001 | B1 |
6328730 | Harkrider, Jr. | Dec 2001 | B1 |
6332882 | Zucherman et al. | Dec 2001 | B1 |
6332883 | Zucherman et al. | Dec 2001 | B1 |
6336930 | Stalcup et al. | Jan 2002 | B1 |
6348053 | Cachia | Feb 2002 | B1 |
6364883 | Santilli | Apr 2002 | B1 |
6371989 | Chauvin et al. | Apr 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6379355 | Zucherman et al. | Apr 2002 | B1 |
6387130 | Stone et al. | May 2002 | B1 |
6395032 | Gauchet et al. | May 2002 | B1 |
6402740 | Ellis et al. | Jun 2002 | B1 |
6402750 | Atkinson et al. | Jun 2002 | B1 |
6402784 | Wardlaw et al. | Jun 2002 | B1 |
6413228 | Hung et al. | Jul 2002 | B1 |
6419676 | Zucherman et al. | Jul 2002 | B1 |
6419677 | Zucherman et al. | Jul 2002 | B2 |
6440169 | Elberg et al. | Aug 2002 | B1 |
6443988 | Felt et al. | Sep 2002 | B2 |
6447547 | Michelson | Sep 2002 | B1 |
6451019 | Zucherman et al. | Sep 2002 | B1 |
6451020 | Zucherman et al. | Sep 2002 | B1 |
6464682 | Snoke | Oct 2002 | B1 |
6471976 | Taylor et al. | Oct 2002 | B1 |
6478796 | Zucherman et al. | Nov 2002 | B2 |
6478822 | Leroux et al. | Nov 2002 | B1 |
6500178 | Zucherman et al. | Dec 2002 | B2 |
6514256 | Zucherman et al. | Feb 2003 | B2 |
6530925 | Boudard et al. | Mar 2003 | B2 |
6558333 | Gilboa et al. | May 2003 | B2 |
6565570 | Sterett et al. | May 2003 | B2 |
6572617 | Senegas et al. | Jun 2003 | B1 |
6575981 | Boyd et al. | Jun 2003 | B1 |
6579281 | Palmer et al. | Jun 2003 | B2 |
6579319 | Goble et al. | Jun 2003 | B2 |
6582433 | Yun | Jun 2003 | B2 |
6582451 | Marucci et al. | Jun 2003 | B1 |
6599292 | Ray | Jul 2003 | B1 |
6602248 | Sharps et al. | Aug 2003 | B1 |
6610065 | Branch et al. | Aug 2003 | B1 |
6610091 | Reiley | Aug 2003 | B1 |
6616673 | Stone et al. | Sep 2003 | B1 |
6626944 | Taylor et al. | Sep 2003 | B1 |
6645207 | Dixon et al. | Nov 2003 | B2 |
6645211 | Magana | Nov 2003 | B2 |
6652527 | Zucherman et al. | Nov 2003 | B2 |
6652534 | Zucherman et al. | Nov 2003 | B2 |
6663637 | Dixon et al. | Dec 2003 | B2 |
6679886 | Weikel et al. | Jan 2004 | B2 |
6695842 | Zucherman et al. | Feb 2004 | B2 |
6699246 | Zucherman et al. | Mar 2004 | B2 |
6699247 | Zucherman et al. | Mar 2004 | B2 |
6702847 | DiCarlo | Mar 2004 | B2 |
6712819 | Zucherman et al. | Mar 2004 | B2 |
6716215 | David et al. | Apr 2004 | B1 |
6716245 | Pasquet et al. | Apr 2004 | B2 |
6726690 | Eckman | Apr 2004 | B2 |
6733534 | Sherman | May 2004 | B2 |
6746485 | Zucherman et al. | Jun 2004 | B1 |
6761720 | Senegas et al. | Jul 2004 | B1 |
6783529 | Hover et al. | Aug 2004 | B2 |
6783546 | Zucherman et al. | Aug 2004 | B2 |
6796983 | Zucherman et al. | Sep 2004 | B1 |
6805697 | Helm et al. | Oct 2004 | B1 |
6835205 | Atkinson et al. | Dec 2004 | B2 |
6840944 | Suddaby | Jan 2005 | B2 |
6858029 | Yeh | Feb 2005 | B2 |
6869398 | Obenchain et al. | Mar 2005 | B2 |
6875212 | Shaolian et al. | Apr 2005 | B2 |
6902566 | Zucherman et al. | Jun 2005 | B2 |
6926728 | Zucherman et al. | Aug 2005 | B2 |
6946000 | Senegas et al. | Sep 2005 | B2 |
6949123 | Reiley | Sep 2005 | B2 |
6966930 | Arnin et al. | Nov 2005 | B2 |
6974478 | Reiley et al. | Dec 2005 | B2 |
6976988 | Ralph | Dec 2005 | B2 |
7011685 | Arnin et al. | Mar 2006 | B2 |
7029473 | Zucherman et al. | Apr 2006 | B2 |
7033358 | Taylor et al. | Apr 2006 | B2 |
7048736 | Robinson et al. | May 2006 | B2 |
7070598 | Lim et al. | Jul 2006 | B2 |
7083649 | Zucherman et al. | Aug 2006 | B2 |
7087055 | Lim et al. | Aug 2006 | B2 |
7087083 | Pasquet et al. | Aug 2006 | B2 |
7097648 | Globerman et al. | Aug 2006 | B1 |
7101375 | Zucherman et al. | Sep 2006 | B2 |
7163558 | Senegas et al. | Jan 2007 | B2 |
7179225 | Shluzas et al. | Feb 2007 | B2 |
7187064 | Tzu et al. | Mar 2007 | B2 |
7189234 | Zucherman et al. | Mar 2007 | B2 |
7189236 | Taylor et al. | Mar 2007 | B2 |
7201751 | Zucherman et al. | Apr 2007 | B2 |
7217291 | Zucherman et al. | May 2007 | B2 |
7223289 | Trieu et al. | May 2007 | B2 |
7229441 | Trieu et al. | Jun 2007 | B2 |
7238204 | Le Couedic et al. | Jul 2007 | B2 |
7252673 | Lim | Aug 2007 | B2 |
7273496 | Mitchell | Sep 2007 | B2 |
7282063 | Cohen et al. | Oct 2007 | B2 |
7297162 | Mujwid | Nov 2007 | B2 |
7306628 | Zucherman et al. | Dec 2007 | B2 |
7318839 | Malberg et al. | Jan 2008 | B2 |
7320707 | Zucherman et al. | Jan 2008 | B2 |
7335200 | Carli | Feb 2008 | B2 |
7335203 | Winslow et al. | Feb 2008 | B2 |
7354453 | McAfee | Apr 2008 | B2 |
7384340 | Eguchi et al. | Jun 2008 | B2 |
7390330 | Harp | Jun 2008 | B2 |
7410501 | Michelson | Aug 2008 | B2 |
7442208 | Mathieu et al. | Oct 2008 | B2 |
7445637 | Taylor | Nov 2008 | B2 |
7473268 | Zucherman et al. | Jan 2009 | B2 |
7476251 | Zucherman et al. | Jan 2009 | B2 |
7481839 | Zucherman et al. | Jan 2009 | B2 |
7481840 | Zucherman et al. | Jan 2009 | B2 |
7491204 | Marnay et al. | Feb 2009 | B2 |
7497859 | Zucherman et al. | Mar 2009 | B2 |
7503935 | Zucherman et al. | Mar 2009 | B2 |
7504798 | Kawada et al. | Mar 2009 | B2 |
7510567 | Zucherman et al. | Mar 2009 | B2 |
7520887 | Maxy et al. | Apr 2009 | B2 |
7520899 | Zucherman et al. | Apr 2009 | B2 |
7547308 | Bertagnoli et al. | Jun 2009 | B2 |
7549999 | Zucherman et al. | Jun 2009 | B2 |
7550009 | Arnin et al. | Jun 2009 | B2 |
7565259 | Sheng et al. | Jul 2009 | B2 |
7572276 | Lim et al. | Aug 2009 | B2 |
7575600 | Zucherman et al. | Aug 2009 | B2 |
7585313 | Kwak et al. | Sep 2009 | B2 |
7585316 | Trieu | Sep 2009 | B2 |
7588588 | Spitler et al. | Sep 2009 | B2 |
7591851 | Winslow et al. | Sep 2009 | B2 |
7601170 | Winslow et al. | Oct 2009 | B2 |
7621939 | Zucherman et al. | Nov 2009 | B2 |
7635377 | Zucherman et al. | Dec 2009 | B2 |
7635378 | Zucherman et al. | Dec 2009 | B2 |
7637950 | Baccelli et al. | Dec 2009 | B2 |
7658752 | Labrom et al. | Feb 2010 | B2 |
7662187 | Zucherman et al. | Feb 2010 | B2 |
7666186 | Harp | Feb 2010 | B2 |
7666209 | Zucherman et al. | Feb 2010 | B2 |
7666228 | Le Couedic et al. | Feb 2010 | B2 |
7670377 | Zucherman et al. | Mar 2010 | B2 |
7682376 | Trieu | Mar 2010 | B2 |
7691146 | Zucherman et al. | Apr 2010 | B2 |
7695513 | Zucherman et al. | Apr 2010 | B2 |
7699852 | Frankel et al. | Apr 2010 | B2 |
7699873 | Stevenson et al. | Apr 2010 | B2 |
D618796 | Cantu et al. | Jun 2010 | S |
7727233 | Blackwell et al. | Jun 2010 | B2 |
7727241 | Gorensek et al. | Jun 2010 | B2 |
7731751 | Butler et al. | Jun 2010 | B2 |
7742795 | Stone et al. | Jun 2010 | B2 |
7749231 | Bonvallet et al. | Jul 2010 | B2 |
7749252 | Zucherman et al. | Jul 2010 | B2 |
7749253 | Zucherman et al. | Jul 2010 | B2 |
7753938 | Aschmann et al. | Jul 2010 | B2 |
7758619 | Zucherman et al. | Jul 2010 | B2 |
7758647 | Arnin et al. | Jul 2010 | B2 |
7763028 | Lim et al. | Jul 2010 | B2 |
7763050 | Winslow et al. | Jul 2010 | B2 |
7763051 | Labrom et al. | Jul 2010 | B2 |
7763073 | Hawkins et al. | Jul 2010 | B2 |
7763074 | Altarac et al. | Jul 2010 | B2 |
7766967 | Francis | Aug 2010 | B2 |
7776090 | Winslow et al. | Aug 2010 | B2 |
7780709 | Bruneau et al. | Aug 2010 | B2 |
7789898 | Peterman | Sep 2010 | B2 |
7794476 | Wisnewski | Sep 2010 | B2 |
7803190 | Zucherman et al. | Sep 2010 | B2 |
7806911 | Peckham | Oct 2010 | B2 |
7811308 | Arnin et al. | Oct 2010 | B2 |
7811322 | Arnin et al. | Oct 2010 | B2 |
7811323 | Arnin et al. | Oct 2010 | B2 |
7811324 | Arnin et al. | Oct 2010 | B2 |
7811330 | Arnin et al. | Oct 2010 | B2 |
7819921 | Grotz | Oct 2010 | B2 |
7828822 | Zucherman et al. | Nov 2010 | B2 |
7828849 | Lim | Nov 2010 | B2 |
7833272 | Arnin et al. | Nov 2010 | B2 |
7837687 | Harp | Nov 2010 | B2 |
7837688 | Boyer, II et al. | Nov 2010 | B2 |
7837700 | Harp | Nov 2010 | B2 |
7837711 | Bruneau et al. | Nov 2010 | B2 |
7837734 | Zucherman et al. | Nov 2010 | B2 |
7846183 | Blain | Dec 2010 | B2 |
7846185 | Carls et al. | Dec 2010 | B2 |
7846186 | Taylor | Dec 2010 | B2 |
7857815 | Zucherman et al. | Dec 2010 | B2 |
7862569 | Zucherman et al. | Jan 2011 | B2 |
7862586 | Malek | Jan 2011 | B2 |
7862590 | Lim et al. | Jan 2011 | B2 |
7862592 | Peterson et al. | Jan 2011 | B2 |
7862615 | Carli et al. | Jan 2011 | B2 |
7867276 | Matge et al. | Jan 2011 | B2 |
7871426 | Chin et al. | Jan 2011 | B2 |
7896879 | Solsberg et al. | Mar 2011 | B2 |
7942830 | Solsberg et al. | May 2011 | B2 |
7955392 | Dewey et al. | Jun 2011 | B2 |
7985246 | Trieu | Jul 2011 | B2 |
8012207 | Kim | Sep 2011 | B2 |
8025684 | Garcia-Bengochea et al. | Sep 2011 | B2 |
8057513 | Kohm et al. | Nov 2011 | B2 |
8062332 | Cunningham et al. | Nov 2011 | B2 |
8100823 | Harp | Jan 2012 | B2 |
8123782 | Altarac et al. | Feb 2012 | B2 |
8123807 | Kim | Feb 2012 | B2 |
8128662 | Altarac et al. | Mar 2012 | B2 |
8152837 | Altarac et al. | Apr 2012 | B2 |
8167944 | Kim | May 2012 | B2 |
8226690 | Altarac et al. | Jul 2012 | B2 |
8273108 | Altarac et al. | Sep 2012 | B2 |
8277488 | Altarac et al. | Oct 2012 | B2 |
8292922 | Altarac et al. | Oct 2012 | B2 |
8317864 | Kim | Nov 2012 | B2 |
8409282 | Kim | Apr 2013 | B2 |
8425559 | Tebbe et al. | Apr 2013 | B2 |
8608762 | Solsberg et al. | Dec 2013 | B2 |
8613747 | Altarac et al. | Dec 2013 | B2 |
8628574 | Altarac et al. | Jan 2014 | B2 |
8696671 | Solsberg et al. | Apr 2014 | B2 |
8734477 | Solsberg et al. | May 2014 | B2 |
8740948 | Reglos et al. | Jun 2014 | B2 |
8845726 | Tebbe et al. | Sep 2014 | B2 |
8864828 | Altarac et al. | Oct 2014 | B2 |
8882772 | Solsberg et al. | Nov 2014 | B2 |
8894653 | Solsberg et al. | Nov 2014 | B2 |
8900271 | Kim | Dec 2014 | B2 |
8945183 | Altarac et al. | Feb 2015 | B2 |
9023084 | Kim | May 2015 | B2 |
9039742 | Altarac et al. | May 2015 | B2 |
9119680 | Altarac et al. | Sep 2015 | B2 |
9125692 | Kim | Sep 2015 | B2 |
9155570 | Altarac et al. | Oct 2015 | B2 |
9155572 | Altarac et al. | Oct 2015 | B2 |
9161783 | Altarac et al. | Oct 2015 | B2 |
9186186 | Reglos | Nov 2015 | B2 |
9211146 | Kim | Dec 2015 | B2 |
9283005 | Tebbe et al. | Mar 2016 | B2 |
9314279 | Kim | Apr 2016 | B2 |
9393055 | Altarac et al. | Jul 2016 | B2 |
9445843 | Altarac et al. | Sep 2016 | B2 |
9532812 | Altarac et al. | Jan 2017 | B2 |
9572603 | Altarac et al. | Feb 2017 | B2 |
9675303 | Choi et al. | Jun 2017 | B2 |
9861398 | Altarac et al. | Jan 2018 | B2 |
20010031965 | Zucherman et al. | Oct 2001 | A1 |
20020022856 | Johnson et al. | Feb 2002 | A1 |
20020042607 | Palmer et al. | Apr 2002 | A1 |
20020116009 | Fraser | Aug 2002 | A1 |
20020143331 | Zucherman et al. | Oct 2002 | A1 |
20020151977 | Paes et al. | Oct 2002 | A1 |
20030040746 | Mitchell et al. | Feb 2003 | A1 |
20030040753 | Daum et al. | Feb 2003 | A1 |
20030074075 | Thomas et al. | Apr 2003 | A1 |
20030105466 | Ralph et al. | Jun 2003 | A1 |
20030149438 | Nichols et al. | Aug 2003 | A1 |
20030153976 | Cauthen et al. | Aug 2003 | A1 |
20030176921 | Lawson | Sep 2003 | A1 |
20030220643 | Ferree | Nov 2003 | A1 |
20030220650 | Major et al. | Nov 2003 | A1 |
20030233098 | Markworth | Dec 2003 | A1 |
20040087947 | Lim et al. | May 2004 | A1 |
20040106997 | Lieberson | Jun 2004 | A1 |
20040106999 | Mathews | Jun 2004 | A1 |
20040148028 | Ferree | Jul 2004 | A1 |
20040167625 | Beyar et al. | Aug 2004 | A1 |
20040220568 | Zucherman et al. | Nov 2004 | A1 |
20040225295 | Zubok et al. | Nov 2004 | A1 |
20050021042 | Marnay | Jan 2005 | A1 |
20050049708 | Atkinson et al. | Mar 2005 | A1 |
20050075634 | Zucherman et al. | Apr 2005 | A1 |
20050090822 | DiPoto | Apr 2005 | A1 |
20050101955 | Zucherman et al. | May 2005 | A1 |
20050125066 | McAfee | Jun 2005 | A1 |
20050143738 | Zucherman et al. | Jun 2005 | A1 |
20050165398 | Reiley | Jul 2005 | A1 |
20050192586 | Zucherman et al. | Sep 2005 | A1 |
20050192671 | Bao et al. | Sep 2005 | A1 |
20050209603 | Zucherman et al. | Sep 2005 | A1 |
20050209698 | Gordon | Sep 2005 | A1 |
20050216087 | Zucherman et al. | Sep 2005 | A1 |
20050228383 | Zucherman et al. | Oct 2005 | A1 |
20050228384 | Zucherman et al. | Oct 2005 | A1 |
20050228426 | Campbell | Oct 2005 | A1 |
20050245937 | Winslow | Nov 2005 | A1 |
20050278036 | Leonard et al. | Dec 2005 | A1 |
20060030860 | Peterman | Feb 2006 | A1 |
20060036258 | Zucherman et al. | Feb 2006 | A1 |
20060064107 | Bertagnoli et al. | Mar 2006 | A1 |
20060064165 | Zucherman et al. | Mar 2006 | A1 |
20060064166 | Zucherman et al. | Mar 2006 | A1 |
20060074431 | Sutton et al. | Apr 2006 | A1 |
20060084976 | Borgstrom et al. | Apr 2006 | A1 |
20060084983 | Kim | Apr 2006 | A1 |
20060084985 | Kim | Apr 2006 | A1 |
20060084988 | Kim | Apr 2006 | A1 |
20060084991 | Borgstrom et al. | Apr 2006 | A1 |
20060085069 | Kim | Apr 2006 | A1 |
20060085070 | Kim | Apr 2006 | A1 |
20060085074 | Raiszadeh | Apr 2006 | A1 |
20060089718 | Zucherman et al. | Apr 2006 | A1 |
20060122458 | Bleich | Jun 2006 | A1 |
20060122620 | Kim | Jun 2006 | A1 |
20060149254 | Lauryssen et al. | Jul 2006 | A1 |
20060149289 | Winslow et al. | Jul 2006 | A1 |
20060167416 | Mathis et al. | Jul 2006 | A1 |
20060195102 | Malandain | Aug 2006 | A1 |
20060217811 | Lambrecht et al. | Sep 2006 | A1 |
20060224159 | Anderson | Oct 2006 | A1 |
20060235386 | Anderson | Oct 2006 | A1 |
20060241597 | Mitchell et al. | Oct 2006 | A1 |
20060241614 | Bruneau et al. | Oct 2006 | A1 |
20060241757 | Anderson | Oct 2006 | A1 |
20060247623 | Anderson et al. | Nov 2006 | A1 |
20060247632 | Winslow et al. | Nov 2006 | A1 |
20060247633 | Winslow et al. | Nov 2006 | A1 |
20060247650 | Yerby et al. | Nov 2006 | A1 |
20060247773 | Stamp | Nov 2006 | A1 |
20060264938 | Zucherman et al. | Nov 2006 | A1 |
20060264939 | Zucherman et al. | Nov 2006 | A1 |
20060265066 | Zucherman et al. | Nov 2006 | A1 |
20060265067 | Zucherman et al. | Nov 2006 | A1 |
20060271044 | Petrini et al. | Nov 2006 | A1 |
20060271049 | Zucherman et al. | Nov 2006 | A1 |
20060271055 | Thramann | Nov 2006 | A1 |
20060271061 | Beyar et al. | Nov 2006 | A1 |
20060271194 | Zucherman et al. | Nov 2006 | A1 |
20060276801 | Yerby et al. | Dec 2006 | A1 |
20060276897 | Winslow et al. | Dec 2006 | A1 |
20060282077 | Labrom et al. | Dec 2006 | A1 |
20060282078 | Labrom et al. | Dec 2006 | A1 |
20070016196 | Winslow et al. | Jan 2007 | A1 |
20070055237 | Edidin et al. | Mar 2007 | A1 |
20070055246 | Zucherman et al. | Mar 2007 | A1 |
20070073289 | Kwak et al. | Mar 2007 | A1 |
20070100340 | Lange et al. | May 2007 | A1 |
20070100366 | Dziedzic et al. | May 2007 | A1 |
20070123863 | Winslow et al. | May 2007 | A1 |
20070123904 | Stad et al. | May 2007 | A1 |
20070161991 | Altarac et al. | Jul 2007 | A1 |
20070161993 | Lowery et al. | Jul 2007 | A1 |
20070173818 | Hestad et al. | Jul 2007 | A1 |
20070173821 | Trieu | Jul 2007 | A1 |
20070173822 | Bruneau et al. | Jul 2007 | A1 |
20070173823 | Dewey et al. | Jul 2007 | A1 |
20070173832 | Tebbe et al. | Jul 2007 | A1 |
20070173939 | Kim et al. | Jul 2007 | A1 |
20070179500 | Chin et al. | Aug 2007 | A1 |
20070185490 | Implicito | Aug 2007 | A1 |
20070191857 | Allard et al. | Aug 2007 | A1 |
20070191948 | Arnin et al. | Aug 2007 | A1 |
20070191991 | Addink | Aug 2007 | A1 |
20070198045 | Morton et al. | Aug 2007 | A1 |
20070198091 | Boyer et al. | Aug 2007 | A1 |
20070203493 | Zucherman et al. | Aug 2007 | A1 |
20070203495 | Zucherman et al. | Aug 2007 | A1 |
20070203496 | Zucherman et al. | Aug 2007 | A1 |
20070203497 | Zucherman et al. | Aug 2007 | A1 |
20070203501 | Zucherman et al. | Aug 2007 | A1 |
20070208345 | Marnay et al. | Sep 2007 | A1 |
20070208346 | Marnay et al. | Sep 2007 | A1 |
20070208366 | Pellegrino et al. | Sep 2007 | A1 |
20070210018 | Wallwiener et al. | Sep 2007 | A1 |
20070225706 | Clark et al. | Sep 2007 | A1 |
20070225724 | Edmond | Sep 2007 | A1 |
20070225807 | Phan et al. | Sep 2007 | A1 |
20070225814 | Atkinson et al. | Sep 2007 | A1 |
20070233068 | Bruneau et al. | Oct 2007 | A1 |
20070233074 | Anderson et al. | Oct 2007 | A1 |
20070233076 | Trieu | Oct 2007 | A1 |
20070233077 | Khalili | Oct 2007 | A1 |
20070233081 | Pasquet et al. | Oct 2007 | A1 |
20070233082 | Chin et al. | Oct 2007 | A1 |
20070233083 | Abdou | Oct 2007 | A1 |
20070233084 | Betz et al. | Oct 2007 | A1 |
20070233088 | Edmond | Oct 2007 | A1 |
20070233089 | DiPoto et al. | Oct 2007 | A1 |
20070233096 | Garcia-Bengochea | Oct 2007 | A1 |
20070233098 | Mastrorio et al. | Oct 2007 | A1 |
20070233129 | Bertagnoli et al. | Oct 2007 | A1 |
20070250060 | Anderson et al. | Oct 2007 | A1 |
20070260245 | Malandain et al. | Nov 2007 | A1 |
20070265623 | Malandain et al. | Nov 2007 | A1 |
20070265624 | Zucherman et al. | Nov 2007 | A1 |
20070265625 | Zucherman et al. | Nov 2007 | A1 |
20070265626 | Seme | Nov 2007 | A1 |
20070270822 | Heinz | Nov 2007 | A1 |
20070270823 | Trieu et al. | Nov 2007 | A1 |
20070270824 | Lim et al. | Nov 2007 | A1 |
20070270826 | Trieu et al. | Nov 2007 | A1 |
20070270827 | Lim et al. | Nov 2007 | A1 |
20070270828 | Bruneau et al. | Nov 2007 | A1 |
20070270829 | Carls et al. | Nov 2007 | A1 |
20070270834 | Bruneau et al. | Nov 2007 | A1 |
20070272259 | Allard et al. | Nov 2007 | A1 |
20070276368 | Trieu et al. | Nov 2007 | A1 |
20070276369 | Allard et al. | Nov 2007 | A1 |
20070276372 | Malandain et al. | Nov 2007 | A1 |
20070276373 | Malandain | Nov 2007 | A1 |
20070276390 | Solsberg et al. | Nov 2007 | A1 |
20070276493 | Malandain et al. | Nov 2007 | A1 |
20070276496 | Lange et al. | Nov 2007 | A1 |
20070276497 | Anderson | Nov 2007 | A1 |
20070276500 | Zucherman et al. | Nov 2007 | A1 |
20080015700 | Zucherman et al. | Jan 2008 | A1 |
20080021468 | Zucherman et al. | Jan 2008 | A1 |
20080021560 | Zucherman et al. | Jan 2008 | A1 |
20080021561 | Zucherman et al. | Jan 2008 | A1 |
20080027545 | Zucherman et al. | Jan 2008 | A1 |
20080027552 | Zucherman et al. | Jan 2008 | A1 |
20080027553 | Zucherman et al. | Jan 2008 | A1 |
20080033445 | Zucherman et al. | Feb 2008 | A1 |
20080033553 | Zucherman et al. | Feb 2008 | A1 |
20080033558 | Zucherman et al. | Feb 2008 | A1 |
20080033559 | Zucherman et al. | Feb 2008 | A1 |
20080039853 | Zucherman et al. | Feb 2008 | A1 |
20080039858 | Zucherman et al. | Feb 2008 | A1 |
20080039859 | Zucherman et al. | Feb 2008 | A1 |
20080039945 | Zucherman et al. | Feb 2008 | A1 |
20080039946 | Zucherman et al. | Feb 2008 | A1 |
20080039947 | Zucherman et al. | Feb 2008 | A1 |
20080045958 | Zucherman et al. | Feb 2008 | A1 |
20080045959 | Zucherman et al. | Feb 2008 | A1 |
20080046081 | Zucherman et al. | Feb 2008 | A1 |
20080046085 | Zucherman et al. | Feb 2008 | A1 |
20080046086 | Zucherman et al. | Feb 2008 | A1 |
20080046087 | Zucherman et al. | Feb 2008 | A1 |
20080046088 | Zucherman et al. | Feb 2008 | A1 |
20080051785 | Zucherman et al. | Feb 2008 | A1 |
20080051896 | Suddaby | Feb 2008 | A1 |
20080051898 | Zucherman et al. | Feb 2008 | A1 |
20080051899 | Zucherman et al. | Feb 2008 | A1 |
20080051904 | Zucherman et al. | Feb 2008 | A1 |
20080051905 | Zucherman et al. | Feb 2008 | A1 |
20080058806 | Klyce et al. | Mar 2008 | A1 |
20080058807 | Klyce et al. | Mar 2008 | A1 |
20080058808 | Klyce et al. | Mar 2008 | A1 |
20080058941 | Zucherman et al. | Mar 2008 | A1 |
20080065086 | Zucherman et al. | Mar 2008 | A1 |
20080065212 | Zucherman et al. | Mar 2008 | A1 |
20080065213 | Zucherman et al. | Mar 2008 | A1 |
20080065214 | Zucherman et al. | Mar 2008 | A1 |
20080071280 | Winslow | Mar 2008 | A1 |
20080071378 | Zucherman et al. | Mar 2008 | A1 |
20080071380 | Sweeney | Mar 2008 | A1 |
20080086212 | Zucherman et al. | Apr 2008 | A1 |
20080108990 | Mitchell et al. | May 2008 | A1 |
20080114455 | Lange et al. | May 2008 | A1 |
20080132952 | Malandain et al. | Jun 2008 | A1 |
20080167655 | Wang et al. | Jul 2008 | A1 |
20080167656 | Zucherman et al. | Jul 2008 | A1 |
20080172057 | Zucherman et al. | Jul 2008 | A1 |
20080177272 | Zucherman et al. | Jul 2008 | A1 |
20080177306 | Lamborne et al. | Jul 2008 | A1 |
20080177312 | Perez-Cruet et al. | Jul 2008 | A1 |
20080183210 | Zucherman et al. | Jul 2008 | A1 |
20080188895 | Cragg et al. | Aug 2008 | A1 |
20080208344 | Kilpela et al. | Aug 2008 | A1 |
20080215058 | Zucherman et al. | Sep 2008 | A1 |
20080221692 | Zucherman et al. | Sep 2008 | A1 |
20080228225 | Trautwein et al. | Sep 2008 | A1 |
20080234708 | Houser et al. | Sep 2008 | A1 |
20080234824 | Youssef et al. | Sep 2008 | A1 |
20080288075 | Zucherman et al. | Nov 2008 | A1 |
20080319550 | Altarac et al. | Dec 2008 | A1 |
20090012528 | Aschmann et al. | Jan 2009 | A1 |
20090118833 | Hudgins et al. | May 2009 | A1 |
20090125030 | Tebbe et al. | May 2009 | A1 |
20090125036 | Bleich | May 2009 | A1 |
20090138046 | Altarac et al. | May 2009 | A1 |
20090138055 | Altarac et al. | May 2009 | A1 |
20090222043 | Altarac et al. | Sep 2009 | A1 |
20090248079 | Kwak et al. | Oct 2009 | A1 |
20090292315 | Trieu | Nov 2009 | A1 |
20100042217 | Zucherman et al. | Feb 2010 | A1 |
20100082108 | Zucherman et al. | Apr 2010 | A1 |
20100114100 | Mehdizade | May 2010 | A1 |
20100131009 | Roebling et al. | May 2010 | A1 |
20100228092 | Ortiz et al. | Sep 2010 | A1 |
20100234889 | Hess | Sep 2010 | A1 |
20100262243 | Zucherman et al. | Oct 2010 | A1 |
20100280551 | Pool et al. | Nov 2010 | A1 |
20100305611 | Zucherman et al. | Dec 2010 | A1 |
20110245833 | Anderson | Oct 2011 | A1 |
20110313457 | Reglos et al. | Dec 2011 | A1 |
20120078301 | Hess | Mar 2012 | A1 |
20120158063 | Altarac et al. | Jun 2012 | A1 |
20120226315 | Altarac et al. | Sep 2012 | A1 |
20120232552 | Morgenstern Lopez et al. | Sep 2012 | A1 |
20120303039 | Chin et al. | Nov 2012 | A1 |
20120330359 | Kim | Dec 2012 | A1 |
20130012998 | Altarac et al. | Jan 2013 | A1 |
20130072985 | Kim | Mar 2013 | A1 |
20130165974 | Kim | Jun 2013 | A1 |
20130165975 | Tebbe et al. | Jun 2013 | A1 |
20130172932 | Altarac et al. | Jul 2013 | A1 |
20130172933 | Altarac et al. | Jul 2013 | A1 |
20130289399 | Choi et al. | Oct 2013 | A1 |
20130289622 | Kim | Oct 2013 | A1 |
20140081332 | Altarac et al. | Mar 2014 | A1 |
20140214082 | Reglos et al. | Jul 2014 | A1 |
20150150598 | Tebbe et al. | Jun 2015 | A1 |
20150150604 | Kim | Jun 2015 | A1 |
20150374415 | Kim | Dec 2015 | A1 |
20160030092 | Altarac et al. | Feb 2016 | A1 |
20160066963 | Kim | Mar 2016 | A1 |
20160135853 | Altarac et al. | May 2016 | A1 |
20160248222 | Miyata | Aug 2016 | A1 |
20160317193 | Kim | Nov 2016 | A1 |
20170071588 | Choi et al. | Mar 2017 | A1 |
20170128110 | Altarac et al. | May 2017 | A1 |
20170156763 | Altarac et al. | Jun 2017 | A1 |
20170245883 | Tebbe et al. | Aug 2017 | A1 |
20170273722 | Altarac et al. | Sep 2017 | A1 |
Number | Date | Country |
---|---|---|
268461 | Feb 1927 | CA |
2794456 | Jul 2006 | CN |
101897603 | Dec 2010 | CN |
69507480 | Sep 1999 | DE |
322334 | Jun 1989 | EP |
0767636 | Apr 1997 | EP |
0768843 | Apr 1997 | EP |
0959792 | Dec 1999 | EP |
1027004 | Aug 2000 | EP |
1030615 | Aug 2000 | EP |
1138268 | Oct 2001 | EP |
1330987 | Jul 2003 | EP |
1056408 | Dec 2003 | EP |
1343424 | Sep 2004 | EP |
1454589 | Sep 2004 | EP |
1148850 | Apr 2005 | EP |
1570793 | Sep 2005 | EP |
1299042 | Mar 2006 | EP |
1578314 | May 2007 | EP |
1675535 | May 2007 | EP |
1861046 | Dec 2007 | EP |
2681525 | Mar 1993 | FR |
2722980 | Feb 1996 | FR |
2816197 | May 2002 | FR |
2884136 | Oct 2006 | FR |
2888744 | Jan 2007 | FR |
988281 | Jan 1983 | SU |
WO-9404088 | Mar 1994 | WO |
WO-9426192 | Nov 1994 | WO |
WO-9525485 | Sep 1995 | WO |
WO-9531158 | Nov 1995 | WO |
WO-9600049 | Jan 1996 | WO |
WO-9829047 | Jul 1998 | WO |
WO-9921500 | May 1999 | WO |
WO-9921501 | May 1999 | WO |
WO-9942051 | Aug 1999 | WO |
WO-0013619 | Mar 2000 | WO |
WO-0044319 | Aug 2000 | WO |
WO-0044321 | Aug 2000 | WO |
WO-0128442 | Apr 2001 | WO |
WO-0191657 | Dec 2001 | WO |
WO-0191658 | Dec 2001 | WO |
WO-0203882 | Jan 2002 | WO |
WO-0207623 | Jan 2002 | WO |
WO-0207624 | Jan 2002 | WO |
WO-02051326 | Jul 2002 | WO |
WO-02067793 | Sep 2002 | WO |
WO-02071960 | Sep 2002 | WO |
WO-02076336 | Oct 2002 | WO |
WO-03007791 | Jan 2003 | WO |
WO-03007829 | Jan 2003 | WO |
WO-03008016 | Jan 2003 | WO |
WO-03015646 | Feb 2003 | WO |
WO-03024298 | Mar 2003 | WO |
WO-03045262 | Jun 2003 | WO |
WO-03099147 | Dec 2003 | WO |
WO-03101350 | Dec 2003 | WO |
WO-04073533 | Sep 2004 | WO |
WO-04110300 | Dec 2004 | WO |
WO-05009300 | Feb 2005 | WO |
WO-05013839 | Feb 2005 | WO |
WO-05025461 | Mar 2005 | WO |
WO-05041799 | May 2005 | WO |
WO-05044152 | May 2005 | WO |
WO-05055868 | Jun 2005 | WO |
WO-05079672 | Sep 2005 | WO |
WO-2005086776 | Sep 2005 | WO |
WO-05115261 | Dec 2005 | WO |
WO-06033659 | Mar 2006 | WO |
WO-06034423 | Mar 2006 | WO |
WO-06039243 | Apr 2006 | WO |
WO-06039260 | Apr 2006 | WO |
WO-06045094 | Apr 2006 | WO |
WO-2006045094 | Apr 2006 | WO |
WO-06063047 | Jun 2006 | WO |
WO-06065774 | Jun 2006 | WO |
WO-2006063047 | Jun 2006 | WO |
WO-2006064356 | Jun 2006 | WO |
WO-2006089085 | Aug 2006 | WO |
WO-06102269 | Sep 2006 | WO |
WO-06102428 | Sep 2006 | WO |
WO-06102485 | Sep 2006 | WO |
WO-06107539 | Oct 2006 | WO |
WO-06110462 | Oct 2006 | WO |
WO-06110464 | Oct 2006 | WO |
WO-06110767 | Oct 2006 | WO |
WO-06113080 | Oct 2006 | WO |
WO-06113406 | Oct 2006 | WO |
WO-06113814 | Oct 2006 | WO |
WO-06118945 | Nov 2006 | WO |
WO-06119235 | Nov 2006 | WO |
WO-06119236 | Nov 2006 | WO |
WO-06135511 | Dec 2006 | WO |
WO-07015028 | Feb 2007 | WO |
WO-07035120 | Mar 2007 | WO |
WO-07075375 | Jul 2007 | WO |
WO-07075788 | Jul 2007 | WO |
WO-07075791 | Jul 2007 | WO |
WO-07089605 | Aug 2007 | WO |
WO-07089905 | Aug 2007 | WO |
WO-07089975 | Aug 2007 | WO |
WO-07097735 | Aug 2007 | WO |
WO-07109402 | Sep 2007 | WO |
WO-07110604 | Oct 2007 | WO |
WO-07111795 | Oct 2007 | WO |
WO-07111979 | Oct 2007 | WO |
WO-07111999 | Oct 2007 | WO |
WO-07117882 | Oct 2007 | WO |
WO-07121070 | Oct 2007 | WO |
WO-07127550 | Nov 2007 | WO |
WO-07127588 | Nov 2007 | WO |
WO-07127677 | Nov 2007 | WO |
WO-07127689 | Nov 2007 | WO |
WO-07127694 | Nov 2007 | WO |
WO-07127734 | Nov 2007 | WO |
WO-07127736 | Nov 2007 | WO |
WO-07131165 | Nov 2007 | WO |
WO-07134113 | Nov 2007 | WO |
WO-2008009049 | Jan 2008 | WO |
WO-08048645 | Apr 2008 | WO |
WO-2008057506 | May 2008 | WO |
WO-2008130564 | Oct 2008 | WO |
WO-2009014728 | Jan 2009 | WO |
WO-2009033093 | Mar 2009 | WO |
WO-2009086010 | Jul 2009 | WO |
WO-2009091922 | Jul 2009 | WO |
WO-2009094463 | Jul 2009 | WO |
WO-2009114479 | Sep 2009 | WO |
WO-2011084477 | Jul 2011 | WO |
WO-2015171814 | Nov 2015 | WO |
Entry |
---|
U.S. Appl. No. 15/594,882 of Choi, filed May 15, 2017. |
U.S. Appl. No. 15/831,201 of Kim, filed Dec. 4, 2017. |
ASNR Neuroradiology Patient Information website, Brain and Spine Imaging: A Patient's Guide to Neuroradiology; Myelography; http://www.asnr.org/patientinfo/procedures/myelography.shtml#sthash.sXIDOxWq.dpbs, Copyright 2012-2013. |
Australia Exam Report for Application No. AU2006329867, Applicant: The Board of Trustees of Leland Stanford Junior University; dated Jan. 27, 2012, 2 pages. |
Australia Exam Report for Application No. AU2007317886, Applicant: VertiFlex, Inc.; dated Jun. 18, 2012, 3 pages. |
Australia Exam Report for Application No. AU2008241447, Applicant: VertiFlex, Inc.; dated Jul. 5, 2012, 4 pages. |
Australia Exam Report for Application No. AU2008275708, Applicant: VertiFlex, Inc.; dated Nov. 12, 2012, 4 pages. |
Australia Exam Report for Application No. AU2008279680, Applicant: VertiFlex, Inc.; dated Oct. 30, 2012, 5 pages. |
Australia Exam Report for Application No. AU2008296066, Applicant: VertiFlex, Inc.; dated Mar. 6, 2013, 3 pages. |
Australia Exam Report for Application No. AU2008343092, Applicant: VertiFlex, Inc.; dated Feb. 8, 2013, 4 pages. |
Australia Exam Report for Application No. AU2013273815, Applicant: The Board of Trustees of Leland Stanford Junior University; dated Apr. 17, 2015, 3 pages. |
Australia Exam Report for Application No. AU2014203394, Applicant: VertiFlex, Inc., dated Mar. 15, 2016, 2 pages. |
Australia Exam Report No. 1 for Application No. AU2009206098, Applicant: VertiFlex, Inc.; dated Mar. 6, 2013, 4 pages. |
Australia Exam Report No. 2 for Application No. AU2009206098, Applicant: VertiFlex, Inc.; dated Aug. 19, 2014, 4 pages. |
Canada Exam Report for Application No. CA2634251, Applicant: The Board of Trustees of Leland Stanford Junior University; dated Dec. 3, 2013, 2 pages. |
Canada Exam Report for Application No. CA2668833, Applicant: Vertiflex, Inc.; dated Dec. 5, 2013, 2 pages. |
Canada Exam Report for Application No. CA2695937, Applicant: Vertiflex, Inc.; dated Aug. 7, 2014, 2 pages. |
Canada Exam Report for Application No. CA2697628, Applicant: Vertiflex, Inc.; dated Oct. 16, 2014, 2 pages. |
Canada Exam Report for Application No. CA2698718, Applicant: Vertiflex, Inc.; dated May 20, 2014, 3 pages. |
European Examination Report for Application No. 08794704.0; Applicant: Vertiflex, Inc.; dated Apr. 5, 2017, 6 pages. |
European Examination Report for Application No. 08799267.3; Applicant: Vertiflex, Inc.: dated Sep. 5, 2017, 4 pages. |
European Further Exam Report for Application No. EP09702116.6; Applicant: VertiFlex, Inc.; dated Jul. 4, 2016, 4 pages. |
First Examination Report in European Patent Application No. 08780034.8, dated Jan. 16, 2017, 5 pages. |
Further Examination Report in European Patent Application No. 07861426.0, dated Oct. 4, 2017, 4 pages. |
International Search Report and Written Opinion; Application No. PCT/US2006/047824; dated Oct. 16, 2008, 17 pages. |
International Search Report and Written Opinion; Application No. PCT/US2006/048611; dated Oct. 14, 2008; 10 pages. |
International Search Report and Written Opinion; Application No. PCT/US2006/048614; dated Feb. 3, 2006; 23 pages. |
International Search Report and Written Opinion; Application No. PCT/US2007/022171; dated Apr. 15, 2008, 9 pages. |
International Search Report and Written Opinion; Application No. PCT/US2007/023312; dated May 22, 2008, 14 pages. |
International Search Report and Written Opinion; Application No. PCT/US2008/004901; dated Aug. 19, 2008, 7 pages. |
International Search Report and Written Opinion; Application No. PCT/US2008/008382; dated Mar. 2, 2009, 13 pages. |
International Search Report and Written Opinion; Application No. PCT/US2008/008983; dated Feb. 23, 2009, 7 pages. |
International Search Report and Written Opinion; Application No. PCT/US2008/075487; dated Dec. 31, 2008, 7 pages. |
International Search Report and Written Opinion; Application No. PCT/US2008/087527; dated Jul. 30, 2009, 10 pages. |
International Search Report and Written Opinion; Application No. PCT/US2009/031150; dated Aug. 28, 2009, 6 pages. |
Lee, Seungcheol et al., “New Surgical Techniques of Percutaneous Endoscopic Lumbar Disectomy for Migrated Disc Herniation,” Joint Dis. Rel. Surg., 16(2); pp. 102-110 (2005). |
Lee, Seungcheol et al., “Percutaneous Endoscopic Interlaminar Disectomy for L5-S1 Disc Herniation: Axillary Approach and Preliminary Results,” J. of Korean Neurosurg. Soc., 40: pp. 19-83 (2006). |
McCulloch, John A., Young, Paul H., “Essentials of Spinal Microsurgery,” 1998, pp. 453-485. Lippincott-Raven Publishers, Philadelphia, PA (37 pages total). |
Minns, R.J., et al., “Preliminary Design and Experimental Studies of a Noval Soft Implant for Correcting Sagittal Plane Instability in the Lumbar Spine,” (1997) Spine, 22(16): 1819-1827. |
Palmer, Sylvain et al., “Bilateral decompressive surgery in lumbar spinal stenosis associated with spondylolisthesis: unilateral approach and use of a microscope and tubular retractor system,” Neurosurgery Focus, Jul. 2002, pp. 1-6, vol. 13. |
Supplementary European Search Report for Application No. EP06845480; Applicant: VertiFlex, Inc.; Date of Completion: Aug. 14, 2012, 9 pages. |
Supplementary European Search Report for Application No. EP07861426; Applicant: VertiFlex, Inc.; dated Jun. 7, 2011, 6 pages. |
Supplementary European Search Report for Application No. EP07861721.4; Applicant: VertiFlex, Inc.; dated Nov. 24, 2009, 6 pages. |
Supplementary European Search Report for Application No. EP08742949.4; Applicant: VertiFlex, Inc.; dated Sep. 17, 2012, 6 pages. |
Supplementary European Search Report for Application No. EP08780034.8; Applicant: VertiFlex, Inc.; dated Sep. 19, 2012, 7 pages. |
Supplementary European Search Report for Application No. EP08794704.0; Applicant: VertiFlex, Inc.; dated Oct. 23, 2012, 9 pages. |
Supplementary European Search Report for Application No. EP08799267.3; Applicant: VertiFlex, Inc.; dated Jun. 29, 2011, 7 pages. |
Supplementary European Search Report for Application No. EP08867282.9; Applicant: VertiFlex, Inc.; dated Nov. 28, 2012, 10 pages. |
Supplementary European Search Report for Application No. EP09170304.1; Applicant: VertiFlex, Inc.; dated Nov. 24, 2009, 5 pages. |
Supplementary European Search Report for Application No. EP09170338.9; Applicant: VertiFlex, Inc.; dated Nov. 24, 2009, 6 pages. |
Supplementary European Search Report for Application No. EP09702116.6; Applicant: VertiFlex, Inc.; dated Feb. 11, 2011, 7 pages. |
Supplementary European Search Report for Application No. EP1151901.3; Applicant: VertiFlex, Inc.; dated Apr. 7, 2011, 6 pages. |
Supplementary European Search Report for Application No. EP13184922.6; Applicant: VertiFlex, Inc.; dated Oct. 30, 2013, 8 pages. |
Supplementary European Search Report; Application No. EP07861426.0; Applicant: Vertiflex, Inc.; Date of Completion: Jun. 7, 2011, 6 pages. |
Supplementary European Search Report; Application No. EP07861721.4; Applicant: Vertiflex, Inc.; Date of Completion: Nov. 24, 2009, 6 pages. |
Supplementary European Search Report; Application No. EP09170304.1; Applicant: Vertiflex, Inc.; Date of Completion: Nov. 11, 2009, 5 pages. |
Supplementary European Search Report; Application No. EP09170338.9; Applicant: Vertiflex, Inc.; Date of Completion: Nov. 12, 2009, 6 pages. |
Supplementary European Search Report; Application No. EP09702116.6; Applicant: Vertiflex, Inc.; Date of Completion: Feb. 11, 2011, 6 pages. |
Supplementary European Search Report; Application No. EP11151901.3; Applicant: Vertiflex, Inc.; Date of Completion: Apr. 7, 2011, 6 pages. |
Swan, Colby, “Preliminary Design and Experimental Studies of a Novel Soft Implant for Correcting Sogittal Plane Instability in the Lumbar Spine,” Spine, 1997, 22(16), 1826-1827. |
Tredway, Trent L. et al., “Minimally Invasive Transforaminal Lumbar Interbody Fusion (MI-TLIF) and Lateral Mass Fusion with the MetRx System,” (14 pages total), 2005. |
Vaccaro, Alexander J. et al., MasterCases Spine Surgery, 2001, pp. 100-107. Thieme Medical Publishers, Inc., NY. (10 pages total). |
Vertos mild Devices Kit—PRT-00430-C—Instructions for Use (13 pages total); see http://vertosmed.com/docs/mildIFU_PRT-00430-C.pdf., 2012. |
U.S. Appl. No. 15/864,235 by Altarac et al., filed Jan. 8, 2018. |
U.S. Appl. No. 15/966,287 by Altarac et al., filed Apr. 30, 2018. |
Number | Date | Country | |
---|---|---|---|
20170258501 A1 | Sep 2017 | US |
Number | Date | Country | |
---|---|---|---|
60923971 | Apr 2007 | US | |
60923841 | Apr 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13616547 | Sep 2012 | US |
Child | 15437720 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12148104 | Apr 2008 | US |
Child | 13616547 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11593995 | Nov 2006 | US |
Child | 12148104 | US | |
Parent | 11582874 | Oct 2006 | US |
Child | 11593995 | US | |
Parent | 11314712 | Dec 2005 | US |
Child | 11582874 | US | |
Parent | 11190496 | Jul 2005 | US |
Child | 11314712 | US | |
Parent | 11079006 | Mar 2005 | US |
Child | 11190496 | US | |
Parent | 11052002 | Feb 2005 | US |
Child | 11079006 | US | |
Parent | 11006502 | Dec 2004 | US |
Child | 11052002 | US | |
Parent | 10970843 | Oct 2004 | US |
Child | 11006502 | US |