Interspinous spacer

Information

  • Patent Grant
  • 11229461
  • Patent Number
    11,229,461
  • Date Filed
    Monday, April 30, 2018
    6 years ago
  • Date Issued
    Tuesday, January 25, 2022
    2 years ago
Abstract
An implantable spacer for placement between adjacent spinous processes in a spinal motion segment is provided. The spacer includes a body defining a longitudinal axis and passageway. A first arm and a second arm are connected to the body. Each arm has a pair of extensions and a saddle defining a U-shaped configuration for seating a spinous process therein. Each arm has a proximal caming surface and is capable of rotation with respect to the body. An actuator assembly is disposed inside the passageway and connected to the body. When advanced, a threaded shaft of the actuator assembly contacts the caming surfaces of arms to rotate them from an undeployed configuration to a deployed configuration. In the deployed configuration, the distracted adjacent spinous processes are seated in the U-shaped portion of the arms.
Description
FIELD

The present invention generally relates to medical devices, in particular, implants for placement between adjacent spinous processes of a patient's spine.


BACKGROUND

With spinal stenosis, the spinal canal narrows and pinches the spinal cord and nerves, causing pain in the back and legs. Typically, with age, a person's ligaments may thicken, intervertebral discs may deteriorate and facet joints may break down—all contributing to the condition of the spine characterized by a narrowing of the spinal canal. Injury, heredity, arthritis, changes in blood flow and other causes may also contribute to spinal stenosis.


Doctors have been at the forefront with various treatments of the spine including medications, surgical techniques and implantable devices that alleviate and substantially reduce debilitating pain associated with the back. In one surgical technique, a spacer is implanted between adjacent interspinous processes of a patient's spine. The implanted spacer opens the spinal canal, maintains the desired distance between vertebral body segments, and as a result, avoids impingement of nerves and relieves pain. For suitable candidates, an implantable interspinous spacer may provide significant benefits in terms of pain relief.


Any surgery is an ordeal. However, the type of device and how it is implanted has an impact. For example, one consideration when performing surgery to implant an interspinous spacer is the size of the incision that is required to allow introduction of the device. Small incisions and minimally invasive techniques are generally preferred as they affect less tissue and result in speedier recovery times. As such, there is a need for interspinous spacers that work well with surgical techniques that are minimally invasive for the patient. The present invention sets forth such a spacer.


SUMMARY

According to one aspect of the invention, an implantable spacer for placement between adjacent spinous processes is provided. The spacer includes a body defining a longitudinal axis. A first arm and a second arm are connected to the body and capable of movement with respect to the body. Each arm defines a configuration for receiving a spinous process and has a proximal caming surface. The spacer further includes an actuator assembly connected to the body. The actuator assembly includes an actuator having at least one bearing surface, a shaft connected to the actuator and configured for movement with respect to the body; and a spindle. The actuator assembly is configured to move relative to the body such that rotation of the spindle moves the actuator such that the at least one bearing surface contacts at least one of the caming surfaces to move both of the arms from an undeployed configuration to a deployed configuration in which the arms receive adjacent spinous processes.


According to another aspect of the invention, an implantable spacer for placement between adjacent spinous processes is disclosed. The implant includes a body defining a longitudinal axis. A first arm and a second arm are both connected to the body and capable of movement with respect to the body. Each arm has a configuration for receiving a spinous process and each arm has a proximal caming surface. The spacer further includes an actuator connected to the body and configured to move relative to the body to deploy the arms from an undeployed configuration. In the deployed configuration, the arms seat adjacent spinous processes. The spacer also includes a lock configured to provide resistance to keep the arms in place.


According to another aspect of the invention, a spinal implant for relieving pain and implantable between a superior spinous process and an inferior spinous process is disclosed. The implant includes a body connected prior to implantation to at least one arm. The at least one arm is movable with respect to the body into at least one configuration that is adapted to laterally stabilize and secure the implant with respect to an adjacent spinous process. In one variation, the implant includes a first arm for laterally stabilizing the body with respect to the superior spinous process and a second arm for laterally stabilizing the body with respect to the inferior spinous process.


According to another aspect of the invention, a spinal implant for relieving pain and implantable between a superior spinous process and an inferior spinous process is disclosed. The implant includes a body connected prior to implantation to at least one arm. The at least one arm is movable with respect to the body into at least one configuration that is adapted to laterally stabilize and secure the body with respect to an adjacent spinous process. In one variation, the implant includes a first arm for laterally stabilizing the body with respect to the superior spinous process and a second arm for laterally stabilizing the body with respect to the inferior spinous process. The implant includes a collapsed configuration in which a first end of the first arm and a first end of the second arm form the leading edge of the implant.


According to another aspect of the invention, a spinal implant for relieving pain and implantable between a superior spinous process and an inferior spinous process is disclosed. The implant includes a body connected prior to implantation to at least one arm. The at least one arm is movable with respect to the body into at least one configuration that is adapted to laterally stabilize and secure the body with respect to an adjacent spinous process. In one variation, the implant includes a first arm for laterally stabilizing the body with respect to the superior spinous process and a second arm for laterally stabilizing the body with respect to the inferior spinous process. A second end of the first arm is hinged to the distal end of the body and a second end of the second arm is hinged to the distal end of the body. In one variation, the first and second arms are configured to rotate approximately 90 degrees about their hinged ends into a deployed configuration. In one variation, wherein when rotated approximately 90 degrees, the first and second arms are in a configuration that is adapted to laterally stabilize/secure the body with respect to adjacent spinous processes. In another variation, wherein after rotation of approximately 90 degrees, each of the first and second arms are configured to translate away from the body such that the arms are closer to their respective spinous processes.





BRIEF DESCRIPTION OF THE DRAWINGS

The invention is best understood from the following detailed description when read in conjunction with the accompanying drawings. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity.



FIG. 1a illustrates a perspective view of a spacer according to the present invention.



FIG. 1b illustrates a side view of a spacer according to the present invention.



FIG. 1c illustrates a top view of a spacer according to the present invention.



FIG. 1d illustrates a cross-sectional view of the spacer of FIG. 1c taken along line A-A according to the present invention.



FIG. 1e illustrates an end view of a spacer according to the present invention.



FIG. 1f illustrates an exploded perspective view of a spacer according to the present invention.



FIG. 2a illustrates a perspective view of half of a body of a spacer according to the present invention.



FIG. 2b illustrates a side view of half of a body of a spacer according to the present invention.



FIG. 3a illustrates a perspective view of a superior arm of a spacer according to the present invention.



FIG. 3b illustrates a back view of a superior arm of a spacer according to the present invention.



FIG. 3c illustrates a side view of a superior arm of a spacer according to the present invention.



FIG. 3d illustrates a perspective view of an inferior arm of a spacer according to the present invention.



FIG. 3e illustrates a back view of an inferior arm of a spacer according to the present invention.



FIG. 3f illustrates a side view of an inferior arm of a spacer according to the present invention.



FIG. 4a illustrates a perspective view of a spindle of an actuator assembly of a spacer according to the present invention.



FIG. 4b illustrates a top view of a spindle of an actuator assembly of a spacer according to the present invention.



FIG. 4c illustrates a cross-sectional view of the spindle of FIG. 4b taken along line F-F according to the present invention.



FIG. 4d illustrates a perspective view of a lock according to the present invention.



FIG. 4e illustrates a top view of a lock according to the present invention.



FIG. 4f illustrates a partial cross-sectional top view of a lock, body and spindle according to the present invention.



FIG. 5a illustrates a side view of a spacer in a closed, undeployed configuration according to the present invention.



FIG. 5b illustrates a side view of a spacer in a partially deployed configuration according to the present invention.



FIG. 5c illustrates a side view of a spacer in a deployed configuration according to the present invention.



FIG. 6a illustrates a side, cross-sectional view of a spacer in a closed, undeployed configuration according to the present invention.



FIG. 6b illustrates a side, cross-sectional view of a spacer in a partially deployed configuration according to the present invention.



FIG. 6c illustrates a side, cross-sectional view of a spacer in a deployed configuration according to the present invention.



FIG. 7a illustrates a side, semi-transparent view of a spacer in a closed undeployed configuration according to the present invention.



FIG. 7b illustrates a side, semi-transparent view of a spacer in a partially deployed configuration according to the present invention.



FIG. 7c illustrates a side, semi-transparent view of a spacer in a deployed configuration according to the present invention.



FIG. 8 illustrates a side view of half of a body of a spacer according to the present invention.



FIG. 9a illustrates a perspective view of a superior arm of a spacer according to the present invention.



FIG. 9b illustrates a perspective view of an inferior arm of a spacer according to the present invention.



FIG. 10a illustrates a perspective view of half of a body of a spacer according to the present invention.



FIG. 10b illustrates a side view of half of a body of a spacer according to the present invention.



FIG. 11a illustrates a perspective view of a superior arm of a spacer according to the present invention.



FIG. 11b illustrates a back view of a superior arm of a spacer according to the present invention.



FIG. 11c illustrates a side view of a superior arm of a spacer according to the present invention.



FIG. 11d illustrates a perspective view of an inferior arm of a spacer according to the present invention.



FIG. 11e illustrates a back view of an inferior arm of a spacer according to the present invention.



FIG. 11f illustrates a side view of an inferior arm of a spacer according to the present invention.



FIG. 12a illustrates a side, semi-transparent view of a spacer in a closed, undeployed configuration according to the present invention.



FIG. 12b illustrates a side, semi-transparent view of a spacer in a partially deployed configuration according to the present invention.



FIG. 12c illustrates a side, semi-transparent view of a spacer in a deployed configuration according to the present invention.



FIG. 12d illustrates a side, semi-transparent view of a spacer in a deployed and extended configuration according to the present invention.



FIG. 13a illustrates a perspective view of half of a body of a spacer according to the present invention.



FIG. 13b illustrates a side view of half of a body of a spacer according to the present invention.



FIG. 14a illustrates a perspective view of a superior arm of a spacer according to the present invention.



FIG. 14b illustrates a back view of a superior arm of a spacer according to the present invention.



FIG. 14c illustrates a side view of a superior arm of a spacer according to the present invention.



FIG. 14d illustrates a perspective view of an inferior arm of a spacer according to the present invention.



FIG. 14e illustrates a back view of an inferior arm of a spacer according to the present invention.



FIG. 14f illustrates a side view of an inferior arm of a spacer according to the present invention.



FIG. 15a illustrates a side view of a spacer in a closed, undeployed configuration according to the present invention.



FIG. 15b illustrates a side view of a spacer in a partially deployed configuration according to the present invention.



FIG. 15c illustrates a side view of a spacer in a deployed configuration according to the present invention.



FIG. 15d illustrates a side view of a spacer in a deployed and extended configuration according to the present invention.



FIG. 16a illustrates a side, cross-sectional view of a spacer in a closed, undeployed configuration according to the present invention.



FIG. 16b illustrates a side, cross-sectional view of a spacer in a partially deployed configuration according to the present invention.



FIG. 16c illustrates a side, cross-sectional view of a spacer in a deployed configuration according to the present invention.



FIG. 16d illustrates a side, cross-sectional view of a spacer in a deployed and extended configuration according to the present invention.



FIG. 17a illustrates a side, semi-transparent view of a spacer in a closed undeployed configuration according to the present invention.



FIG. 17b illustrates a side, semi-transparent view of a spacer in a partially deployed configuration according to the present invention.



FIG. 17c illustrates a side, semi-transparent view of a spacer in a deployed configuration according to the present invention.



FIG. 17d illustrates a side, semi-transparent view of a spacer in a deployed and extended configuration according to the present invention.



FIG. 18a illustrates a side view of an insertion instrument connected to a spacer in a closed, undeployed configuration according to the present invention.



FIG. 18b illustrates a side view of an insertion instrument connected to a spacer in a partially deployed configuration according to the present invention.



FIG. 18c illustrates a side view of an insertion instrument connected to a spacer in a deployed configuration according to the present invention.



FIG. 18d illustrates a side view of an insertion instrument connected to a spacer in a deployed and extended configuration according to the present invention.



FIG. 19 illustrates a spacer according to the present invention deployed in an interspinous process space between two vertebral bodies and a supraspinous ligament.





DETAILED DESCRIPTION

Before the subject devices, systems and methods are described, it is to be understood that this invention is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present invention will be limited only by the appended claims.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.


It must be noted that as used herein and in the appended claims, the singular forms “a”, “an”, and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a spinal segment” may include a plurality of such spinal segments and reference to “the screw” includes reference to one or more screws and equivalents thereof known to those skilled in the art, and so forth.


All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited. The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present invention is not entitled to antedate such publication by virtue of prior invention. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.


The present invention is described in the accompanying figures and text as understood by a person having ordinary skill in the field of spinal implants and implant delivery instrumentation.


With reference to FIGS. 1a-1f, various views of a spacer 10 according to the present invention are shown. The spacer 10 includes a body 12 connected to a superior extension member or arm 14, an inferior extension member or arm 16, and an actuator assembly 18.


Turning now to FIGS. 2a-2b, the body 12 will now be described. The body 12 is shown to have a clamshell construction with a left body piece 20 (shown in FIG. 2a) joined to a right body piece 22 (shown in FIG. 2b) to capture arms 14, 16 inside. With the right and left body pieces 20, 22 joined together, the body 12 is generally cylindrical. The spacer body 12 has a cross-sectional size and shape that allows for implantation between adjacent spinous processes and facilitates delivery into a patient through a narrow port or cannula.


The inside of the body 12 defines an arm receiving portion 24 and an actuator assembly receiving portion 26 with features formed in each of the left and right body pieces 20, 22 that together define the arm and actuator assembly receiving portions 24, 26. In one variation, the arm receiving portion 24 includes slots or openings 28 that receive pins formed on the arms 14, 16 such that the pins rotate and/or translate inside the openings 28. The actuator assembly receiving portion 26 includes a passageway 30. The actuator assembly receiving portion 26 includes a spindle receiving portion 80 formed by the two joined pieces 20, 22 to form a ledge. The actuator assembly receiving portion 26 also includes at least one lock receiving portion 82. Other features include a tongue and groove for mating with the opposite clamshell.


The outside of the body 12 defines a ledge 32 along at least a portion of the periphery and at least one or continuos undercut 98. Notches 34 are formed at opposite locations as also shown in FIG. 1b. The notches 34 are configured for pronged attachment to a spacer delivery instrument. When joined together, the left and right body pieces 20, 22 define a proximal opening 36 (as seen in FIG. 1e) and a distal opening 38 (as seen in FIG. 1a) in the body 12. A longitudinal scallop 84 (also shown in FIGS. 1a, 1e, 1f and 2a) extending from the proximal end of the spacer to the distal end is formed in the outer surface of the body 12 to facilitate placement of the spacer 10 between and to conform to the anatomy of adjacent interspinous processes. On one variation, two oppositely located longitudinal scallops 84 are formed in the outer surface of the body 12 such that one scallop 84 faces the superior spinous process and the other scallop 84 faces the inferior spinous process. In one variation, the distance between oppositely located longitudinal scallops 84 (as best seen in FIG. 1e) is approximately 8.0 millimeters imparting the spacer 10 with a low profile advantageous for insertion between closely spaced or “kissing” spinous processes.


Turning now to FIGS. 3a-3c, the superior arm 14 is shown and in FIGS. 3d-3f, the inferior arm 16 is shown. The superior and inferior arms 14, 16 include pins 40 for mating with the body 12, in particular, for mating with the slots/openings 28 of the arm receiving portion 24. Each of the superior and inferior arms 14, 16 includes at least one caming surface 41, 43, respectively, for contact with the actuator assembly 18. The superior and inferior arms 14, 16 include elongated superior extensions 42a, 42b and elongated inferior extensions 44a, 44b, respectively. Extensions 42a and 44a are located on the left adjacent to the left body piece 20 and extensions 42b and 44b are located on right adjacent to the right body piece 22. Superior extensions 42a, 42b extend substantially parallel to each other in both an undeployed configuration and in a deployed configuration as do inferior extensions 44a, 44b. Extending between extensions 42a, 42b is a strut, bridge, bracket or saddle 46 that forms a superior substantially U-shaped configuration that is sized and configured to receive a superior spinous process. As seen in FIG. 3c, the anterior face of the superior extensions 14 includes a slight concavity or curvature 45 for conforming to the bony anatomy of the superior spinous process and or lamina. Extending between inferior extensions 44a, 44b is a strut, bridge, bracket or saddle 48 that forms an inferior substantially U-shaped configuration together with the extensions 44a, 44b that is sized and configured to receive an inferior spinous process of a spinal motion segment. As seen in FIG. 3f, the anterior face of the inferior extensions 16 includes a slight convexity or curvature 47 for conforming to the bony anatomy of the inferior spinous process and/or lamina. In one variation, the length of the saddle 46 of the superior arm 14 is approximately 8.5 millimeters and the length of the saddle 48 of the inferior arm 16 is approximately 6.6 millimeters. Also, the tip-to-tip distance of the superior extensions 42a, 42b is approximately 9.8 millimeters and the tip-to-tip distance of the inferior extensions 44a, 44b is approximately 9.4 millimeters. In sum, the seat comprising the saddle 46 and superior extensions 42a, 42b formed by the superior arm 14 is larger than the seat comprising the saddle 48 and inferior extensions 44a, 44b formed by the inferior arm 16. The larger superior seat of the spacer conforms closely to a wider lower end of the spinous process and the smaller inferior seat of the spacer conforms closely to a narrower upper end of the adjacent inferior spinous process when the spacer 10 is inserted between adjacent spinous processes as spinous processes are naturally narrower on top and wider on the bottom.


The superior and inferior arms 14, 16 are movably or rotatably connected to the body 12, for example by hinge means or the like to provide rotational movement from an undeployed configuration to a deployed configuration that arcs through about a 90 degree range or more with respect to the body 12. The arms 14, 16 are rotationally movable between at least an undeployed, collapsed or folded state (as shown in FIGS. 1a-1e, 5a, 6a and 7a) and at least one deployed state (as shown in FIGS. 5c, 6c, 7c). In the undeployed state, the arm pairs 14, 16 are aligned generally or substantially axially (i.e., axially with the longitudinal axis, defined by the body 12 or to the translation path into the interspinous space of the patient) to provide a minimal lateral or radial profile. The longitudinal axis X of the spacer 10 and body 12 is shown in FIG. 1c. In the deployed state, the arm pairs 14, 16 are positioned such that each of the U-shaped saddles are in a plane (or planes) or have a U-shaped projection in a plane that is (are) generally or substantially transverse to the longitudinal axis X defined by the body 12 or to the collapsed position or to the implantation path into the interspinous space of the patient. In one variation, the spacer 10 is configured such that the arms 14, 16 are linearly moveable or translatable within the same transverse plane from a first deployed state (such as the state shown in FIG. 12c) to and from a second deployed state (such as the state shown in FIG. 12d) characterized by an additional translation of at least one of the arms 14, 16 with respect to the body 12 along a direction of the arrows as shown in FIG. 12d away from or towards the body 12. The arms 14, 16 can be extended in the general vertical direction along an axis along the general length of the spine wherein the arms 14, 16 are extended away from each other and away from the body 12 as denoted by the arrows in FIG. 12d. The arms 14, 16 can be un-extended in a direction towards each other and towards the body 12 for un-deployment or repositioning of the spacer 10. This feature advantageously allows for the most minimally invasive configuration for the spacer without compromising the ability of the spacer 10 to seat and contain the spinous processes in between levels where the anatomy of the spinous processes is such that the interspinous process space increases in the anterior direction or without compromising the ability of the spacer to provide adequate distraction. The arms 14, 16 are connected to the body 12 and/or to each other in a manner that enables them to be moved simultaneously or independently of each other, as well as in a manner that provides passive deployment and/or vertical extension or, alternatively, active or actuated deployment and/or vertical extension.


Turning back to FIG. 1f, the actuator assembly 18 will now be described. The actuator assembly 18 includes an actuator 48 connected to a shaft 50 and retainer 52, a spindle 86 and a optional lock 88. The actuator 48 includes a distal end 54 and a proximal end 56 and at least two bearing surfaces 58. The bearing surfaces 58 angle towards each other from the proximal end 56 to the distal end 54. In one variation as shown in FIG. 1f, the actuator 48 is integrally formed with the shaft 50. The shaft 50 is substantially cylindrical in shape and includes a threaded outer surface for engagement with a threaded inner surface of the spindle 86. The distal end 54 of the actuator 48 is further configured to engage the superior and inferior arms 14, 16 such that forward translation of the actuator 48 relative to the body 12 effects deployment of the arms into at least one deployed configuration.


Still referencing FIG. 1f and with particular reference to FIGS. 4a-4c, the spindle 86 has circular top profile and includes a central bore 90 having a threaded inner surface which is sized for threaded connection to the shaft 50. The spindle 86 includes an outer ledge 92 and oppositely disposed notches 94 for connecting to a deployment instrument. The outer sidewall of the spindle 86 includes a plurality of spindle teeth 102. The spindle 86 is configured to be disposed in the spindle receiving portion 80 of the body 12.


Still referencing FIG. 1f, the retainer 52, which is preferably made of metal such as surgical steel or titanium, includes a proximal end 70 and at least one prong 72 extending distally from the proximal end 70. Each prong 72 includes a hook portion 96 for hooking to the undercut 98 of the body 12 to attach the retainer 52 to the body 12. Each prong 72 is allowed to deflect and spring back to snap engage the undercut 98 and thereby connect to the body 12 and retain the actuator assembly 18 to the body 12. An aperture 100 is sized for clear passage of the actuator 48 and shaft 50. The actuator assembly 18 is at least partially disposed inside the body 12 and is configured to move with respect to the body 12.


Still referencing FIG. 1f and with particular reference to FIGS. 4d, 4e and 4f, the lock 88 is a small elongate piece of metal or other suitable material such as steel or titanium capable of deflection. The lock 88 is sized to be disposed in the lock receiving portion 82 as shown in FIG. 4f. The lock 88 includes a tooth 104 which is configured to engage the spindle teeth 102. Rotation of the spindle 86 deflects the lock 88 outwardly which then snaps back into between the spindle teeth 102 to lock the spindle 86 in place.


Assembly of the spacer 10 with reference to FIGS. 1a-1f will now be described. The arms 14, 16 are disposed in the arm receiving portion 24 of one body piece. The other of the left or right body piece 20, 22 is securely connected/welded to the one body piece thereby capturing the arms 14, 16 inside the arm receiving portion 24 such that the arms 14, 16 are capable of at least rotational movement with respect to the body 12 and in one variation, capable of rotational movement and translation with respect to the body 12. In a variation in which the body 12 is made of one piece, the arms 14, 16 are movably connected to the body 12 with a pin, for example. The shaft 50 and the actuator 48 are together inserted into the proximal opening 36 and passageway 30 of the body 12. The spindle 86 is disposed in the spindle receiving portion 80 of the body 12 and threaded onto the shaft 50. The lock 88 is disposed inside the lock receiving portion 82 of the body 12. The retainer 52 is connected to the body 12 such that the hooked portion(s) 96 snap into the undercut(s) 98 and such that the shaft 50 can pass through the retainer aperture 100. The retainer 52 captures the spindle 86, actuator 48, shaft 50 and lock 88 inside the body 12 such that the spindle 86 is allowed to rotate and, thereby, move the actuator and shaft 48, 50 inside the body passageway 30.


Referring now to FIGS. 5a-5d, the spacer 10 is shown in a closed, undeployed configuration (FIG. 5a), a partially deployed configuration or otherwise intermediary configuration (FIG. 5b), and a deployed configuration (FIG. 5c). In moving from an undeployed to a deployed configuration, the actuator assembly 18 and, in particular, the shaft 50 of the actuator assembly moves distally with respect to the body to a position flush or almost flush with the proximal end of the body 12 or to a position completely inside the body 12 disappearing from sight providing a low profile for the spacer 10 along the longitudinal axis of the body 12.


Turning now to the cross-sectional views of the spacer 10 in FIGS. 6a-6c, as the shaft 50 advances within the passageway 30, the bearing surfaces 58 of the actuator 48 contact the superior and inferior caming surfaces 41, 43 of the superior and inferior arms 14, 16 turning the arms 14, 16 into rotation with respect to the body 12. Upon rotation, the bearing surfaces 58 of the actuator 48 slide with respect to the superior and inferior caming surfaces 41, 43 of the superior and inferior arms 14, 16. The arms 14, 16 rotate through an are of approximately 90 degrees with respect to the body 12 into the deployed configuration (FIG. 6c) in which the superior and inferior extensions of the arms 14, 16 are substantially perpendicular to the longitudinal axis of the spacer 10 as shown in FIG. 6c. The arms 14, 16 have a substantially U-shaped projection in a plane perpendicular to the longitudinal axis of the spacer 10.


Turning now to the semi-transparent views of the spacer 10 in FIGS. 7a-7c, the rotation of the pins 40 of the arms 14, 16 in the openings 28 of the body 12 is shown in moving from the configuration of FIG. 7a to the configuration of FIG. 7c. Reverse rotation of the spindle 86 moves the shaft 50 proximally with respect to the body 12 allowing the arms to close to any intermediary configuration between a deployed, configuration and an undeployed, closed configuration. This feature advantageously permits the surgeon to ease installation and positioning of the spacer with respect to patient anatomy.


Turning now to FIG. 8, another variation of the body 12 will now be discussed wherein like reference numbers are used to describe like parts. The body 12 of the variation shown in FIG. 8 has the same clamshell construction with the left body piece 20 joined to a right body piece 22 to capture arms 14, 16 inside. With the right and left body pieces 20, 22 joined together, the body 12 is generally cylindrical. It has a cross-sectional size and shape that allows for implantation between adjacent spinous processes and facilitates delivery into a patient through a narrow port or cannula. The left and right body pieces 20, 22 are identical and therefore, FIG. 8 illustrates either the left or right body piece 20, 22.


Still referencing FIG. 8, the inside of the body 12 defines an arm receiving portion 24 and an actuator assembly receiving portion 26 with features formed in each of the left and right body pieces 20, 22 that together define the arm and actuator assembly receiving portions 24, 26. The arm receiving portion 24 includes slots or openings or apertures 28 that receive pins formed on the arms 14, 16 such that the pins rotate and/or translate inside the slots or apertures 28. In the variation shown in FIG. 8, in addition to two circular openings 28a, there is provided a curved slot 28b in each of the left and right body pieces 20, 22. The circular openings 28a and curved slot 28b are configured to receive pins 40 of arms 14, 16 that are illustrated in FIGS. 9a and 9b.


Turning now to FIGS. 9a and 9b, the superior arm 14 is shown in FIG. 9a, and the inferior arm 16 is shown in FIG. 9b. The superior and inferior arms 14, 16, include pins 40a and 40b for mating with the body 12, in particular, for mating with the openings 28a and slots 28b, respectively. Each side of the superior and inferior arms 14, 16 includes a circular first pin 40a configured for insertion into opening 28a such that the arms 14, 16 rotate with respect to the body 12. At least one side of each of the arms 14, 16 includes a second pin 40b configured for insertion into opening slot 28b. Slot 28b and pin 40b serve as a stop mechanism such that the rotation of the arms 14, 16 with respect to the body 12 is limited by pin 40b in slot 28b. While being deployed, the arms 14, 16 rotate to a position transverse to the longitudinal axis from a position parallel to the longitudinal axis wherein such rotation is arrested by pin 40b abutting the end of slot 28b. Other features of the arms 14, 16 shown in FIGS. 9a and 9b are substantially the same as described above and like reference numbers are used to describe the like parts.


Turning now to FIGS. 10a and 10b, another variation of the spacer body 12 will now be discussed wherein like reference numbers are used to describe like parts. The body 12 of the spacer variation shown in FIGS. 10a and 10b has a clamshell construction as described above with the left body piece 20 joined to a right body piece 22 to capture arms 14, 16 inside. With the right and left body pieces 20, 22 joined together, the body 12 is generally cylindrical. It has a cross-sectional size and shape that allows for implantation between adjacent spinous processes and facilitates delivery into a patient through a narrow port or cannula. FIG. 10a shows the left body piece 20 and FIG. 10b shows the right body piece 22, however, the left and right body pieces 20, 22 are identical.


Still referencing FIGS. 10a and 10c, the inside of the body 12, formed by the conjunction of the left and right body pieces 20, 22, defines an arm receiving portion 24 and an actuator assembly receiving portion 26 with features formed in each of the left and right body pieces 20, 22 that together define the arm and actuator assembly receiving portions 24, 26. The arm receiving portion 24 includes slots or openings or apertures 28 that receive pins formed on the arms 14, 16 such that the pins rotate and/or translate inside the slots or apertures 28. In particular, in the variation shown in FIGS. 10a and 10b, two elongated openings 28c and a curved slot opening 28d are provided in each of the left and right body pieces 20, 22. The elongated openings 28c and curved opening 28d are configured to receive pins 40 of arms 14, 16 and serve as channels in which pins 40 can move. The curved slot 28d includes a straight distal portion for translating and extending the arms 14, 16 with respect to the body. Arms 14 and 16 with pins 40 configured to correspond to the left and right body pieces 20, 22 are shown in FIGS. 11a-11f.


Turning now to FIGS. 11a-11f, the superior arm 14 is shown in FIGS. 11a-11c, and the inferior arm 16 is shown in FIGS. 11d-11f. The superior and inferior arms 14, 16, include pins 40c and 40d for mating with the body 12, in particular, for mating with the elongated openings 28c and curved slots 28d, respectively. Each side of the superior and inferior arms 14, 16 includes at least a first pin 40c configured for insertion into opening 28c such that the arms 14, 16 rotate with respect to the body 12 as well as translate with respect to the body 12. At least one side of each of the arms 14, 16 includes a second pin 40d configured for insertion into curved slot 28d such that the arms 14, 16 rotate with respect to the body 12 as well as translate with respect to the body 12. Slots 28d and openings 28c guide the movement of pins 40d and 40c, respectively therein as will be described with respect to FIGS. 12a-12d. Other features of the arms 14, 16 shown in FIGS. 11a-11f are substantially the same as described above and like reference numbers are used to describe the like parts.


Referring now to FIGS. 12a-12d, the spacer 10 is shown in a closed, undeployed configuration (FIG. 12a), a partially deployed or otherwise intermediary configuration (FIG. 12b), a deployed configuration (FIG. 12c), and a deployed and extended configuration (FIG. 12d). In moving from an undeployed to a deployed configuration, the semi-transparent views of the spacer 10 in FIGS. 12a-12d show the rotation and translation of the pins 40 of the arms 14, 16 in the slots 28 of the body 12. The translation of the pins 40 of the arms 14, 16 in the slots 28 of the body 12 is shown in moving from the first deployed configuration of FIG. 12c to the second deployed, extended configuration of FIG. 12d wherein the extension of the arms 14, 16 is in the direction of the arrows in FIG. 12d. Such outward translation with respect to the body 12 is guided by the length and shape of the slots 28. Opening 28c is elongated and slot 28d includes a straight distal end configured to accommodate and guide the extension of arms 14, 16 away from the body 12. Reverse rotation of the spindle 86 moves the shaft 50 proximally with respect to the body 12 allowing the arms 14, 16 to close to any intermediary configuration between a deployed, extended configuration and an undeployed, closed configuration. This feature advantageously permits the surgeon to ease installation and positioning of the spacer with respect to patient anatomy as the arms 14, 16 can be deployed, undeployed and then re-deployed as often as necessary to position the spacer 10.


Turning now to FIGS. 13a and 13b, another variation of the spacer with yet another body 12 configuration will now be discussed wherein like reference numbers are used to describe like parts. The body 12 of the variation shown in FIGS. 13a and 13b has a clamshell construction as described above with a left body piece 20 joined to a right body piece 22 to capture arms 14, 16 inside. With the right and left body pieces 20, 22 joined together, the body 12 is generally cylindrical. It has a cross-sectional size and shape that allows for implantation between adjacent spinous processes and facilitates delivery into a patient through a narrow port or cannula. FIG. 13a shows the left body piece 20 and FIG. 13b shows the right body piece 22, however, the left and right body pieces 20, 22 are identical.


Still referencing FIGS. 13a and 13b, the inside of the body 12, formed by the conjunction of the left and right body pieces 20, 22, defines an arm receiving portion 24 and an actuator assembly receiving portion 26 that includes a spindle receiving portion 80 and lock receiving portion 82 with features formed in each of the left and right body pieces 20, 22 that together define the arm and actuator assembly receiving portions 24, 26. The arm receiving portion 24 includes slots or openings or apertures 28 that receive pins formed on the arms 14, 16 such that the pins rotate and/or translate inside the slots or apertures 28. In particular, in the variation shown in FIGS. 13a and 13b, a first opening 28e and a second opening 28f are provided in each of the left and right body pieces 20, 22. The first opening 28e includes a fanned recess. Both openings 28e and curved slot 28f are configured to receive pins 40 of arms 14, 16 and serve as channels that constrain the movement of the pins 40. In the variation shown, the openings 28e, 28f are configured to permit extension of the arms 14, 16 away from the body. Arms 14, 16 with pins 40 that are configured to correspond to the left and right body pieces 20, 22 are shown in FIGS. 14a-14f.


Turning now to FIGS. 14a-14f, the superior arm 14 is shown in FIGS. 14a-14c, and the inferior arm 16 is shown in FIGS. 14d-14f. The superior and inferior arms 14, 16, include a first pin 40e and a second pin 40f for mating with the body 12, in particular, for mating with the first opening 28e and second opening 28f, respectively. At least one side of each of the superior and inferior arms 14, 16 includes a first pin 40e configured for insertion into opening 28e such that the arms 14, 16 rotate with respect to the body 12 as well as translate with respect to the body 12. At least the other side of each of the arms 14, 16 includes a second pin 40f configured for insertion into curved slot 28f such that the arms 14, 16 rotate with respect to the body 12 as well as translate with respect to the body 12. The first pin 40e includes a central portion integrally formed with a peripheral or projecting portion in what resembles a merging of two pins into one larger pin. This larger pin 40e advantageously provides a larger bearing surface capable of bearing larger loads in arresting rotation of the arms 14, 16. The first and second openings 28e, 28f guide the movement of pins 40e and 40f, respectively as will be described with respect to FIGS. 17a-17d. Other features of the arms 14, 16 shown in FIGS. 14a-14f are substantially the same as described above and like reference numbers are used to describe the like parts.


Referring now to FIGS. 15a-15d, the spacer 10 having a body 12 of FIGS. 13a and 13b is shown in a closed, undeployed configuration (FIG. 15a), a partially deployed or otherwise intermediary configuration (FIG. 15b), a deployed configuration (FIG. 15c), and a deployed and extended configuration (FIG. 15d).


Turning now to the cross-sectional views of the spacer 10 in FIGS. 16a-16d, as the spindle 86 is rotated and the shaft 50 advances within the passageway 30, the bearing surfaces 58 of the actuator 48 contact the superior and inferior caming surfaces 41, 43 of the superior and inferior arms 14, 16 turning the arms 14, 16 into rotation with respect to the body 12. Upon rotation, the bearing surfaces 58 of the actuator 48 slide with respect to the superior and inferior caming surfaces 41, 43 of the superior and inferior arms 14, 16. The arms 14, 16 rotate through an arc of approximately 90 degrees with respect to the body 12 into the deployed configuration (FIG. 16c) in which the superior and inferior extensions of the arms 14, 16 are substantially perpendicular to the longitudinal axis of the spacer 10 as shown in FIG. 16c and with further actuation, into a deployed and extended configuration (FIG. 16d) in which the superior and inferior extensions of the arms 14, 16 are substantially perpendicular to the longitudinal axis of the spacer 10 and the arms 14, 16 are moved away from the body 12 in a transverse direction to the longitudinal axis as shown by the arrows in FIG. 16d.


Turning now to FIGS. 17a-17d, semi-transparent views of the spacer 10 are shown. In moving from an undeployed to a deployed configuration, the rotation and translation of the pins 40e, 40f of the arms 14, 16 in the slots 28e, 28f of the body 12 is shown. Following rotation, the translation of the pins 40e, 40f of the arms 14, 16 in the slots 28e, 28f, respectively, is shown in moving from the first deployed configuration of FIG. 17c to the second deployed, extended configuration of FIG. 17d in the direction of the arrows in FIG. 17d. Such outward translation with respect to the body 12 is guided by the length and shape of the slots 28e, 28f. Reverse rotation of the spindle 86 moves the shaft 50 proximally with respect to the body 12 allowing the arms to close to any intermediary configuration between a deployed, extended configuration and an undeployed, closed configuration. This feature advantageously permits the surgeon to ease installation and positioning of the spacer with respect to patient anatomy.


To deliver and deploy the spacer 10 within the patient, the spacer 10 is releasably attached to an insertion instrument 80 at the proximal end of the spacer 10 via notches 34. The insertion instrument 80 includes a first assembly 102 connected to a second assembly 104 and a handle assembly 106.


The spacer 10 is provided or otherwise placed in its undeployed, closed state in juxtaposition to the insertion instrument 80 and connected thereto as shown in FIG. 18a. The longitudinal axis of the insertion instrument 80 is advantageously aligned with the longitudinal axis of the spacer 10 as shown. The delivery instrument 80 includes a first subassembly 102 to releasably clamp to the body 12 of the spacer 10 at a distal end of the insertion instrument 80. The first subassembly 102 includes an inner clamp shaft (not shown) having flexible prongs 126 at the distal end configured for attachment to the body 12 of the spacer 10 and, in particular, for insertion into the notches 34 of the spacer body 12. The first subassembly 102 includes an outer shaft 112 located over the inner clamp shaft and configured for relative motion with respect to one another via a control 114 located at the handle assembly 106. The control 114 is threaded to the outer shaft 112 such that rotation of the control 114 moves the outer shaft 112 along the longitudinal axis of the insertion instrument 80 over the inner clamp shaft to deflect and undeflect the prongs 126 to connect or disconnect the instrument 80 to or from the body 12. The first control 114 is activated at the handle of the insertion instrument 100 such that the first subassembly 102 is connected to the body 12 of the spacer 10. The first control 114 is rotated in one direction to advance the outer shaft 112 over the inner clamp shaft (not shown) deflecting the prongs 118 inwardly into the notches 34 on the body 12 of the spacer 10 to secure the spacer body 12 to the instrument as shown in FIG. 18a. Reverse rotation of the control 114 reverses the direction of translation of the outer shaft 112 to release the prongs 126 from the notches 34 and, thereby, release the spacer 10 from the instrument 80.


Still referencing FIG. 18a, the insertion instrument 80 includes a second subassembly 104 that is configured to connect to the actuator assembly 18 of the spacer 10. In particular, the second subassembly 104 includes means located at the distal end of the second subassembly 104 to activate the actuator assembly 18. In one variation, the second subassembly 104 is a pronged driver having an elongated shaft that is configured to be insertable into the notches 94 of the spindle 86 while the spacer 10 is connected to the instrument 80. As seen in FIG. 4b, there are two notches 94 oppositely located from each other in the spindle 86. The distal end of the driver includes prongs that correspond to the notches 94 and configured to be inserted into the notches 94. The second subassembly 104 is insertable at the proximal end of the instrument 80 and extends through the handle assembly 106 and through the inner shaft until the notches are engaged by the distal end. The removable driver 104 is rotatable with respect to the instrument 80 to rotate the spindle 86 and arrange the spacer 10 to and from deployed and undeployed configurations.


To deliver and deploy the spacer 10 within the patient, the spacer 10 is releasably attached to a delivery instrument 80 at the proximal end of the spacer 10 as described. A small midline or lateral-to-midline incision is made in the patient for minimally-invasive percutaneous delivery. In one variation, the supraspinous ligament is avoided. In another variation, the supraspinous ligament is split longitudinally along the direction of the tissue fibers to create an opening for the instrument. Dilators may be further employed to create the opening. In the undeployed state with the arms 14, 16 in a closed orientation and attached to a delivery instrument 80, the spacer 10 is inserted into a port or cannula, if one is employed, which has been operatively positioned to an interspinous space within a patient's back and the spacer is passed through the cannula to the interspinous space between two adjacent vertebral bodies. The spacer 10 is advanced beyond the end of the cannula or, alternatively, the cannula is pulled proximately to uncover the spacer 10 connected to the instrument 80. Once in position, the second assembly 104 is inserted into the instrument 80 if not previously inserted to engage the spindle notches 94 and is rotated to rotate the spindle 86. The rotating spindle 86 then advances the actuator 48 and shaft 50 to begin deployment the spacer 10. Rotation in one direction, clockwise, for example, threadingly advances the shaft 50 through the spindle central bore 90 which then results in the actuator 48 contacting the superior and inferior caming surfaces 41, 43 of the superior and inferior arms 14, 16 to begin their deployment. FIG. 18b illustrates the superior arm 14 and the inferior arm 16 in a partially deployed position with the arms 14, 16 rotated away from the longitudinal axis. Rotation of the driver 104 turns the spindle 86 which in turn rotates the actuator shaft 50 threadingly advancing it with respect to the body 12 which distally advances the actuator 48 whose bearing surfaces 58 contact the superior and inferior camming surfaces 41, 43 pushing the superior and inferior arms 14, 16 into rotation about the pins 40 that are guided in the openings 28. The lock 88 snaps into the spindle teeth 102 advantageously locking the deployment of the arms at any degree of rotation of the spindle 86 to prevent the arms 14, 16 from folding and providing a tactile and audio feedback of the deployment progress. The lock 88 permits further rotation or de-rotation as desired.


The position of the arms 14, 16 in FIG. 18b may be considered to be one of many partially deployed configurations or intermediary configurations that are possible and from which the deployment of the arms 14, 16 is reversible with opposite rotation of the second assembly 104. With further advancement, the arms 14, 16 rotate through an arc of approximately 90 degrees into the deployed configuration in which the superior and inferior extensions are substantially perpendicular to the longitudinal axis of the spacer 10 as shown in FIG. 18c.


Turning to FIG. 18c, there is shown an insertion instrument 80 connected to a spacer 10 in a first deployed configuration in which the arms 14, 16 are approximately 90 degrees perpendicular to the longitudinal axis or perpendicular to the initial undeployed configuration. Continued rotation of second assembly 104 rotates the spindle 86 and threads the shaft 50 further distally with respect to the body 12 of the spacer 10 pushing the bearing surfaces 58 further against the superior and inferior camming surfaces 41, 43. While in the first deployed configuration of FIG. 18c, the clinician can observe with fluoroscopy the positioning of the spacer 10 inside the patient and then choose to reposition the spacer 10 if desired. Repositioning of the spacer may involve undeploying the arms 14, 16 by rotating the spindle 86 via the second assembly 104 to rotate the arms into any one of the many undeployed configurations. The spacer may then be re-deployed into the desired location. This process can be repeated as necessary until the clinician has achieved the desired positioning of the spacer in the patient. Of course, inspection of the spacer 10 may be made via fluoroscopy while the spacer 10 is in an intermediate or partially deployed configuration such as that of FIG. 18b.


Even further advancement of the actuator shaft 50 via rotation of the second subassembly 104 from the first deployed configuration results in the spacer 10 assuming a second deployed configuration shown in FIG. 18d, if the spacer 10 is so configured as to allow a second deployed configuration. The second deployed configuration is an extended configuration as described above in which the superior and inferior arms 14, 16 extend transversely with respect to the longitudinal axis outwardly in the direction of the arrows in FIG. 18d. The spacer 10 is configured such that the outward translation of the arms 14, 16 follows the rotation into 90 degrees and is guided by the length and shape of the openings 28 in which the arms 14, 16 move. Once deployed, the superior arm 14 seats the superior spinous process and the inferior arm 16 seats the adjacent inferior spinous process. Such extension may also provide some distraction of the vertebral bodies.


Following deployment, the second assembly 104 may be removed. Control 114 is rotated in the opposite direction to release the body 12 from the instrument 80. The insertion instrument 80, thus released from the spacer 10, is removed from the patient leaving the spacer 10 implanted in the interspinous process space as shown in FIG. 19. In FIG. 19, the spacer 10 is shown with the superior arm 14 seating the superior spinous process 138 of a first vertebral body 142 and the inferior arm 16 seating the inferior spinous process 140 of an adjacent second vertebral body 144 providing sufficient distraction to open the neural foramen 146 to relieve pain. As mentioned above, the shape of the superior arm 14 is such that a superior concavity or curvature 45 is provided to conform to the widening of the superior spinous process 138 in an anterior direction toward the superior lamina 148 going in the anterior direction. In general, the superior arm 14 is shaped to conform to anatomy in the location in which it is seated. Likewise, as mentioned above, the shape of the inferior arm 16 is such that an inferior convexity or curvature 47 is provided to conform to the widening of the inferior spinous process 140 in an anterior direction toward the inferior lamina 150. The supraspinous ligament 152 is also shown in FIG. 19.


The spacer 10 is as easily and quickly removed from body of the patient as it is installed. The instrument 80 is inserted into an incision and reconnected to the spacer 10. The shaft 50 is rotated in the opposite direction via a driver 104 to fold the arms 14, 16 into a closed or undeployed configuration. In the undeployed configuration, the spacer 10 can be removed from the patient along with the instrument 80 or, of course, re-adjusted and re-positioned and then re-deployed as needed with the benefit of minimal invasiveness to the patient.


Any of the spacers disclosed herein are configured for implantation employing minimally invasive techniques including through a small percutaneous incision and through the superspinous ligament. Implantation through the superspinous ligament involves selective dissection of the superspinous ligament in which the fibers of the ligament are separated or spread apart from each other in a manner to maintain as much of the ligament intact as possible. This approach avoids crosswise dissection or cutting of the ligament and thereby reduces the healing time and minimizes the amount of instability to the affected spinal segment. While this approach is ideally suited to be performed through a posterior or midline incision, the approach may also be performed through one or more incisions made laterally of the spine with or without affect to the superspinous ligament. Of course, the spacer may also be implanted in a lateral approach that circumvents the superspinous ligament altogether as well as in open or mini-open procedures.


Other variations and features of the various mechanical spacers are covered by the present invention. For example, a spacer may include only a single arm which is configured to receive either the superior spinous process or the inferior spinous process. The surface of the spacer body opposite the side of the single arm may be contoured or otherwise configured to engage the opposing spinous process wherein the spacer is sized to be securely positioned in the interspinous space and provide the desired distraction of the spinous processes defining such space. The additional extension of the arm(s) subsequent to their initial deployment in order to seat or to effect the desired distraction between the vertebrae may be accomplished by expanding the body portion of the device instead of or in addition to extending the individual extension members 14, 16.


The extension arms of the subject device may be configured to be selectively movable subsequent to implantation, either to a fixed position prior to closure of the access site or otherwise enabled or allowed to move in response to normal spinal motion exerted on the device after deployment. The deployment angles of the extension arms may range from less than 90 degrees (relative to the longitudinal axis defined by the device body) or may extend beyond 90 degrees and remain stationary or be dynamic. Each extension member may be rotationally movable within a range that is different from that of the other extension members. Additionally, the individual superior and/or inferior extensions 42a, 42b, 44a, 44b may be movable in any direction relative to the strut or bridge extending between an arm pair or relative to the device body in order to provide shock absorption and/or function as a motion limiter, or serve as a lateral adjustment particularly during lateral bending and axial rotation of the spine. The manner of attachment or affixation of the extensions to the arms may be selected so as to provide movement of the extensions that is passive or active or both. In one variation, the saddle or distance between extensions 42a and 42b or between 44a and 44b can be made wider to assist in seating the spinous process and then narrowed to secure the spinous process positioned between extensions 42a and 42b or between 44a and 44b.


The preceding merely illustrates the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various arrangements which, although not explicitly described or shown herein, embody the principles of the invention and are included within its spirit and scope. Furthermore, all examples and conditional language recited herein are principally intended to aid the reader in understanding the principles of the invention and the concepts contributed by the inventors to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions. Moreover, all statements herein reciting principles, aspects, and embodiments of the invention as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents and equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure. The scope of the present invention, therefore, is not intended to be limited to the exemplary embodiments shown and described herein. Rather, the scope and spirit of present invention is embodied by the appended claims.

Claims
  • 1. A method for implanting a spacer, the method comprising: coupling an insertion instrument onto the spacer by inserting prongs of the insertion instrument into notches in a drive element of the spacer;while the spacer is coupled to the insertion instrument, moving the spacer into a subject by inserting the spacer and the insertion instrument through a supraspinous ligament of the subject to position the spacer directly between a first protrusion of a first vertebra of the subject and a second protrusion of a second vertebra of the subject, androtating the drive element which translates an actuator element such that the actuator element causes a first arm of the spacer to rotate to receive the first protrusion of the first vertebra of the subject and a second arm of the spacer to rotate to receive the second protrusion of the second vertebra of the subject; andseparating the insertion instrument from the spacer while the first protrusion is held by the first arm and the second protrusion is held by the second arm.
  • 2. The method of claim 1, further comprising holding a body of the spacer while rotating the drive element of the spacer relative to the body.
  • 3. The method of claim 1, further comprising holding a body of the spacer while causing the drive element of the spacer to rotate relative to the body.
  • 4. The method of claim 1, wherein separating the insertion instrument comprises removing the prongs from the respective notches to separate the insertion instrument from the drive element.
  • 5. A method for implanting a spacer, the method comprising: coupling an insertion instrument onto a spacer that has arms with U-shaped ends by inserting prongs of a driver of the insertion instrument into notches of the spacer; andoperating the insertion instrument by rotating the driver to drive an actuator of the spacer to gradually deploy the U-shaped ends of the arms such that the deployed U-shaped ends hold adjacent spinous processes of a subject while the insertion instrument extends out of the subject, wherein the insertion instrument is positioned through a supraspinous ligament of the subject when deploying the U-shaped ends of the arms; andseparating the insertion instrument from the spacer positioned between the adjacent spinous processes.
  • 6. The method of claim 5, wherein the insertion instrument has a longitudinal axis that is parallel to a longitudinal axis of the spacer when the insertion instrument is coupled to the spacer.
  • 7. The method of claim 5, wherein the spacer and a portion of the insertion instrument within the subject are kept directly posterior to a spine of the subject while deploying the U-shaped ends of the arms.
  • 8. The method of claim 7, further comprising inserting the insertion instrument into the subject using a midline approach.
  • 9. A method for implanting an interspinous device in a patient, the method comprising: inserting prongs of a driver of an insertion instrument into notches in the interspinous device to couple the insertion instrument onto the interspinous device;inserting the interspinous device and a portion of the insertion instrument through a midline incision in the patient;positioning the interspinous device between a first protrusion of a first vertebra and a second protrusion of a second vertebra;rotating the driver of the insertion instrument to gradually deploy the interspinous device such that the interspinous device holds the first and second protrusions; andreleasing the insertion instrument from the interspinous device positioned directly between the first and second protrusions.
  • 10. The method of claim 9, further comprising rotating a threaded spindle of the interspinous device by rotating the driver such that the threaded spindle drives an actuator of the interspinous device, wherein the actuator is configured to move through a body of the interspinous device to cause expansion of the interspinous device.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/887,201 entitled “Interspinous Spacer” filed on Oct. 19, 2015, now U.S. Pat. No. 9,956,011, which is a continuation of U.S. patent application Ser. No. 13/619,195 entitled “Interspinous Spacer” filed on Sep. 14, 2012, now U.S. Pat. No. 9,161,783, which is a continuation of U.S. patent application Ser. No. 12/220,427 entitled “Interspinous Spacer” filed on Jul. 24, 2008, now U.S. Pat. No. 8,277,488, which is a continuation-in-part of U.S. patent application Ser. No. 12/217,662 entitled “Interspinous Spacer” filed on Jul. 8, 2008, now U.S. Pat. No. 8,273,108, which is a continuation-in-part of U.S. patent application Ser. No. 12/148,104 entitled “Interspinous Spacer” filed on Apr. 16, 2008, now U.S. Pat. No. 8,292,922. U.S. patent application Ser. No. 12/220,427 is also a continuation-in-part of U.S. patent application Ser. No. 11/593,995 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Nov. 7, 2006, now U.S. Pat. No. 8,425,559, which is a continuation-in-part of U.S. patent application Ser. No. 11/582,874 entitled “Minimally invasive tooling for delivery of interspinous Spacer” filed on Oct. 18, 2006, now U.S. Pat. No. 8,128,662. Other patent applications include U.S. patent application Ser. No. 11/314,712 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Dec. 20, 2005, now U.S. Pat. No. 8,152,837, which is a continuation-in-part of U.S. patent application Ser. No. 11/190,496 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Jul. 26, 2005, now U.S. Pat. No. 8,409,282, which is a continuation-in-part of U.S. patent application Ser. No. 11/079,006 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Mar. 10, 2005, now U.S. Pat. No. 8,012,207, which is a continuation-in-part of U.S. patent application Ser. No. 11/052,002 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Feb. 4, 2005, now U.S. Pat. No. 8,317,864, which is a continuation-in-part of U.S. patent application Ser. No. 11/006,502 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Dec. 6, 2004, now U.S. Pat. No. 8,123,807, which is a continuation-in-part of U.S. patent application Ser. No. 10/970,843 entitled “Systems and methods for posterior dynamic stabilization of the spine” filed on Oct. 20, 2004, now U.S. Pat. No. 8,167,944, all of which are hereby incorporated by reference in their entireties. U.S. patent application Ser. No. 12/220,427 also claims priority to and the benefit of U.S. Provisional Patent Application No. 60/961,741 entitled “Interspinous Spacer” filed on Jul. 24, 2007. U.S. patent application Ser. No. 12/217,662 also claims priority to and the benefit of U.S. Provisional Application No. 60/958,876 entitled “Interspinous Spacer” filed on Jul. 9, 2007. U.S. patent application Ser. No. 12/148,104 also claims priority to and the benefit of U.S. Provisional Patent Application No. 60/923,971 entitled “Interspinous Spacer” filed on Apr. 17, 2007, and U.S. Provisional Patent Application No. 60/923,841 entitled “Spacer insertion instrument” filed on Apr. 16, 2007. All of the above applications and patents are hereby incorporated by reference in their entireties.

US Referenced Citations (619)
Number Name Date Kind
2248054 Becker Jul 1941 A
2677369 Knowles May 1954 A
2933114 Bystrom Apr 1960 A
3242120 Steuber Mar 1966 A
3486505 Morrison Dec 1969 A
3648691 Lumb et al. Mar 1972 A
3780733 Martinez Dec 1973 A
3986383 Petteys Oct 1976 A
4545374 Jacobson Oct 1985 A
4632101 Freeland Dec 1986 A
4685447 Iversen et al. Aug 1987 A
4799484 Smith et al. Jan 1989 A
4863476 Sheppard Sep 1989 A
4895564 Farrell Jan 1990 A
4986831 King Jan 1991 A
5011484 Breard et al. Apr 1991 A
5015247 Michelson May 1991 A
5019081 Watanabe May 1991 A
5040542 Gray Aug 1991 A
5059193 Kuslich Oct 1991 A
5092866 Breard et al. Mar 1992 A
5178628 Otsuka et al. Jan 1993 A
5180393 Commarmond et al. Jan 1993 A
5182281 Frigola-Constansa et al. Jan 1993 A
5188281 Fujiwara et al. Feb 1993 A
5192281 de la Caffiniere et al. Mar 1993 A
5195526 Michelson Mar 1993 A
5298253 LeFiles et al. Mar 1994 A
5368594 Martin et al. Nov 1994 A
5390683 Pisharodi Feb 1995 A
5415661 Holmes May 1995 A
5456722 McLeod et al. Oct 1995 A
5462738 LeFiles et al. Oct 1995 A
5472452 Trott Dec 1995 A
5484437 Michelson Jan 1996 A
5487739 Aebischer et al. Jan 1996 A
5489308 Kuslich et al. Feb 1996 A
5496318 Howland et al. Mar 1996 A
5531748 de la Caffiniere et al. Jul 1996 A
5549679 Kuslich Aug 1996 A
5571189 Kuslich Nov 1996 A
5591165 Jackson Jan 1997 A
5609634 Voydeville et al. Mar 1997 A
5609636 Kohrs et al. Mar 1997 A
5645599 Samani et al. Jul 1997 A
5654599 Casper Aug 1997 A
5658335 Allen Aug 1997 A
5658337 Kohrs et al. Aug 1997 A
5674295 Ray et al. Oct 1997 A
5700264 Zucherman et al. Dec 1997 A
5725582 Bevan et al. Mar 1998 A
5741253 Michelson Apr 1998 A
5746720 Stouder, Jr. May 1998 A
5762629 Kambin et al. Jun 1998 A
5836948 Zucherman et al. Nov 1998 A
5860977 Zucherman et al. Jan 1999 A
5863948 Epstein et al. Jan 1999 A
5876404 Zucherman et al. Mar 1999 A
RE36211 Nonomura et al. May 1999 E
5904636 Chen et al. May 1999 A
5904686 Zucherman et al. May 1999 A
5928207 Pisano et al. Jul 1999 A
5948017 Taheri Sep 1999 A
5972015 Scribner et al. Oct 1999 A
6039761 Li et al. Mar 2000 A
6045552 Zucherman et al. Apr 2000 A
6048342 Zucherman et al. Apr 2000 A
6048345 Berke Apr 2000 A
6066154 Reiley et al. May 2000 A
6068630 Zucherman et al. May 2000 A
6074390 Zucherman et al. Jun 2000 A
6080155 Michelson Jun 2000 A
6080157 Cathro et al. Jun 2000 A
6090112 Zucherman et al. Jul 2000 A
6096038 Michelson Aug 2000 A
6102928 Bonutti Aug 2000 A
D433193 Gaw et al. Oct 2000 S
6132464 Martin et al. Oct 2000 A
6149642 Gerhart et al. Nov 2000 A
6149652 Zucherman et al. Nov 2000 A
6152926 Zucherman et al. Nov 2000 A
6156038 Zucherman et al. Dec 2000 A
6159215 Urbahns et al. Dec 2000 A
6179873 Zientek Jan 2001 B1
6183471 Zucherman et al. Feb 2001 B1
6190387 Zucherman et al. Feb 2001 B1
6225048 Soderberg-Naucler et al. May 2001 B1
6235030 Zucherman et al. May 2001 B1
6238397 Zucherman et al. May 2001 B1
6264651 Underwood et al. Jul 2001 B1
6264656 Michelson Jul 2001 B1
6267763 Castro Jul 2001 B1
6267765 Taylor et al. Jul 2001 B1
6270498 Michelson Aug 2001 B1
6280444 Zucherman et al. Aug 2001 B1
6312431 Asfora Nov 2001 B1
6328730 Harkrider, Jr. Dec 2001 B1
6332882 Zucherman et al. Dec 2001 B1
6332883 Zucherman et al. Dec 2001 B1
6336930 Stalcup et al. Jan 2002 B1
6348053 Cachia Feb 2002 B1
6364883 Santilli Apr 2002 B1
6371989 Chauvin et al. Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6379355 Zucherman et al. Apr 2002 B1
6387130 Stone et al. May 2002 B1
6395032 Gauchet et al. May 2002 B1
6402740 Ellis et al. Jun 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6402784 Wardlaw et al. Jun 2002 B1
6413228 Hung et al. Jul 2002 B1
6419676 Zucherman et al. Jul 2002 B1
6419677 Zucherman et al. Jul 2002 B2
6440169 Elberg et al. Aug 2002 B1
6443988 Felt et al. Sep 2002 B2
6447547 Michelson Sep 2002 B1
6451019 Zucherman et al. Sep 2002 B1
6451020 Zucherman et al. Sep 2002 B1
6464682 Snoke Oct 2002 B1
6471976 Taylor et al. Oct 2002 B1
6478796 Zucherman et al. Nov 2002 B2
6478822 Leroux et al. Nov 2002 B1
6500178 Zucherman et al. Dec 2002 B2
6514256 Zucherman et al. Feb 2003 B2
6530925 Boudard et al. Mar 2003 B2
6558333 Gilboa et al. May 2003 B2
6565570 Sterett et al. May 2003 B2
6572617 Senegas et al. Jun 2003 B1
6575981 Boyd et al. Jun 2003 B1
6579281 Palmer Jun 2003 B2
6579319 Goble et al. Jun 2003 B2
6582433 Yun Jun 2003 B2
6582451 Marucci et al. Jun 2003 B1
6599292 Ray Jul 2003 B1
6602248 Sharps Aug 2003 B1
6610065 Branch et al. Aug 2003 B1
6610091 Reiley Aug 2003 B1
6616673 Stone et al. Sep 2003 B1
6626944 Taylor et al. Sep 2003 B1
6645207 Dixon et al. Nov 2003 B2
6645211 Magana Nov 2003 B2
6652527 Zucherman et al. Nov 2003 B2
6652534 Zucherman et al. Nov 2003 B2
6663637 Dixon et al. Dec 2003 B2
6679886 Weikel et al. Jan 2004 B2
6695842 Zucherman et al. Feb 2004 B2
6699246 Zucherman et al. Mar 2004 B2
6699247 Zucherman et al. Mar 2004 B2
6702847 DiCarlo Mar 2004 B2
6712819 Zucherman et al. Mar 2004 B2
6716215 David et al. Apr 2004 B1
6716245 Pasquet et al. Apr 2004 B2
6726690 Eckman Apr 2004 B2
6733534 Sherman May 2004 B2
6746485 Zucherman et al. Jun 2004 B1
6761720 Senegas et al. Jul 2004 B1
6783529 Hover et al. Aug 2004 B2
6783546 Zucherman et al. Aug 2004 B2
6796983 Zucherman et al. Sep 2004 B1
6805697 Helm Oct 2004 B1
6835205 Atkinson et al. Dec 2004 B2
6840944 Suddaby Jan 2005 B2
6858029 Yeh Feb 2005 B2
6869398 Obenchain et al. Mar 2005 B2
6875212 Shaolian Apr 2005 B2
6902566 Zucherman et al. Jun 2005 B2
6926728 Zucherman et al. Aug 2005 B2
6946000 Senegas et al. Sep 2005 B2
6949123 Reiley Sep 2005 B2
6966930 Arnin et al. Nov 2005 B2
6974478 Reiley et al. Dec 2005 B2
6976988 Ralph et al. Dec 2005 B2
7011685 Arnin Mar 2006 B2
7029473 Zucherman et al. Apr 2006 B2
7033358 Taylor et al. Apr 2006 B2
7048736 Robinson et al. May 2006 B2
7070598 Lim et al. Jul 2006 B2
7083649 Zucherman et al. Aug 2006 B2
7087055 Lim et al. Aug 2006 B2
7087083 Pasquet et al. Aug 2006 B2
7097648 Globerman Aug 2006 B1
7101375 Zucherman et al. Sep 2006 B2
7163558 Senegas et al. Jan 2007 B2
7179225 Shluzas et al. Feb 2007 B2
7189234 Zucherman et al. Mar 2007 B2
7189236 Taylor et al. Mar 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7217291 Zucherman et al. May 2007 B2
7223289 Trieu et al. May 2007 B2
7187064 Matge et al. Jun 2007 B2
7229441 Trieu et al. Jun 2007 B2
7238204 Le Couedic et al. Jul 2007 B2
7252673 Lim Aug 2007 B2
7273496 Mitchell et al. Sep 2007 B2
7282063 Cohen et al. Oct 2007 B2
7297162 Mujwid Nov 2007 B2
7306628 Zucherman et al. Dec 2007 B2
7318839 Malberg et al. Jan 2008 B2
7320707 Zucherman et al. Jan 2008 B2
7335200 Carli Feb 2008 B2
7335203 Winslow et al. Feb 2008 B2
7354453 McAfee Apr 2008 B2
7384340 Eguchi et al. Jun 2008 B2
7390330 Harp Jun 2008 B2
7410501 Michelson Aug 2008 B2
7442208 Mathieu et al. Oct 2008 B2
7445637 Taylor Nov 2008 B2
7473268 Zucherman et al. Jan 2009 B2
7476251 Zucherman et al. Jan 2009 B2
7481839 Zucherman et al. Jan 2009 B2
7481840 Zucherman et al. Jan 2009 B2
7491204 Marnay et al. Feb 2009 B2
7497859 Zucherman et al. Mar 2009 B2
7503935 Zucherman et al. Mar 2009 B2
7504798 Kawada et al. Mar 2009 B2
7510567 Zucherman et al. Mar 2009 B2
7520887 Maxy et al. Apr 2009 B2
7520899 Zucherman et al. Apr 2009 B2
7547308 Bertagnoli et al. Jun 2009 B2
7549999 Zucherman et al. Jun 2009 B2
7550009 Arnin et al. Jun 2009 B2
7565259 Sheng et al. Jul 2009 B2
7572276 Lim et al. Aug 2009 B2
7575600 Zucherman et al. Aug 2009 B2
7585313 Kwak et al. Sep 2009 B2
7585316 Trieu Sep 2009 B2
7588588 Spitler et al. Sep 2009 B2
7591851 Winslow et al. Sep 2009 B2
7601170 Winslow et al. Oct 2009 B2
7621939 Zucherman et al. Nov 2009 B2
7635377 Zucherman et al. Dec 2009 B2
7635378 Zucherman et al. Dec 2009 B2
7637950 Baccelli et al. Dec 2009 B2
7658752 Labrom et al. Feb 2010 B2
7662187 Zucherman et al. Feb 2010 B2
7666186 Harp Feb 2010 B2
7666209 Zucherman et al. Feb 2010 B2
7666228 Le Couedic et al. Feb 2010 B2
7670377 Zucherman et al. Mar 2010 B2
7682376 Trieu Mar 2010 B2
7691146 Zucherman et al. Apr 2010 B2
7695513 Zucherman et al. Apr 2010 B2
7699852 Frankel et al. Apr 2010 B2
7699873 Stevenson et al. Apr 2010 B2
D618796 Cantu Jun 2010 S
7727233 Blackwell et al. Jun 2010 B2
7727241 Gorensek et al. Jun 2010 B2
7731751 Butler Jun 2010 B2
7742795 Stone et al. Jun 2010 B2
7749231 Bonvallet et al. Jul 2010 B2
7749252 Zucherman et al. Jul 2010 B2
7749253 Zucherman et al. Jul 2010 B2
7753938 Aschmann et al. Jul 2010 B2
7758619 Zucherman et al. Jul 2010 B2
7758647 Arnin Jul 2010 B2
7763028 Lim Jul 2010 B2
7763050 Winslow et al. Jul 2010 B2
7763051 Labrom et al. Jul 2010 B2
7763073 Hawkins et al. Jul 2010 B2
7763074 Altarac et al. Jul 2010 B2
7766967 Francis Aug 2010 B2
7776090 Winslow et al. Aug 2010 B2
7780709 Bruneau et al. Aug 2010 B2
7789898 Peterman Sep 2010 B2
7794476 Wisnewski Sep 2010 B2
7803190 Zucherman et al. Sep 2010 B2
7806911 Peckham Oct 2010 B2
7811308 Arnin et al. Oct 2010 B2
7811322 Arnin et al. Oct 2010 B2
7811323 Arnin et al. Oct 2010 B2
7811324 Arnin et al. Oct 2010 B2
7811330 Arnin et al. Oct 2010 B2
7819921 Grotz Oct 2010 B2
7828822 Zucherman et al. Nov 2010 B2
7828849 Lim Nov 2010 B2
7833272 Arnin et al. Nov 2010 B2
7837687 Harp Nov 2010 B2
7837688 Boyer et al. Nov 2010 B2
7837700 Harp Nov 2010 B2
7837711 Bruneau et al. Nov 2010 B2
7837734 Zucherman et al. Nov 2010 B2
7846183 Blain Dec 2010 B2
7846185 Carls et al. Dec 2010 B2
7846186 Taylor Dec 2010 B2
7857815 Zucherman et al. Dec 2010 B2
7862569 Zucherman et al. Jan 2011 B2
7862586 Malek Jan 2011 B2
7862590 Lim et al. Jan 2011 B2
7862592 Peterson et al. Jan 2011 B2
7862615 Carli et al. Jan 2011 B2
7867276 Matge et al. Jan 2011 B2
7871426 Chin et al. Jan 2011 B2
7896879 Solsberg Mar 2011 B2
7942830 Solsberg May 2011 B2
7955392 Dewey et al. Jun 2011 B2
7985246 Trieu et al. Jul 2011 B2
8012207 Kim Sep 2011 B2
8025684 Garcia-Bengochea et al. Sep 2011 B2
8057513 Kohm et al. Nov 2011 B2
8062332 Cunningham et al. Nov 2011 B2
8100823 Harp Jan 2012 B2
8123782 Altarac et al. Feb 2012 B2
8123807 Kim Feb 2012 B2
8128662 Altarac et al. Mar 2012 B2
8152837 Altarac et al. Apr 2012 B2
8167944 Kim May 2012 B2
8226690 Altarac et al. Jul 2012 B2
8273108 Altarac et al. Sep 2012 B2
8277488 Altarac et al. Oct 2012 B2
8292922 Altarac et al. Oct 2012 B2
8317864 Kim Nov 2012 B2
8409282 Kim Apr 2013 B2
8425559 Tebbe et al. Apr 2013 B2
8608762 Solsberg Dec 2013 B2
8613747 Altarac et al. Dec 2013 B2
8628574 Altarac et al. Jan 2014 B2
8696671 Solsberg Apr 2014 B2
8734477 Solsberg May 2014 B2
8740948 Reglos Jun 2014 B2
8845726 Tebbe et al. Sep 2014 B2
8864828 Altarac et al. Oct 2014 B2
8882772 Solsberg Nov 2014 B2
8894653 Solsberg Nov 2014 B2
8900271 Kim Dec 2014 B2
8945183 Altarac et al. Feb 2015 B2
9023084 Kim May 2015 B2
9039742 Altarac et al. May 2015 B2
9119680 Altarac et al. Sep 2015 B2
9125692 Kim Sep 2015 B2
9155570 Altarac et al. Oct 2015 B2
9155572 Altarac et al. Oct 2015 B2
9161783 Altarac et al. Oct 2015 B2
9186186 Reglos Nov 2015 B2
9211146 Kim Dec 2015 B2
9283005 Tebbe et al. Mar 2016 B2
9314279 Kim Apr 2016 B2
9393055 Altarac et al. Jul 2016 B2
9445843 Altarac et al. Sep 2016 B2
9532812 Altarac et al. Jan 2017 B2
9572603 Altarac et al. Feb 2017 B2
9675303 Choi Jun 2017 B2
9861398 Altarac et al. Jan 2018 B2
9956011 Altarac et al. May 2018 B2
10058358 Altarac et al. Aug 2018 B2
10080587 Altarac et al. Sep 2018 B2
20010031965 Zucherman et al. Oct 2001 A1
20020022856 Johnson Feb 2002 A1
20020042607 Palmer Apr 2002 A1
20020116009 Fraser Aug 2002 A1
20020143331 Zucherman et al. Oct 2002 A1
20020151977 Paes et al. Oct 2002 A1
20030040746 Mitchell et al. Feb 2003 A1
20030040753 Daum Feb 2003 A1
20030074075 Thomas et al. Apr 2003 A1
20030105466 Ralph et al. Jun 2003 A1
20030149438 Nichols et al. Aug 2003 A1
20030153976 Cauthen et al. Aug 2003 A1
20030176921 Lawson Sep 2003 A1
20030220643 Ferree Nov 2003 A1
20030220650 Major et al. Nov 2003 A1
20030233098 Markworth Dec 2003 A1
20040087947 Lim et al. May 2004 A1
20040106997 Lieberson Jun 2004 A1
20040106999 Mathews Jun 2004 A1
20040148028 Ferree Jul 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040220568 Zucherman et al. Nov 2004 A1
20040225295 Zubok et al. Nov 2004 A1
20050021042 Marnay Jan 2005 A1
20050049708 Atkinson et al. Mar 2005 A1
20050075634 Zucherman et al. Apr 2005 A1
20050090822 DiPoto et al. Apr 2005 A1
20050101955 Zucherman et al. May 2005 A1
20050125066 McAfee Jun 2005 A1
20050143738 Zucherman et al. Jun 2005 A1
20050165398 Reiley Jul 2005 A1
20050192586 Zucherman et al. Sep 2005 A1
20050192671 Bao et al. Sep 2005 A1
20050209603 Zucherman et al. Sep 2005 A1
20050209698 Gordon Sep 2005 A1
20050216087 Zucherman et al. Sep 2005 A1
20050228383 Zucherman et al. Oct 2005 A1
20050228384 Zucherman et al. Oct 2005 A1
20050228426 Campbell Oct 2005 A1
20050245937 Winslow Nov 2005 A1
20050278036 Leonard et al. Dec 2005 A1
20060030860 Peterman Feb 2006 A1
20060036258 Zucherman et al. Feb 2006 A1
20060064107 Bertagnoli et al. Mar 2006 A1
20060064165 Zucherman et al. Mar 2006 A1
20060064166 Zucherman et al. Mar 2006 A1
20060074431 Sutton et al. Apr 2006 A1
20060084976 Borgstrom et al. Apr 2006 A1
20060084983 Kim Apr 2006 A1
20060084985 Kim Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060084991 Borgstrom et al. Apr 2006 A1
20060085069 Kim Apr 2006 A1
20060085070 Kim Apr 2006 A1
20060085074 Raiszadeh Apr 2006 A1
20060089718 Zucherman et al. Apr 2006 A1
20060122458 Bleich Jun 2006 A1
20060122620 Kim Jun 2006 A1
20060149254 Lauryssen et al. Jul 2006 A1
20060149289 Winslow et al. Jul 2006 A1
20060167416 Mathis et al. Jul 2006 A1
20060195102 Malandain Aug 2006 A1
20060217811 Lambrecht et al. Sep 2006 A1
20060224159 Anderson Oct 2006 A1
20060235386 Anderson Oct 2006 A1
20060241597 Mitchell et al. Oct 2006 A1
20060241614 Bruneau et al. Oct 2006 A1
20060241757 Anderson Oct 2006 A1
20060247623 Anderson et al. Nov 2006 A1
20060247632 Winslow et al. Nov 2006 A1
20060247633 Winslow et al. Nov 2006 A1
20060247650 Yerby et al. Nov 2006 A1
20060247773 Stamp Nov 2006 A1
20060264938 Zucherman et al. Nov 2006 A1
20060264939 Zucherman et al. Nov 2006 A1
20060265066 Zucherman et al. Nov 2006 A1
20060265067 Zucherman et al. Nov 2006 A1
20060271044 Petrini et al. Nov 2006 A1
20060271049 Zucherman et al. Nov 2006 A1
20060271055 Thramann Nov 2006 A1
20060271061 Beyar et al. Nov 2006 A1
20060271194 Zucherman et al. Nov 2006 A1
20060276801 Yerby et al. Dec 2006 A1
20060276897 Winslow et al. Dec 2006 A1
20060282077 Labrom et al. Dec 2006 A1
20060282078 Labrom et al. Dec 2006 A1
20070016196 Winslow et al. Jan 2007 A1
20070032790 Aschmann et al. Feb 2007 A1
20070055237 Edidin et al. Mar 2007 A1
20070055246 Zucherman et al. Mar 2007 A1
20070073289 Kwak et al. Mar 2007 A1
20070100340 Lange et al. May 2007 A1
20070100366 Dziedzic et al. May 2007 A1
20070123863 Winslow et al. May 2007 A1
20070123904 Stad et al. May 2007 A1
20070161991 Altarac et al. Jul 2007 A1
20070161993 Lowery et al. Jul 2007 A1
20070173818 Hestad et al. Jul 2007 A1
20070173821 Trieu Jul 2007 A1
20070173822 Bruneau et al. Jul 2007 A1
20070173823 Dewey et al. Jul 2007 A1
20070173832 Tebbe et al. Jul 2007 A1
20070173939 Kim et al. Jul 2007 A1
20070179500 Chin et al. Aug 2007 A1
20070185490 Implicito Aug 2007 A1
20070191857 Allard et al. Aug 2007 A1
20070191948 Arnin et al. Aug 2007 A1
20070191991 Addink Aug 2007 A1
20070198045 Morton et al. Aug 2007 A1
20070198091 Boyer et al. Aug 2007 A1
20070203493 Zucherman et al. Aug 2007 A1
20070203495 Zucherman et al. Aug 2007 A1
20070203496 Zucherman et al. Aug 2007 A1
20070203497 Zucherman et al. Aug 2007 A1
20070203501 Zucherman et al. Aug 2007 A1
20070208345 Marnay et al. Sep 2007 A1
20070208346 Marnay et al. Sep 2007 A1
20070208366 Pellegrino et al. Sep 2007 A1
20070210018 Wallwiener Sep 2007 A1
20070225706 Clark et al. Sep 2007 A1
20070225724 Edmond Sep 2007 A1
20070225807 Phan et al. Sep 2007 A1
20070225814 Atkinson et al. Sep 2007 A1
20070233068 Bruneau et al. Oct 2007 A1
20070233074 Anderson et al. Oct 2007 A1
20070233076 Trieu Oct 2007 A1
20070233077 Khalili Oct 2007 A1
20070233081 Pasquet et al. Oct 2007 A1
20070233082 Chin et al. Oct 2007 A1
20070233083 Abdou Oct 2007 A1
20070233084 Betz et al. Oct 2007 A1
20070233088 Edmond Oct 2007 A1
20070233089 DiPoto et al. Oct 2007 A1
20070233096 Garcia-Bengochea Oct 2007 A1
20070233098 Mastrorio et al. Oct 2007 A1
20070233129 Bertagnoli et al. Oct 2007 A1
20070250060 Anderson et al. Oct 2007 A1
20070260245 Malandain et al. Nov 2007 A1
20070265623 Malandain et al. Nov 2007 A1
20070265624 Zucherman et al. Nov 2007 A1
20070265625 Zucherman et al. Nov 2007 A1
20070265626 Seme Nov 2007 A1
20070270822 Heinz Nov 2007 A1
20070270823 Trieu et al. Nov 2007 A1
20070270824 Lim et al. Nov 2007 A1
20070270826 Trieu et al. Nov 2007 A1
20070270827 Lim et al. Nov 2007 A1
20070270828 Bruneau et al. Nov 2007 A1
20070270829 Carls et al. Nov 2007 A1
20070270834 Bruneau et al. Nov 2007 A1
20070272259 Allard et al. Nov 2007 A1
20070276368 Trieu et al. Nov 2007 A1
20070276369 Allard et al. Nov 2007 A1
20070276372 Malandain et al. Nov 2007 A1
20070276373 Malandain Nov 2007 A1
20070276390 Solsberg Nov 2007 A1
20070276493 Malandain et al. Nov 2007 A1
20070276496 Lange et al. Nov 2007 A1
20070276497 Anderson Nov 2007 A1
20070276500 Zucherman et al. Nov 2007 A1
20080015700 Zucherman et al. Jan 2008 A1
20080021468 Zucherman et al. Jan 2008 A1
20080021560 Zucherman et al. Jan 2008 A1
20080021561 Zucherman et al. Jan 2008 A1
20080027545 Zucherman et al. Jan 2008 A1
20080027552 Zucherman et al. Jan 2008 A1
20080027553 Zucherman et al. Jan 2008 A1
20080033445 Zucherman et al. Feb 2008 A1
20080033553 Zucherman et al. Feb 2008 A1
20080033558 Zucherman et al. Feb 2008 A1
20080033559 Zucherman et al. Feb 2008 A1
20080039853 Zucherman et al. Feb 2008 A1
20080039858 Zucherman et al. Feb 2008 A1
20080039859 Zucherman et al. Feb 2008 A1
20080039945 Zucherman et al. Feb 2008 A1
20080039946 Zucherman et al. Feb 2008 A1
20080039947 Zucherman et al. Feb 2008 A1
20080045958 Zucherman et al. Feb 2008 A1
20080045959 Zucherman et al. Feb 2008 A1
20080046081 Zucherman et al. Feb 2008 A1
20080046085 Zucherman et al. Feb 2008 A1
20080046086 Zucherman et al. Feb 2008 A1
20080046087 Zucherman et al. Feb 2008 A1
20080046088 Zucherman et al. Feb 2008 A1
20080051785 Zucherman et al. Feb 2008 A1
20080051896 Suddaby Feb 2008 A1
20080051898 Zucherman et al. Feb 2008 A1
20080051899 Zucherman et al. Feb 2008 A1
20080051904 Zucherman et al. Feb 2008 A1
20080051905 Zucherman et al. Feb 2008 A1
20080058806 Klyce et al. Mar 2008 A1
20080058807 Klyce et al. Mar 2008 A1
20080058808 Klyce et al. Mar 2008 A1
20080058941 Zucherman et al. Mar 2008 A1
20080065086 Zucherman et al. Mar 2008 A1
20080065212 Zucherman et al. Mar 2008 A1
20080065213 Zucherman et al. Mar 2008 A1
20080065214 Zucherman et al. Mar 2008 A1
20080071280 Winslow Mar 2008 A1
20080071378 Zucherman et al. Mar 2008 A1
20080071380 Sweeney Mar 2008 A1
20080086212 Zucherman et al. Apr 2008 A1
20080108990 Mitchell May 2008 A1
20080114455 Lange et al. May 2008 A1
20080132952 Malandain et al. Jun 2008 A1
20080167655 Wang et al. Jul 2008 A1
20080167656 Zucherman et al. Jul 2008 A1
20080172057 Zucherman et al. Jul 2008 A1
20080177272 Zucherman et al. Jul 2008 A1
20080177306 Lamborne Jul 2008 A1
20080177312 Perez-Cruet et al. Jul 2008 A1
20080183210 Zucherman et al. Jul 2008 A1
20080188895 Cragg et al. Aug 2008 A1
20080208344 Kilpela et al. Aug 2008 A1
20080215058 Zucherman et al. Sep 2008 A1
20080221692 Zucherman et al. Sep 2008 A1
20080228225 Trautwein et al. Sep 2008 A1
20080234708 Houser Sep 2008 A1
20080234824 Youssef et al. Sep 2008 A1
20080288075 Zucherman et al. Nov 2008 A1
20080319550 Altarac et al. Dec 2008 A1
20090012528 Aschmann et al. Jan 2009 A1
20090118833 Hudgins et al. May 2009 A1
20090125030 Tebbe et al. May 2009 A1
20090125036 Bleich May 2009 A1
20090138046 Altarac et al. May 2009 A1
20090138055 Altarac et al. May 2009 A1
20090222043 Altarac et al. Sep 2009 A1
20090248079 Kwak et al. Oct 2009 A1
20090292315 Trieu Nov 2009 A1
20100042217 Zucherman et al. Feb 2010 A1
20100082108 Zucherman et al. Apr 2010 A1
20100114100 Mehdizade May 2010 A1
20100131009 Roebling May 2010 A1
20100160947 Akyuz et al. Jun 2010 A1
20100228092 Ortiz Sep 2010 A1
20100234889 Hess Sep 2010 A1
20100262243 Zucherman et al. Oct 2010 A1
20100280551 Pool Nov 2010 A1
20100305611 Zucherman et al. Dec 2010 A1
20110245833 Anderson Oct 2011 A1
20110313457 Reglos et al. Dec 2011 A1
20120078301 Hess Mar 2012 A1
20120158063 Altarac et al. Jun 2012 A1
20120226315 Altarac et al. Sep 2012 A1
20120232552 Lopez Sep 2012 A1
20120303039 Chin et al. Nov 2012 A1
20120330359 Kim et al. Dec 2012 A1
20130012998 Altarac et al. Jan 2013 A1
20130072985 Kim et al. Mar 2013 A1
20130165974 Kim Jun 2013 A1
20130165975 Tebbe et al. Jun 2013 A1
20130172932 Altarac et al. Jul 2013 A1
20130172933 Altarac et al. Jul 2013 A1
20130289399 Choi Oct 2013 A1
20130289622 Kim Oct 2013 A1
20140081332 Altarac et al. Mar 2014 A1
20140214082 Reglos Jul 2014 A1
20150150598 Tebbe et al. Jun 2015 A1
20150150604 Kim Jun 2015 A1
20150374415 Kim Dec 2015 A1
20160030092 Altarac et al. Feb 2016 A1
20160066963 Kim Mar 2016 A1
20160317193 Kim et al. Nov 2016 A1
20170071588 Choi Mar 2017 A1
20170128110 Altarac et al. May 2017 A1
20170245883 Tebbe et al. Aug 2017 A1
20170258501 Altarac et al. Sep 2017 A1
20170273722 Altarac et al. Sep 2017 A1
20180028130 Choi Feb 2018 A1
20180193064 Kim Jul 2018 A1
20180228519 Altarac et al. Aug 2018 A1
20190090912 Altarac et al. Mar 2019 A1
20190090913 Altarac et al. Mar 2019 A1
Foreign Referenced Citations (131)
Number Date Country
268461 Feb 1927 CA
2794456 Jul 2006 CN
101897603 Dec 2010 CN
69507480 Sep 1999 DE
322334 Jun 1989 EP
0767636 Apr 1997 EP
0768843 Feb 1999 EP
1027004 Aug 2000 EP
1030615 Aug 2000 EP
1138268 Oct 2001 EP
1330987 Jul 2003 EP
1056408 Dec 2003 EP
1343424 Sep 2004 EP
1454589 Sep 2004 EP
1148850 Apr 2005 EP
1570793 Sep 2005 EP
1299042 Mar 2006 EP
1578314 May 2007 EP
1675535 May 2007 EP
0959792 Nov 2007 EP
1861046 Dec 2007 EP
2681525 Mar 1993 FR
2717675 Mar 1994 FR
2722980 Feb 1996 FR
2816197 May 2002 FR
2884136 Oct 2006 FR
2888744 Jan 2007 FR
988281 Jan 1983 SU
WO07131165 Nov 1970 WO
WO9404088 Mar 1994 WO
WO9426192 Nov 1994 WO
WO9525485 Sep 1995 WO
WO9531158 Nov 1995 WO
WO9600049 Jan 1996 WO
WO9829047 Jul 1998 WO
WO9921500 May 1999 WO
WO9921501 May 1999 WO
WO9942051 Aug 1999 WO
WO0013619 Mar 2000 WO
WO0044319 Aug 2000 WO
WO0044321 Aug 2000 WO
WO0128442 Apr 2001 WO
WO0191657 Dec 2001 WO
WO0191658 Dec 2001 WO
WO0203882 Jan 2002 WO
WO0207623 Jan 2002 WO
WO0207624 Jan 2002 WO
WO02051326 Jul 2002 WO
WO02067793 Sep 2002 WO
WO02071960 Sep 2002 WO
WO02076336 Oct 2002 WO
WO03007791 Jan 2003 WO
WO03007829 Jan 2003 WO
WO03008016 Jan 2003 WO
WO03015646 Feb 2003 WO
WO03024298 Mar 2003 WO
WO03045262 Jun 2003 WO
WO03099147 Dec 2003 WO
WO03101350 Dec 2003 WO
WO04073533 Sep 2004 WO
WO04110300 Dec 2004 WO
WO05009300 Feb 2005 WO
WO05013839 Feb 2005 WO
WO05025461 Mar 2005 WO
WO05041799 May 2005 WO
WO05044152 May 2005 WO
WO05055868 Jun 2005 WO
WO05079672 Sep 2005 WO
WO2005086776 Sep 2005 WO
WO05115261 Dec 2005 WO
WO06033659 Mar 2006 WO
WO06034423 Mar 2006 WO
WO06039243 Apr 2006 WO
WO06039260 Apr 2006 WO
WO06045094 Apr 2006 WO
WO2006045094 Apr 2006 WO
WO06063047 Jun 2006 WO
WO06065774 Jun 2006 WO
WO2006063047 Jun 2006 WO
WO2006064356 Jun 2006 WO
WO2006089085 Aug 2006 WO
WO06102269 Sep 2006 WO
WO06102428 Sep 2006 WO
WO06102485 Sep 2006 WO
WO06107539 Oct 2006 WO
WO06110462 Oct 2006 WO
WO06110464 Oct 2006 WO
WO06110767 Oct 2006 WO
WO06113080 Oct 2006 WO
WO06113406 Oct 2006 WO
WO06113814 Oct 2006 WO
WO06118945 Nov 2006 WO
WO06119235 Nov 2006 WO
WO06119236 Nov 2006 WO
WO06135511 Dec 2006 WO
WO07015028 Feb 2007 WO
WO07035120 Mar 2007 WO
WO07075375 Jul 2007 WO
WO07075788 Jul 2007 WO
WO07075791 Jul 2007 WO
WO07089605 Aug 2007 WO
WO07089905 Aug 2007 WO
WO07089975 Aug 2007 WO
WO07097735 Aug 2007 WO
WO07109402 Sep 2007 WO
WO07110604 Oct 2007 WO
WO07111795 Oct 2007 WO
WO07111979 Oct 2007 WO
WO07111999 Oct 2007 WO
WO07117882 Oct 2007 WO
WO07121070 Oct 2007 WO
WO07127550 Nov 2007 WO
WO07127588 Nov 2007 WO
WO07127677 Nov 2007 WO
WO07127689 Nov 2007 WO
WO07127694 Nov 2007 WO
WO07127734 Nov 2007 WO
WO07127736 Nov 2007 WO
WO07134113 Nov 2007 WO
WO2008009049 Jan 2008 WO
WO08048645 Apr 2008 WO
WO2008057506 May 2008 WO
WO2008130564 Oct 2008 WO
WO2009014728 Jan 2009 WO
WO2009033093 Mar 2009 WO
WO2009086010 Jul 2009 WO
WO2009091922 Jul 2009 WO
WO2009094463 Jul 2009 WO
WO2009114479 Sep 2009 WO
WO2011084477 Jul 2011 WO
WO2015171814 Nov 2015 WO
Non-Patent Literature Citations (65)
Entry
ASNR Neuroradiology Patient Information website, Brain and Spine Imaging: A Patient's Guide to Neuroradiology; Myelography http://www.asnr.org/patientinfo/procedures/myelography.shtml#sthash.sXIDOxWq.dpbs, Copyright 2012-2013.
Australia Exam Report for Application No. AU2006329867, Applicant: The Board of Trustees of Leland Stanford Junior University; dated Jan. 27, 2012, 2 pages.
Australia Exam Report for Application No. AU2007317886, Applicant: VertiFlex, Inc.; dated Jun. 18, 2012, 3 pages.
Australia Exam Report for Application No. AU2008241447, Applicant: VertiFlex, Inc.; dated Jul. 5, 2012, 4 pages.
Australia Exam Report for Application No. AU2008275708, Applicant: VertiFlex, Inc.; dated Nov. 12, 2012, 4 pages.
Australia Exam Report for Application No. AU2008279680, Applicant: VertiFlex, Inc.; dated Oct. 30, 2012, 5 pages.
Australia Exam Report for Application No. AU2008296066, Applicant: VertiFlex, Inc.; dated Mar. 6, 2013, 3 pages.
Australia Exam Report for Application No. AU2008343092, Applicant: VertiFlex, Inc.; dated Feb. 8, 2013, 4 pages.
Australia Exam Report for Application No. AU2013273815, Applicant: The Board of Trustees of Leland Stanford Junior University; dated Apr. 17, 2015, 3 pages.
Australia Exam Report for Application No. AU2014203394, Applicant: VertiFlex, Inc., dated Mar. 15, 2016, 2 pages.
Australia Exam Report No. 1 for Application No. AU2009206098, Applicant: VertiFlex, Inc. dated Mar. 6, 2013, 4 pages.
Australia Exam Report No. 2 for Application No. AU2009206098, Applicant: VertiFlex, Inc. dated Aug. 19, 2014, 4 pages.
Canada Exam Report for Application No. CA2634251, Applicant: The Board of Trustees of Leland Stanford Junior University; dated Dec. 3, 2013, 2 pages.
Canada Exam Report for Application No. CA2668833, Applicant: Vertiflex, Inc.; dated Dec. 5, 2013, 2 pages.
Canada Exam Report for Application No. CA2695937, Applicant: Vertiflex, Inc.; dated Aug. 7, 2014, 2 pages.
Canada Exam Report for Application No. CA2697628, Applicant: Vertiflex, Inc.; dated Oct. 16, 2014, 2 pages.
Canada Exam Report for Application No. CA2698718, Applicant: Vertiflex, Inc.; dated May 20, 2014, 3 pages.
Choi, Gun et al., “Percutaneous Endoscopic Interlaminar Disectomy for Intracanalicular Disc Herniations at L5-S1 Using a Rigid Working Channel Endoscope,” Operative Neurosurg., 58: pp. 59-68 (2006).
Decision on Petition in U.S. Appl. No. 60/592,099, filed May 4, 2005.
European Further Exam Report for Application No. EP09702116.6; Applicant: VertiFlex, Inc. dated Jul. 4, 2016, 4 pages.
European Examination Report for Application No. 08794704.0; Applicant: Vertiflex, Inc.; dated Apr. 5, 2017, 6 pages.
European Examination Report for Application No. 08799267.3; Applicant: Vertiflex, Inc.: dated Sep. 5, 2017, 4 pages.
Fast, Avital et al., “Surgical Treatment of Lumbar Spinal Stenosis in the Elderly,” Arch Phys. Med Rehabil., Mar. 1985, pp. 149-151, vol. 66.
First Examination Report in European Patent Application No. 08780034.8, dated Jan. 16, 2017, 5 pages.
Further Examination Report in European Patent Application No. 07861426.0, dated Oct. 4, 2017, 4 pages.
Further Examination Report in European Patent Application No. 08867282.9, dated Oct. 15, 2018, 7 pages.
International Search Report and Written Opinion; Application No. PCT/US2006/047824 dated Oct. 16, 2008, 17 pages.
International Search Report and Written Opinion; Application No. PCT/US2006/048611 dated Oct. 14, 2008; 10 pages.
International Search Report and Written Opinion; Application No. PCT/US2006/048614 dated Feb. 3, 2006; 23 pages.
International Search Report and Written Opinion; Application No. PCT/US2007/022171 dated Apr. 15, 2008, 9 pages.
International Search Report and Written Opinion; Application No. PCT/US2007/023312 dated May 22, 2008, 14 pages.
International Search Report and Written Opinion; Application No. PCT/US2008/004901 dated Aug. 19, 2008, 7 pages.
International Search Report and Written Opinion; Application No. PCT/US2008/008382 dated Mar. 2, 2009, 13 pages.
International Search Report and Written Opinion; Application No. PCT/US2008/008983 dated Feb. 23, 2009, 7 pages.
International Search Report and Written Opinion; Application No. PCT/US2008/075487 dated Dec. 31, 2008, 7 pages.
International Search Report and Written Opinion; Application No. PCT/US2008/087527 dated Jul. 30, 2009, 10 pages.
International Search Report and Written Opinion; Application No. PCT/US2009/031150 dated Aug. 28, 2009, 6 pages.
Lee, Seungcheol et al., “New Surgical Techniques of Percutaneous Endoscopic Lumbar Disectomy for Migrated Disc Herniation,” Joint Dis. Rei. Surg., 16(2); pp. 102-110 (2005).
Lee, Seungcheol et al., “Percutaneous Endoscopic Interlaminar Disectomy for L5-S1 Disc Herniation: Axillary Approach and Preliminary Results,” J. of Korean Neurosurg. Soc., 40: pp. 19-83 (2006).
McCulloch, John A., Young, Paul H., “Essentials of Spinal Microsurgery,” 1998, pp. 453-485. Lippincott-Raven Publishers, Philadelphia, PA (37 pages total).
Minns, R.J., et al., “Preliminary Design and Experimental Studies of a Noval Soft Implant for Correcting Sagittal Plane Instability in the Lumbar Spine,” (1997) Spine, 22(16): 1819-1827.
Palmer, Sylvain et al., “Bilateral decompressive surgery in lumbar spinal stenosis associated with spondylolisthesis: unilateral approach and use of a microscope and tubular retractor system,” Neurosurgery Focus, Jul. 2002, pp. 1-6, vol. 13.
Supplementary European Search Report for Application No. EP06845480; Applicant VertiFlex, Inc.; Date of Completion: Aug. 14, 2012, 9 pages.
Supplementary European Search Report for Application No. EP07861426; Applicant VertiFlex, Inc.; dated Jun. 7, 2011, 6 pages.
Supplementary European Search Report for Application No. EP07861721.4; Applicant VertiFlex, Inc.; dated Nov. 24, 2009, 6 pages.
Supplementary European Search Report for Application No. EP08742949.4; Applicant VertiFlex, Inc.; dated Jul. 19, 2012, 4 pages.
Supplementary European Search Report for Application No. EP08780034.8; Applicant VertiFlex, Inc.; dated Sep. 19, 2012, 7 pages.
Supplementary European Search Report for Application No. EP08794704.0; Applicant VertiFlex, Inc.; dated Oct. 23, 2012, 9 pages.
Supplementary European Search Report for Application No. EP08799267.3; Applicant VertiFlex, Inc.; dated Jun. 29, 2011, 7 pages.
Supplementary European Search Report for Application No. EP08867282.9; Applicant VertiFlex, Inc.; dated Nov. 28, 2012, 10 pages.
Supplementary European Search Report for Application No. EP09170304.1; Applicant VertiFlex, Inc.; dated Nov. 24, 2009, 5 pages.
Supplementary European Search Report for Application No. EP09170338.9; Applicant VertiFlex, Inc.; dated Nov. 24, 2009, 6 pages.
Supplementary European Search Report for Application No. EP09702116.6; Applicant VertiFlex, Inc.; dated Feb. 11, 2011, 7 pages.
Supplementary European Search Report for Application No. EP11151901.3; Applicant VertiFlex, Inc.; dated Apr. 7, 2011, 6 pages.
Supplementary European Search Report for Application No. EP13184922.6; Applicant VertiFlex, Inc.; dated Oct. 30, 2013, 8 pages.
Supplementary European Search Report; Application No. EP07861426.0; Applicant: Vertiflex, Inc.; Date of Completion: Jun. 7, 2011, 6 pages.
Supplementary European Search Report; Application No. EP07861721.4; Applicant: Vertiflex, Inc.; Date of Completion: Nov. 24, 2009, 6 pages.
Supplementary European Search Report; Application No. EP09170304.1; Applicant: Vertiflex, Inc.; Date of Completion: Nov. 11, 2009, 5 pages.
Supplementary European Search Report; Application No. EP09170338.9; Applicant: Vertiflex, Inc.; Date of Completion: Nov. 12, 2009, 6 pages.
Supplementary European Search Report; Application No. EP09702116.6; Applicant: Vertiflex, Inc.; Date of Completion: Feb. 11, 2011, 6 pages.
Supplementary European Search Report; Application No. EP11151901.3; Applicant: Vertiflex, Inc.; Date of Completion: Apr. 7, 2011, 6 pages.
Swan, Colby, “Preliminary Design and Experimental Studies of a Novel Soft Implant for Correcting Sogittal Plane Instability in the Lumbar Spine,” Spine, 1997, 22(16), 1826-1827.
Tredway, Trent L. et al., “Minimally Invasive Transforaminal Lumbar Interbody Fusion (MI-TLIF) and Lateral Mass Fusion with the MetRx System,” (14 pages total), 2005.
Vaccaro, Alexander J. et al., MasterCases Spine Surgery, 2001, pp. 100-107. Thieme Medical Publishers, Inc., NY. (10 pages total).
Vertos mild Devices Kit—PRT-00430-C—Instructions for Use (13 pages total); see http://vertosmed.com/docs/mildlFU_PRT-00430-C.pdf., 2012.
Related Publications (1)
Number Date Country
20190069933 A1 Mar 2019 US
Continuations (3)
Number Date Country
Parent 14887201 Oct 2015 US
Child 15966287 US
Parent 13619195 Sep 2012 US
Child 14887201 US
Parent 12220427 Jul 2008 US
Child 13619195 US
Continuation in Parts (4)
Number Date Country
Parent 12217662 Jul 2008 US
Child 12220427 US
Parent 12148104 Apr 2008 US
Child 12217662 US
Parent 11593995 Nov 2006 US
Child 12220427 US
Parent 11582874 Oct 2006 US
Child 11593995 US