This invention relates to the latching of fiber optic and electrical connectors and adapters, and securing the mated connections resulting therefrom.
As data demands have increased, the tendency has been for the overall size of both electrical and fiber optic connectors to get smaller, so as to enable fitting more connectors of a given type into a given physical space. However, given the performance requirements, there is a limit to how small the contacts, whether they are electrical pins or fiber optic ferrules, can realistically be. Any means of reducing the overall size of a given connector would therefore be advantageous.
Latch-type connectors are commonly seen across the industry in both electrical and fiber optic connectors. Examples of electrical connectors include the RJ11 and RJ45 interfaces, while in the realm of fiber optics, the common LC and MPO types both use latches to result in a mechanically secure connection. Latches are usually preferred over electrical press-fit connectors, such as USB-A, because they provide visual, audible, and tactile feedback to the user when properly mated. In the case of fiber connectors, a latch is necessary to provide sufficient and secure depth-of-mate to ensure physical contact upon which optical performance of the connection depends.
The major drawback of current latch-type designs is that the latch is always placed outside the envelope of the contact pattern. This means that the inclusion of the latch mechanism increases the overall envelope of the connector interface, forcing it to become either wider or taller than the connector would otherwise need to be. As such, a mechanism which utilizes the space between contacts could achieve the advantages of a latch-type connection while at the same time minimizing the overall size of the connector interface.
Embodiments of the inventive connectors and connector components described overcome disadvantages of previous connectors, connector components, and attachment means and allow more connectors to be used within a given space.
According to one embodiment of the invention, there is provided a connector plug comprised of a connector housing at the proximal end, a two-part backshell at the distal end, with a plurality of contacts housed within in a pre-defined contact pattern. Cantilever latching arms extend from the proximal end of the backshell. When mating with the receptacle, these latching arms depress into interstices between contact positions on the plug and snap into latching points located on the receptacle. Touch points are provided to enable the user to depress the latching arms and release the connector plug when required.
According to another embodiment of the invention, the two parts of the backshell are identical and mate to each other hermaphroditically.
According to another embodiment of the invention, an ergonomically-designed decoupler is added encircling the connector plug, which when pulled towards the distal end of the connector, cams over an angled surface on the latching arms, depressing them and releasing the connector plug.
Any combination or permutation of embodiments is envisioned. Additional advantageous functions, features, and applications of the disclosed systems, methods, and assemblies will be apparent from the detailed description which follows, particularly when read in conjunction with the appended figures. All references listed in this disclosure are hereby incorporated by reference in their entireties.
Other aspects and advantages of the invention will be apparent from the following detailed description wherein reference is made to the accompanying drawings. In order that the invention may be more fully understood, the following figures are provided by way of illustration, in which:
Further improvement to the assembly ergonomics is possible with the addition of another component as seen in
Both plug assembly 100 from
The simplicity of the latching mechanism is further illustrated by
Although the above example revolves around a fiber optic connector design, it would be clear to a person skilled in the art that the latch design mechanism and principles of layout and construction would apply to low voltage electrical connectors, as well. At higher voltages, the requisite opening in the connector plug housing may pose a safety risk, limiting the usefulness of the design.
When comparing the present invention to prior art connectors such as the LC type, a duplex version of which is shown in
The above example is used for illustrative purposes only, and should not be construed as limiting. Any combination or permutation of embodiments is envisioned. Additional advantageous functions, features, and applications of the disclosed systems, methods, and assemblies will be apparent to persons skilled in the art when combined with the appended figures.
Number | Name | Date | Kind |
---|---|---|---|
5828804 | Akins | Oct 1998 | A |
5828805 | Morlion | Oct 1998 | A |
6267513 | Seto | Jul 2001 | B1 |
6527450 | Miyachi | Mar 2003 | B1 |
8348524 | Iwamizu | Jan 2013 | B2 |
8382506 | Reed et al. | Feb 2013 | B2 |
8678846 | Hitchcock et al. | Mar 2014 | B2 |
8834038 | Limbert et al. | Sep 2014 | B2 |
9494744 | de Jong | Nov 2016 | B2 |
9709752 | Sawada | Jul 2017 | B2 |
10063006 | Mathews et al. | Aug 2018 | B2 |
10641968 | Takano et al. | May 2020 | B2 |
11280972 | Takano et al. | Mar 2022 | B2 |
20230050053 | Smith | Feb 2023 | A1 |
20230333328 | Watson | Oct 2023 | A1 |
20230400645 | Watson | Dec 2023 | A1 |
Number | Date | Country |
---|---|---|
114578490 | Jun 2022 | CN |
Number | Date | Country | |
---|---|---|---|
20230050053 A1 | Feb 2023 | US |
Number | Date | Country | |
---|---|---|---|
63259856 | Aug 2021 | US |