This application is a national phase of International PCT Patent Application No. PCT/IB2015/057786, filed Oct. 12, 2015, which claims priority to French Patent Application No. 1459917, filed Oct. 16, 2014, the entire contents of each of which are incorporated herein by reference.
The present invention relates to an intervalvular implant for a mitral valve.
The mitral valve of a heart, located between the left auricle and the left ventricle, may exhibit a loss of the seal of the two valvulae which it comprises, leading to regurgitation of the blood in the auricle during ventricular systole. This loss of seal frequently results from a loss of mobility of one of the two valvulae, following calcification of this valvula, distention of the mitral annulus, or infarction having led to damaging of the left ventricle.
It is known how to treat this problem by placing an implant between the valvulae, forming a supporting surface for the valvulae during the ventricular systole, and thereby allowing a seal to be given again to the mitral valve. An existing implant notably has a structure formed by a frame and by a membrane covering this frame.
However, known implants do not perfectly give satisfaction, either their shape is not optimum, causing imperfect restoration of the seal of the valve with respective to the blood flow from the ventricle to the auricle, or they do not operate properly and perturbed the blood flow from the auricle to the ventricle, or they have uncertain strength over time, or further they are difficult to implant.
The object of the present invention is to find a remedy to the whole of these drawbacks.
The patent application publication No US 2005/228495 A1 discloses a valve prosthesis comprising a frame base and a trestle that spans across and above the frame base, this trestle supporting a leaflet assembly comprising two mobile leaflet members that assume different complementing orientations in response to blood flow. The frame base is sized and configured to engage a generally circular shape of a native valve annulus. The outer edges of leaflet members are free of attachment to the frame base.
This device is intended to replace the native leaflets. It fails to achieve the object above-mentioned.
The implant according to the invention has a structure formed with a frame and a membrane covering this frame;
The implant, once it is set into place on a mitral valve, will occupy the intervalvular space, said membrane portions extending along the edges of the valvulae. By means of its frame only formed at this membrane by said branches and said hoop, this implant has a relative longitudinal flexibility allowing it to more or less adapt to the shape of the intervalvular space to be filled.
During a ventricular diastole, the pressurized blood from the auricle presses on the membrane portions and brings them into said recessed shape; the implant then has a shape relatively reduced in width, not interfering with the blood flow from the auricle to the ventricle. During a ventricular systole, the sac formed by the membrane on the ventricular side receives pressurized blood bringing said membrane portions into said convex shape; this shape allows the implants to perfectly fill the intervalvular space resulting from the faulty operation of one of the two valvulae and to form effective supporting surfaces for these valvulae, so assisting the latter.
According to a possible embodiment of the invention, the ends of the branches have tilted portions and/or the connecting areas are tilted or have tilted portions so as to shift said base portion on the ventricular side of the implant relatively to surfaces through which said anchoring portions are intended to come into contact with the annulus of the valve.
The implant according to this embodiment is intended to be set into place below a mitral valve, notably by a transapical approach, and said anchoring portions are intended to be connected to the annulus of the valve in two diametrically opposite points of this annulus. The aforementioned shift allows said membrane portions to in majority extend into the intervalvular space so that the free edges of the valvulae easily bear upon them.
It will be understood that the expression “ventricular side of the implant” refers to the side of the implant found on the side of the ventricle once this implant is set into place on a valve.
According to another possible embodiment of the invention, said connecting areas and said anchoring portions substantially extend in the extension of said base portion, so that this base portion is located in a plane close to the one in which extend the surfaces through which said anchoring portions are intended to come into contact with the annulus of the valve.
The implant according to this embodiment is intended to be set into place on the auricular side of the valve, through a transeptal approach, and said anchoring portions are intended to be connected to the annulus of the valve at the commissures of the valvulae. The free edges of the valvulae then however have more limited contact surfaces with said faces of the membrane.
Said branches may be positioned symmetrically relatively to a longitudinal median plane of the implant, so that said base portion has an oval or rhombic shape. The convex or protruding sides of said branches, resulting from said curved or chevron shape of these branches, may also be turned towards a same side of the implant, ensuring that said base portion has a general curved shape, substantially adapted to the curvature exhibited by the space delimited by the mitral valvulae (this curvature is often designated as a mitral “smile”).
Said hoop is preferably located in the median longitudinal plane of the implant. It is also preferably located in a plane substantially perpendicular to the plane in which extends said base portion.
This anchoring portion may notably have a hole for receiving a tie for anchoring the implant to the mitral annulus. This hole may be oblong, notably with its length positioned perpendicularly to the length of the implant, in order to allow adjustment of the position of the implant relatively to the valve.
The membrane may extend on the whole of the portion of the implant along which extends the hoop, or on only part of this portion.
This membrane may possibly pass below the hoop and be connected to this hoop notably by a suture. However preferably, this membrane passes around the hoop by bearing against it.
Said branches and/or said hoop may have a circular or non-circular, notably square or rectangular, cross-section.
The frame may notably be in an elastically deformable material, allowing it to adopt a deformed configuration, with transverse contraction, in which it is able to be placed in a delivery catheter, and a normal expansion configuration, in which it is implanted. The elastically deformable material may notably be a shape memory material such as an aluminium and titanium alloy known under the usual name of Nitinol.
Said membrane may further be in a synthetic material, notably in a polyester fabric; it may also be in a natural material such as animal pericardium.
The connection of this membrane to the frame may be achieved by any suitable means, notably by a suture. The membrane, when it surrounds the hoop, may be only connected to said branches without being connected to the hoop; preferably it is connected both to said branches and this hoop.
The invention will be well understood, and other features and advantages thereof will become apparent, with reference to the appended schematic drawing; this drawing represents as non-limiting examples, several possible embodiments of the implant concerned.
The implant 1 has a central portion extending between the valvulae 101 and two end portions allowing it to be anchored to the annulus 102 of the valve 100, and has a structure formed by a frame and by a membrane covering the central portion of this frame.
The base portion 5 is formed by two curved branches 10 positioned along general directions parallel to each other and symmetrically with respect to a longitudinal median plane of the implant 1. The median portions of these branches are located at a longer distance from each other than the end portions of these branches, so that said base portion 5 has a stretched oval shape. This base portion 5 extends in a plane substantially perpendicular to the longitudinal median plane of the implant 1.
The median portion of a branch 10 may be considered as extending over about the median third of the branch 10, and therefore each end portion may be considered as extending over about one third of the length of the branch 10.
These end portions become closer to each other towards the ends of the base portion 5 and join up with each other at their connection to the connecting areas 6. As visible in
The connecting areas 6 substantially extend at this line L. They may slightly extend obliquely relatively to this line, like in the illustrated example, each area 6 having a height which increases from its end connected to the base portion 5 to its end connected to the anchoring portion 7.
Each anchoring portion 7 forms a surface intended to bear against the mitral annulus 102 and is pierced with a hole 11 intended to receive a tie 55 for anchoring to this annulus (see
The hoop 8 extends in the longitudinal median plane of the implant 1, from one connecting area 6 to the other, and above the line L. It has a median portion extending parallel to the median portions of the branches 10 and two lateral tilted portions connected to the areas 6. Said median portion of the hoop 8 represents about half of the length of this hoop (this length is considered to be in a straight line from one area 6 to the other).
The membrane 3 which the implant 1 also comprises is in a flexible material such as a polyester fabric or animal pericardium, and has a sealed structure towards the flow of the blood through it. As shown in
In the longitudinal plane, the membrane 3 essentially extends around the aforementioned median portion of the hoop 8 and the corresponding portions of the branches 10, as visible in
In practice, as shown in
After withdrawal of the rod 52, the catheter 51 is engaged through one of the perforations made and a tie 55 with deployable branches, connected to a thread 56, is then pushed into this catheter 51 as far as beyond the perforation, so that the branches of this tie are deployed beyond the annulus 102 (see
A second tie 55 and a second thread 56, identical, are set into place in the same way in the second perforation (both of these ties 55 and threads 56 are visible in
After withdrawal of the catheter 51, the implant 1 in the contracted state is pushed into the catheter 50 (see
The implant is then released from the catheter 50 (see
Each anchoring portion 7 is then attached to the mitral annulus 102 by a known technique, notably by means of washers 57 able to slide on the threads 56 and be clip-fastened on the ties 55 (see
The threads 56 are then cut by means of a rod with a sharp cutting edge, of a known type, slipped into the catheter 50.
As this appears in
By means of its frame 2, only formed at this membrane 3, by the branches 10 and by the hoop 8, the implant 1 has a longitudinal relative flexibility allowing it to adapt to the shape of the intervalvular space to be filled. In this way, it is perfectly efficient for restoring the seal of the valve 100.
During ventricular diastole, the pressurized blood from the auricle (not shown in the figures) presses on the portions 3a of the membrane 3 and that brings them into the hollow outwardly concave shape, visible in
At the end of the procedure for setting the implant 1 into place, a plug 58 is implanted on the ventricle 103 so as to close the apical orifice made for letting through the catheter 50, see
On this frame 2, the connecting areas 6 and the anchoring portions 7 substantially extend in the extension of the base portion 5, so that the implant 1 is substantially planar outside the hoop 8. The anchoring portions 7 are then intended to be connected to the annulus 102 at the commissures of the valvulae 101.
Moreover, in the illustrated example, the branches 10 have a shape, not a stretched oval shape but a chevron shape, giving the base portion a rhombic shape. These branches 10 and the hoop 8 are further, also as example, with a rectangular cross-section.
In this case, the base portion 5 is formed with chevron-shaped branches 10 therefore having a rhombic shape, and is shifted on the ventricular side of the implant 1, in the same way as described earlier. The hoop 8 has a small height as compared with the faces of the anchoring portions 7 intended to come into contact with the annulus 102 of the valve 100, so that the membrane 3 is located sufficiently low in the intervalvular space, and therefore closer to the area for setting the valvulae 101.
As this appears from the foregoing, the invention provides an intervalvular implant for a mitral valve having aforementioned determining advantages as compared with homologous implants of the prior art.
This invention has been described above with reference to embodiments provided as an example. It is obvious that it is not limited to these embodiments but that it extends to all embodiments covered by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
14 59917 | Oct 2014 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2015/057786 | 10/12/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/059533 | 4/21/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3656185 | Carpentier | Apr 1972 | A |
4490859 | Black et al. | Jan 1985 | A |
5147391 | Lane | Sep 1992 | A |
5213575 | Scotti | May 1993 | A |
5376114 | Jarvik | Dec 1994 | A |
5830239 | Toomes | Nov 1998 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6269819 | Oz et al. | Aug 2001 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6613086 | Moe et al. | Sep 2003 | B1 |
6911043 | Myers et al. | Jun 2005 | B2 |
7037333 | Myers et al. | May 2006 | B2 |
7077862 | Vidlund et al. | Jul 2006 | B2 |
7399315 | Iobbi | Jul 2008 | B2 |
7562660 | Saadat | Jul 2009 | B2 |
7591847 | Navia et al. | Sep 2009 | B2 |
7691144 | Chang et al. | Apr 2010 | B2 |
7914569 | Nguyen et al. | Mar 2011 | B2 |
8002825 | Letac et al. | Aug 2011 | B2 |
8657872 | Seguin | Feb 2014 | B2 |
9011523 | Seguin | Apr 2015 | B2 |
9629720 | Nguyen et al. | Apr 2017 | B2 |
20050010287 | MacOviak et al. | Jan 2005 | A1 |
20050137690 | Salahieh et al. | Jun 2005 | A1 |
20050143689 | Ramsey, III | Jun 2005 | A1 |
20050228495 | Macoviak | Oct 2005 | A1 |
20050267573 | MacOviak et al. | Dec 2005 | A9 |
20060058871 | Zakay et al. | Mar 2006 | A1 |
20060195184 | Lane et al. | Aug 2006 | A1 |
20070265701 | Gurskis et al. | Nov 2007 | A1 |
20080033541 | Gelbart et al. | Feb 2008 | A1 |
20080065204 | MacOviak et al. | Mar 2008 | A1 |
20080125860 | Webler et al. | May 2008 | A1 |
20080249618 | Huynh et al. | Oct 2008 | A1 |
20090069890 | Suri et al. | Mar 2009 | A1 |
20110022165 | Oba et al. | Jan 2011 | A1 |
20110144742 | Madrid et al. | Jun 2011 | A1 |
20110313434 | Kocaturk | Dec 2011 | A1 |
20120215303 | Quadri et al. | Aug 2012 | A1 |
20120271398 | Essinger et al. | Oct 2012 | A1 |
20120323313 | Seguin | Dec 2012 | A1 |
20130023985 | Khairkhahan et al. | Jan 2013 | A1 |
20140350662 | Vaturi | Nov 2014 | A1 |
20150039083 | Rafiee | Feb 2015 | A1 |
20150119981 | Khairkhahan et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
WO-2004030568 | Apr 2004 | WO |
WO-2004030569 | Apr 2004 | WO |
WO-2010106438 | Sep 2010 | WO |
WO-2013178335 | Dec 2013 | WO |
Entry |
---|
International Search Report & Written Opinion dated Nov. 19, 2015 in Int'l PCT Patent Appl. No. PCT/IB2015/057786. |
International Search Report and Written Opinion dated Aug. 8, 2016 in Int'l PCT Patent Application Serial No. PCT/IB2016/052498. |
Textbook of Engineering Mathematics, Revised 2nd Edition, p. 76 (2005). |
Written Opinion dated May 18, 2017 in Int'l PCT Patent Appl. Serial No. PCT/IB2016/052498. |
Number | Date | Country | |
---|---|---|---|
20170224477 A1 | Aug 2017 | US |