The invention relates to an interventional device having a polyvinylidene fluoride, i.e. PVDF, ultrasound detector. The ultrasound detector may be used in various sensing applications in the medical field including position tracking. In one exemplary application the PVDF ultrasound detector may be used to track the position of the interventional device respective the ultrasound field of a beamforming ultrasound imaging probe.
Interventional procedures in the medical field increasingly use ultrasound detectors to gain more information about a patient's anatomy. In this regard, ultrasound devices may be equipped with an ultrasound detector in sensing applications such as position tracking and blood flow sensing.
In one exemplary application described in more detail in document [1] “A New Sensor Technology for 2D Ultrasound-Guided Needle Tracking” by Huanxiang Lu, Junbo Li, Qiang Lu, Shyam Bharat, Ramon Erkamp, Bin Chen, Jeremy Drysdale, Francois Vignon, and Ameet Jain; P. Golland et al. (Eds.): MICCAI 2014, Part II, LNCS 8674, pp. 389-396, 2014, an ultrasound sensor is attached to a medical needle to track the position of the needle respective the ultrasound field of a beamforming ultrasound imaging probe. Performance results for two different materials are disclosed: dip-coated poly(vinylidene fluoride (VDF)-trifluoroethylene (TrFE)) co-polymer, and lead zirconate titanate, i.e. PZT.
A document US 2017/172618 A1 discloses a medical device that includes a conductive body including a surface and a sensor conformally formed on the surface and including a piezoelectric polymer formed about a portion of the surface and following a contour of the surface. The piezoelectric polymer is configured to generate or receive ultrasonic energy. Electrical connections conform to the surface and are connected to an electrode in contact with the piezoelectric polymer. The electrical connections provide connections to the piezo electric polymer and are electrically isolated from the conductive body over a portion of the surface.
Another document U.S. Pat. No. 5,070,882 A discloses an ultrasonic transducer for a catheter tip that has a thin strip of piezoelectric polymer film formed into a spiral ring and adhesively mounted on the support structure near the catheter tip. Electrical connection between the back face of the film and the support structure negative electrode is via capacitive coupling. Connection to the front face of the film is via a wire connected to the positive electrode of the catheter. A further embodiment suitable for a needle transducer is formed by coating the tip with a solution of PVDF co-polymer to form the actual transducer.
Another document WO 2017/102338 A1 relates to determining the rotation of an interventional device in an ultrasound field. An interventional device is provided that is suitable for being tracked in an ultrasound beam of a beamforming ultrasound imaging system by correlating transmitted ultrasound signals from the beamforming ultrasound imaging system as detected by ultrasound receivers attached to the interventional device with the beamforming beam sequence of the ultrasound signals. The interventional device includes a longitudinal axis, a first linear sensor array comprising a plurality of ultrasound receivers wherein each ultrasound receiver has a length and a width, and wherein the array extends along the width direction. Moreover the first linear sensor array is wrapped circumferentially around the interventional device with respect to the axis such that the length of each ultrasound receiver is arranged lengthwise with respect to the axis.
Despite this progress there remains room to provide an interventional device with an improved ultrasound detector in this and other medical application areas.
The present invention seeks to provide an interventional device with an improved ultrasound detector. Thereto an interventional device and an ultrasound-based position determination system are provided. The interventional device has an elongate shaft with a longitudinal axis. The interventional device has an ultrasound detector that includes a polyvinylidene fluoride, PVDF, homopolymer foil strip. The foil strip is wrapped around the longitudinal axis of the elongate shaft to provide a band having an axial length along the longitudinal axis. The axial length is in the range 80-120 microns.
The inventors have found that an axial length of PVDF homopolymer foil strip within this range provides an ultrasound detector that has a low variation in sensitivity with azimuthal angle. Moreover, such an axial length also results in high sensitivity at small azimuthal angles. In general, an ultrasound detector in the form of such a band might be expected to have negligible sensitivity at azimuthal angles of 0° and 180°, i.e. parallel to the longitudinal axis of the elongate shaft, and maximum sensitivity at a azimuthal angles of 90°, i.e. perpendicular to the elongate shaft. In general it may also be expected that the absolute sensitivity of an ultrasound detector in the form of such a band might scale linearly with the axial length of the band. Surprisingly, the inventors have found that an axial length in the range 80-120 microns exhibits both high sensitivity at small azimuthal angles and a low variation in sensitivity with azimuthal angle. Furthermore, an axial length in the range 80-120 microns has been found to provide adequate sensitivity to ultrasound.
In accordance with one aspect the foil strip has a thickness in the range 8.5-9.5 microns. Such a thickness provides an ultrasound detector with a high degree of flexibility, allowing the band to be wrapped around the longitudinal axis of the elongate shaft. Moreover, such a thickness can be reliably manufactured without defects.
In accordance with one aspect the elongate shaft has Birmingham Wire Gauge in the range 22 to 20. The ultrasound detector band is sufficiently flexible to be wrapped around a needle diameter with a Gauge in this range.
In accordance with one aspect an ultrasound-based position determination system includes the interventional device.
Further aspects are described with reference to the appended claims. Further advantages from the described invention will also be apparent to the skilled person.
In order to illustrate the principles of the present invention an interventional device in the form of a medical needle is described with particular reference to an exemplary position tracking application in which the positon of an ultrasound detector on the needle is determined respective the ultrasound field of a beamforming ultrasound imaging probe.
It is however to be appreciated that the invention may also be used in other medical application areas that employ ultrasound detectors such as blood flow sensing. The invention also finds application with other interventional devices than a medical needle, including without limitation a catheter, a guidewire, a biopsy device, a guidewire, a pacemaker lead, an intravenous line or a surgical tool in general. The interventional device may be used in a wide variety or medical procedures, for example from routine needle insertion for regional anesthesia, to biopsies and percutaneous ablation of cancer, and to more advanced interventional procedures.
As mentioned above, it has been found that an axial length of PVDF homopolymer foil strip within this range provides an ultrasound detector that has a low variation in sensitivity with azimuthal angle. High performance is also found within the narrower ranges of 80-110 microns, or 90-120 microns, or 90-110 microns. Moreover, such an axial length also results in high sensitivity at small azimuthal angles. Both results are somewhat surprising in view of the highly variable sensitivity performance results reported in [1] for ultrasound detectors that were made from different materials, i.e. PVDF co-polymer and PZT, and using different construction types, i.e. dip-coating.
In general, an ultrasound detector in the form of such a band might be expected to have negligible sensitivity at azimuthal angles of 0° and 180°, i.e. parallel to the longitudinal axis A-A′ of elongate shaft 101, and maximum sensitivity at a azimuthal angles of 90°, i.e. perpendicular to the elongate shaft. In general it may also be expected that the absolute sensitivity of an ultrasound detector in the form of such a band might scale linearly with the axial length of the band.
The three above trends are indeed observed in the measurements of
Surprisingly, as illustrated in
This finding is highly significant for PVDF detectors formed in such a band. Having a small variation in sensitivity with azimuthal angle offers uniform signal to noise ratio performance, and may obviate the need for switchable amplifiers that might otherwise be needed provide this via an adjustable gain that depends on the detected signal level or on the azimuthal angle. Moreover, applications that use the detected signal strength to determine a sensor parameter such as range may benefit from the much flatter sensitivity profiles of the 100 micron devices illustrated in
As mentioned above, foil strip 103 is made from a PVDF homopolymer. The term PVDF homopolymer as used herein refers to a polymer in which a single monomer, specifically, vinyldifluoride, i.e. VDF, is repeated to form the whole polymer. This term is used to distinguish from a copolymer, in which there are two monomers that form the polymer. This term is also used to distinguish from the term polymer blend, in which two different homopolymers are mixed in the melt. One exemplary supplier of PVDF homopolymer foil is Goodfellow, Cambridge, UK. Other similar PVDF homopolymer foils may likewise be used to provide foil strip 103. Foil strip 103 may optionally have a thickness in the range 8.5-9.5 microns. Such a thin layer offers a balance between high flexibility, particularly to allow for wrapping of foil strip 103 as a band around elongate shaft 101, and adequate signal strength. Thinner layers can be tricky to manufacture reliably. Moreover, whilst foil strip 103 may be used with a wide range of elongate shaft diameters, preferably elongate shaft 101 has a diameter that corresponds to a Birmingham Wire Gauge in the range 22 to 20; i.e. a nominal outer diameter of from 0.7176 millimeters to 0.9081 millimeters.
Various techniques are contemplated to provide foil strip 103 on elongate shaft 101. These include wrapping foil strip 103 around elongate shaft 101 to provide a band; assembling a stack of layers on elongate shaft 101; or providing stack of pre-assembled layers and attaching this stack to the shaft. Electrical conductors may be subsequently connected to the foil strip, or these maybe incorporated within the layers. In respect of the exemplary pre-assembled stack configuration,
In
With reference to
Polymer layers 117, 118 may for example be formed from materials such as Polyethylene terephthalate, PET, Polyimide, PI, or Polyamide, PA. Moreover, polymer layers 117, 118 may include an adhesive coating, optionally a pressure sensitive adhesive coating, on one or both of their surfaces, these being illustrated as adhesive layers 116, 120, 115, 119 in
Optionally, elongate stack 430 may also include electrical shield layer 105 which, as described above, provides electrical shielding to ultrasound detector 102 and/or electrical conductors 111, 112.
Elongate stack 430 has a first edge 107 and an opposing second edge 108, the first edge 107 and the second edge 108 being separated by a width dimension W. First edge 107 and second edge 108 each extend along length direction 109 of elongate stack 430. Foil strip 103 extends along a detector direction 110 that forms an acute angle α with respect to the length direction 109 of elongate stack 430.
Optionally, width dimension W in
In order for consecutive turns of the spiral to abut, i.e. just touch, one another, the following equation should be satisfied:
W=π·D·Sin(α) Equation 1
Wherein α is the acute angle defined by detector direction 110 with respect to length direction 109, and D is the diameter of elongate shaft 101. By arranging that W exceeds the above value, consecutive turns of the spiral overlap one another. Likewise by arranging that W is less than this value a gap may be provided between consecutive turns of the spiral.
As described above, in this implementation, elongate stack 430 is wrapped in the form of a spiral around elongate shaft 101 such that foil strip 103 provides the band.
The spiral wrapping of
With further reference to
Ultrasound detector 102 in
Ultrasound detector 102 in
Optionally, in order to maintain a low insertion resistance, preferably the ultrasound detector 102 in
As mentioned above, in one exemplary implementation, the interventional devices described herein may be used in an ultrasound-based tracking application. In this implementation, ultrasound detector may 102 may be configured to detect ultrasound signals emitted by a beamforming ultrasound imaging probe and the position of the ultrasound detector may be determined based on the detected ultrasound signals. Thereto,
With reference to
Together, units 640, 642, 644, 645 and 646 form a conventional ultrasound imaging system. The units 642, 644, 645 and 646 are conventionally located in a console that is in wired or wireless communication with beamforming ultrasound imaging probe 640. Some of units 642, 644, 645 and 646 may alternatively be incorporated within beamforming ultrasound imaging probe 640 as for example in the Philips Lumify ultrasound imaging system. Beamforming ultrasound imaging probe 640 generates ultrasound field 641. In FIG. 6, a 2D beamforming ultrasound imaging probe 640 is illustrated that includes a linear ultrasound transceiver array that transmits and receives ultrasound energy within an ultrasound field 641 which intercepts region of interest ROI. The ultrasound field is fan-shaped in
In-use the above-described conventional ultrasound imaging system is operated in the following way. An operator may plan an ultrasound procedure via imaging system interface 645. Once an operating procedure is selected, imaging system interface 645 triggers imaging system processor 646 to execute application-specific programs that generate and interpret the signals transmitted to and detected by beamforming ultrasound imaging probe 640. A memory, not shown, may be used to store such programs. The memory may for example store ultrasound beam control software that is configured to control the sequence of ultrasound signals transmitted by and/or received by beamforming ultrasound imaging probe 640. Image reconstruction unit 642 provides a reconstructed ultrasound image corresponding to ultrasound field 641 of beamforming ultrasound imaging probe 640. Image reconstruction unit 642 thus provides an image corresponding to the image plane defined by ultrasound field 641 and which intercepts region of interest ROI. The function of image reconstruction unit 642 may alternatively be carried out by imaging system processor 646. The image may subsequently be displayed on display 644. The reconstructed image may for example be an ultrasound Brightness-mode “B-mode” image, otherwise known as a “2D mode” image, a “C-mode” image or a Doppler mode image, or indeed any ultrasound image.
Also shown in
In-use, the position of ultrasound detector 102 is computed respective ultrasound field 641 by position determination unit 643 based on ultrasound signals transmitted between beamforming ultrasound imaging probe 640 and ultrasound detector 102. Ultrasound detector 102 detects ultrasound signals corresponding to beams B1 . . . k. Position determination unit 643 identifies the position of ultrasound detector 102 based on i) the amplitudes of the ultrasound signals corresponding to each beam B1 . . . k that are detected by ultrasound detector 102, and based on ii) the time delay, i.e. time of flight, between emission of each beam B1 . . . k and its detection by ultrasound detector 102. Position determination unit 643 subsequently provides an icon in the reconstructed ultrasound image based on the computed position of ultrasound detector 102. The icon may for example indicate the computed position of ultrasound detector 102. The icon may optionally also indicate a range of positions within which a portion of the interventional device, e.g. its distal end, may lie. More specifically the position is computed by finding the best fit position of ultrasound detector 102 respective ultrasound field 731 based on the detected ultrasound signals.
This may be illustrated as follows. When ultrasound detector 102 is in the vicinity of ultrasound field 641, ultrasound signals from the nearest of beams B1 . . . k to the detector will be detected with a relatively larger amplitude whereas more distant beams will be detected with relatively smaller amplitudes. Typically the beam that is detected with the largest amplitude is identified as the one that is closest to ultrasound detector 102. This beam defines the in-plane angle θIPA between beamforming ultrasound imaging probe 640 and ultrasound detector 102. The corresponding range depends upon the time delay, i.e. the time of flight, between the emission of the largest-amplitude beam B1 . . . k and its subsequent detection. If desired, the range may thus be determined by multiplying the time delay by the speed of ultrasound propagation. Thus, the time of flight and corresponding in-plane angle θIPA of the beam detected with the largest amplitude can be used to identify the best-fit position of ultrasound detector 102 respective ultrasound field 641.
In the above-described ultrasound-based position determination system 640 the dependence of the sensitivity profile of ultrasound detector 102, or more specifically its absolute value and/or dependence on azimuthal angle of the interventional device, may impact its computed position respective ultrasound field 641. Thereto, the use of the above-described interventional device has the benefits of improved reliability and sensitivity. Indeed, when in-use in such an application the insertion angle of an interventional device is frequently around 500 or more. The beamforming ultrasound imaging probe is in such applications disposed on the surface of the body and a needle bearing the ultrasound detector is often inserted from a position to the side of the imaging probe and into its imaging plane. The flatter sensitivity curve of the ultrasound detector represented in
Whilst reference has been made above to a planar ultrasound imaging probe it is to be appreciated that the exemplified beamforming ultrasound imaging probe 640 is only one example of a beamforming ultrasound imaging probe in which interventional device 100 may be used. Interventional device 100 also finds application in ultrasound-based position determination systems that include other types of 2D or 3D beamforming ultrasound imaging probes. These may include for example a “TRUS” transrectal ultrasonography probe, an “IVUS” intravascular ultrasound probe, a “TEE” transesophageal probe, a “TTE” transthoracic probe, a “TNE” transnasal probe, an “ICE” intracardiac probe. Moreover, it is to be appreciated that interventional device 100 also finds application in other ultrasound sensing applications in the medical field beyond position tracking.
In summary, an interventional device that includes an elongate shaft and an ultrasound detector 102 has been described. The elongate shaft has a longitudinal axis. The ultrasound detector comprises a PVDF homopolymer foil strip. The foil strip is wrapped around the longitudinal axis of the elongate shaft to provide a band having an axial length along the longitudinal axis. The axial length is in the range 80-120 microns.
Various embodiments and options have been described in relation to the interventional device, and it is noted that the various embodiments may be combined to achieve further advantageous effects. Any reference signs in the claims should not be construed as limiting the scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
18198769 | Oct 2018 | EP | regional |
This application is the U.S. National Phase application under 35 U.S.C. § 371 of International Application No. PCT/EP2019/070885, filed on Aug. 2, 2019, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/716,131, filed Aug. 8, 2018 and European Patent Application No. 18198769.4, filed on Oct. 5, 2018. These applications are hereby incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2019/070885 | 8/2/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/030546 | 2/13/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5070882 | Bui | Dec 1991 | A |
6217518 | Holdaway | Apr 2001 | B1 |
20020173720 | Seo | Nov 2002 | A1 |
20090076594 | Sabaria | Mar 2009 | A1 |
20100268014 | Pitman | Oct 2010 | A1 |
20150327997 | Pollack | Nov 2015 | A1 |
20160367322 | Jain | Dec 2016 | A1 |
20170027605 | Erkamp | Feb 2017 | A1 |
20170172544 | Erkamp | Jun 2017 | A1 |
20170172618 | Erkamp | Jun 2017 | A1 |
20170258439 | Jasperson | Sep 2017 | A1 |
20170360398 | Hamm | Dec 2017 | A1 |
20180193000 | Shepard | Jul 2018 | A1 |
20180207683 | De Wijs | Jul 2018 | A1 |
Number | Date | Country |
---|---|---|
2017102338 | Jun 2017 | WO |
Entry |
---|
International Search Report and Written Opinion of PCT/EP2019/070885, dated Sep. 13, 2019. |
Lu, Huanxiang et al “A New Sensor Technology for 2D Ultrasound-Guided Needle Tracking” MICCAI 2014, Part II, LNCS 8674, pp. 389-396. |
Number | Date | Country | |
---|---|---|---|
20210315644 A1 | Oct 2021 | US |
Number | Date | Country | |
---|---|---|---|
62716131 | Aug 2018 | US |