This application is a U.S. national phase of International Application No. PCT/US2017/049372, filed Aug. 30, 2017, which is incorporated herein by reference in its entirety.
The present invention relates to interventional medical devices, and, more particularly, to an interventional medical device that reduces fracture risk to the patient.
It is well known in the medical arts to use an interventional medical device, such as a guide wire, angioplasty balloon, ultrasonic catheter, needle, or vascular filter, in the diagnostics and/or treatment of a patient. The interventional medical device is configured as an invasive device to be inserted into the tissue, vessel, or cavity of a patient. The interventional medical device will be present in the patient for some period of time, with the amount of time depending upon the type of device being used.
For example, during one type of atherectomy procedure, an ultrasonic catheter is inserted into a blood vessel of a patient and is energized to break through a calcified vascular occlusion in the blood vessel. The ultrasonic catheter includes a sheath having a lumen, and a shaft, also referred to in the art as a corewire, which runs through the lumen of the support shaft. A distal end portion of the corewire protrudes from the distal end of the shaft, and the corewire is coupled to an ultrasonic energy source. When the ultrasonic energy source is energized, the distal end portion of the corewire vibrates at the ultrasonic frequency to produce a radial and axial vibrating motion of the distal end portion. However, subjecting the distal end portion of the corewire to such movement at the ultrasonic frequency may create a possibility of fracturing at the distal end portion of the corewire.
As another example, it is known to use a vascular filter that is designed to capture an embolism, e.g., a blood clot, which is traveling with the blood through the blood vessel, so as to prevent the embolism from reaching the heart or lungs. The vascular filter typically is configured as a structure that permits continued blood flow through the blood vessel, while trapping the blood clot traveling in the blood stream. However, there may be the potential for health complications if the vascular filter fractures and migrates in the blood stream.
What is needed in the art is an interventional medical device configured such that the portions of the interventional medical device that are subject to fracture and migration within the patient are tied together, so as to reduce the risk of potential health complications that the fractured portion of the device might pose to the patient.
The present invention provides an interventional medical device configured such that the portions of the interventional medical device that are subject to fracture and migration within a patient are tied together, so as to reduce the risk of potential health complications that the fractured portion of the device might pose to the patient.
The invention in one form is directed to an interventional medical device, such as an ultrasonic catheter that includes a flexible catheter body, a corewire, and a membrane. The flexible catheter body has a proximal end, a distal end, and a lumen that extends through the catheter body to the distal end. The corewire is positioned in the lumen of the flexible catheter body. The corewire has a distal tip, a distal end portion, and a transmission portion. The distal end portion extends proximally from the distal tip and the transmission portion extends proximally from the distal end portion. The distal end portion is configured to longitudinally extend in its entirety from the distal end of the flexible catheter body. The membrane encapsulates at least the distal end portion of the corewire. The membrane is configured to tie together a fractured portion of the distal end portion of the corewire.
The invention in another form is directed to an interventional medical device, such as an atherectomy device. The atherectomy device includes an elongate flexible catheter body having a proximal end, a distal end, and a lumen extending from the proximal end to the distal end. An ultrasound corewire extends longitudinally and unattached through the lumen of the elongate flexible catheter body to facilitate excitation of the ultrasound corewire within the elongate flexible catheter body. The ultrasound corewire has a distal end portion and an active distal portion that includes the distal end portion. The distal end portion is configured to extend distally past the distal end of the elongate flexible catheter body so that the distal end portion of the ultrasound corewire is fully exposed, and with a portion of the active distal portion being positioned in the lumen. A membrane extends along the ultrasound corewire to encapsulate the active distal portion of the ultrasound corewire.
The invention in another form is directed to an interventional medical device, such as an intravascular device. The intravascular device includes a body and a plurality of wire projections that extend from the body. The wire projections are spaced apart in an annular pattern to form a vascular filter portion. A plurality of membrane portions is configured to encapsulate each of the plurality of wire projections, with each membrane portion of the plurality of membrane portions encapsulating a respective one of the plurality of wire projections. Each membrane portion of the plurality of membrane portions has a proximal end that is attached to the body.
The invention in another form is directed to a method of manufacturing an interventional medical device. The method includes identifying at least one portion of the interventional medical device that is subject to fracture and migration within a patient; and applying a membrane over each portion of the interventional medical device that is subject to fracture and migration, such that any fractured portion of each portion of the interventional medical device that is subject to fracture and migration is tied together by the membrane.
One advantage of the present invention is that the membrane ties the fractured portion, e.g., having multiple fragments, of the interventional medical device together, and may also tie the fractured portion to a unitary portion of the interventional medical device, so as to help reduce the risk of the fractured pieces, e.g., fragments, of the fractured portion migrating within the patient, and to allow the fractured portion to be retrieved along with the interventional medical device by withdrawing the interventional medical device from the patient.
Another advantage of the present invention is that the membrane also helps reduce the risk of an occurrence of fracturing of an active portion of the interventional medical device, but if fracturing does occur, then the membrane ties the fractured portion together, so as to help reduce the risk of fragments of the fractured portion migrating within the patient
The above-mentioned and other features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention will be better understood by reference to the following description of embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate embodiments of the invention, and such exemplifications are not to be construed as limiting the scope of the invention in any manner.
The present invention is directed to an interventional medical device, and method for manufacturing the same, wherein at least one portion of the interventional medical device that is subject to fracture and migration within a patient is identified. As used herein, the term fracture refers to a breaking of the interventional medical device that results in at least one fragment. A membrane, such as a polymer, is applied over each portion of the interventional medical device that is subject to fracture and migration, such that any fractured portion, e.g., having multiple fragments, of the interventional medical device is tied together by the membrane which remains attached to the interventional medical device. The specific embodiments shown in the drawings and described below are directed to an ultrasonic catheter and a vascular filter, but those skilled in the art will recognize that the principles of the invention, as set forth below in the description of the embodiments and in the claims, may be applied to other types of interventional medical devices.
Referring to
Referring to
Referring to
Referring to
Proximal end 32 of corewire 14 is configured to be coupled to an ultrasound energy source (not shown), which supplies axial and radial, e.g., transverse, ultrasonic vibration to transmission portion 30 of corewire 14, and in turn to distal end portion 28. Referring to
Referring to
Referring to
Membrane 36 is continuous around the entire metallic circumference of corewire 14 for the longitudinal extent of membrane 36. Membrane 36 longitudinally extends, i.e., covers, less than a full length of corewire 14, and in the present embodiment, extends an entirety of the length of active distal portion 34. Referring also to
As best shown in
As used herein, the term “about” is a range of plus or minus 10 percent of the base amount.
Referring again to
In addition, in the present embodiment, referring again to
Also, if the polymer of membrane 36 has anti-friction properties, membrane 36 may further reduce frictional wear at distal end portion 12-1 of catheter body 12, and in turn reduce the amount of heat that is generated during ultrasonic activation of corewire 14.
In the present embodiment, membrane 36 may be formed as a coating that is applied over distal end portion 28 of corewire 14, such as by one of chemical vapor or physical vapor deposition, with the deposit being a polymer, such as a parylene polymer, or alternatively, a fluoropolymer.
As a variation to applying a coating, membrane 36 may be formed as a polymer sleeve having a closed distal end that is positioned over distal end portion 28 of corewire 14 and collapsed to tightly bind to the outer surface of corewire 14, e.g., at active distal portion 34. For example, the sleeve may be made from an elastomer, such as rubber. It is further contemplated that the sleeve may be formed from thermoplastic shrink tubing, such as for example, shrink tubing made from polyolefin or PTFE.
Referring now to
A plurality of membrane portions 58 is configured to encapsulate each of the plurality of wire projections 54. In
Each membrane portion 58-1, 58-2, 58-3, 58-4, 58-5, 58-6 of the plurality of membrane portions 58 is formed from a polymer material, and has a thin wall thickness, e.g., 10 to 150 microns, that is continuous around the respective wire projection 54-1, 54-2, 54-3, 54-4, 54-5, 54-6 of the plurality of wire projections 54. Each membrane portion 58-1, 58-2, 58-3, 58-4, 58-5, 58-6 of the plurality of membrane portions 58 has a proximal end 60 that is attached, e.g., adhered, to body 52.
For example, each membrane portion 58-1, 58-2, 58-3, 58-4, 58-5, 58-6 of the plurality of membrane portions 58 may be applied as a coating to encapsulate the respective wire projection 54-1, 54-2, 54-3, 54-4, 54-5, 54-6 of the plurality of wire projections 54. In particular, each membrane portion 58-1, 58-2, 58-3, 58-4, 58-5, 58-6 of the plurality of membrane portions 58 may be applied by chemical vapor deposition or physical vapor deposition, with the deposit being a polymer, such as for example, a parylene polymer, or alternatively, a fluoropolymer.
Alternatively, each membrane portion 58-1, 58-2, 58-3, 58-4, 58-5, 58-6 of the plurality of membrane portions 58 may be a respective sleeve that covers, e.g., encapsulates, the exposed portion of the respective wire projection 54-1, 54-2, 54-3, 54-4, 54-5, 54-6 of the plurality of wire projections 54, and attached, i.e., adhered, to body 52. For example, each sleeve may be made from a polymer, such as an elastomer, e.g., rubber. It is further contemplated that each sleeve may be formed from thermoplastic shrink tubing, such as for example, shrink tubing made from polyolefin or PTFE.
While this invention has been described with respect to at least one embodiment, the present invention can be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles. Further, this application is intended to cover such departures from the present disclosure as come within known or customary practice in the art to which this invention pertains and which fall within the limits of the appended claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2017/049372 | 8/30/2017 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/045705 | 3/7/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4811743 | Stevens | Mar 1989 | A |
5387190 | Gotanda | Feb 1995 | A |
5971949 | Levin et al. | Oct 1999 | A |
6450975 | Brennan et al. | Sep 2002 | B1 |
7384407 | Rodriguez et al. | Jun 2008 | B2 |
8932223 | Emelianov et al. | Jan 2015 | B2 |
20010039431 | DeVries et al. | Nov 2001 | A1 |
20050015953 | Keidar | Jan 2005 | A1 |
20060069405 | Schaeffer et al. | Mar 2006 | A1 |
20070260172 | Nita | Nov 2007 | A1 |
20080300620 | Chanduszko | Dec 2008 | A1 |
20130023897 | Wallace | Jan 2013 | A1 |
20130035628 | Garrison et al. | Feb 2013 | A1 |
20130211292 | Sverdlik | Aug 2013 | A1 |
20130296903 | Nita | Nov 2013 | A1 |
20140107534 | Du | Apr 2014 | A1 |
20140214064 | Nita | Jul 2014 | A1 |
20160022306 | Du et al. | Jan 2016 | A1 |
20160220269 | Labropoulos et al. | Aug 2016 | A1 |
20160331645 | Bagwell | Nov 2016 | A1 |
Number | Date | Country |
---|---|---|
2967606 | Jan 2016 | EP |
2003521309 | Jul 2003 | JP |
2008513147 | May 2008 | JP |
9211815 | Jul 1992 | WO |
2001054617 | Aug 2001 | WO |
2003034233 | Apr 2003 | WO |
2006061829 | Jun 2006 | WO |
2008150863 | Dec 2008 | WO |
2016081026 | May 2016 | WO |
Entry |
---|
Office Action dated Oct. 21, 2022, pertaining to Chinese Application 201780094378.4. |
Office Action dated Mar. 27, 2023 pertaining to Japanese Patent Application No. 2022 080078. |
Number | Date | Country | |
---|---|---|---|
20200367918 A1 | Nov 2020 | US |