This application claims priority under 35 U.S.C. 119 to French Patent Application No. 05 12133, filed in FRANCE on Nov. 30, 2005.
The present invention concerns an intervertebral disc prosthesis, intended to be substituted for fibro-cartilaginous discs ensuring connection between the vertebrae of the spinal column.
Various types of intervertebral disc prostheses are known in the prior art. Numerous prostheses, such as for example in the patent applications WO 02 089 701 and WO 2004/041129, are constituted by a lower plate and an upper plate forming a sort of cage articulated about a central core. Other prostheses such as those described in the patent U.S. Pat. No. 5,676,701 and in the patent application WO 03/059212 A1, for example, comprise only a lower plate and an upper plate articulated to one another by means of an articulation surface. The advantage of these two types of articulated prostheses is that they offer freedom of movement for the patient wearing the prosthesis, by enabling inclination and/or rotation of one of the plates relative to the other. The additional advantage of prostheses comprising a central core, mobile between the plates, is that they allow spontaneous positioning of the core in the ideal position to absorb the constraints imposed on the prosthesis. Some of the prostheses whereof the central core is mobile between the plates comprise cooperation means present on the core and on at least one of the plates to limit displacement of the core. In these prostheses described in the prior art, osseous anchoring means are likewise known which fix each of the plates of the prosthesis in each of the vertebrae between which the prosthesis is intended to be implanted. These osseous anchoring means can consist of fins intended to be fixed on the plates of the prosthesis and cooperate with a groove made in the surface of the vertebral plates or in anchors intended to be planted in the vertebral body.
However, the disadvantage of these prostheses is that they are not easy to insert between the vertebrae, since implantation requires good stability of the different elements of the prosthesis between one another. This stability is often missing in prostheses known from the prior art and the known instrumentation does not generally ensure stability of the elements of the prosthesis. In fact, the articulated plates of the prostheses possess degrees of liberty conferring comfort to the patient, but discomfort for the surgeon who fits them. The plates risk inclining and turning about their articulation surfaces. The surgeon is therefore not guaranteed that the elements are properly aligned in the antero-posterior axis of the vertebral column.
In this context, it is interesting to propose a prosthesis and associated instrumentation enabling the prosthesis to be implanted between the vertebrae, while retaining the necessary alignment of the different elements of the prosthesis between one another. The aim of the present invention therefore is to eliminate certain disadvantages of the prior art by proposing an intervertebral disc prosthesis and instrumentation for insertion of the prosthesis between the vertebrae allowing the prosthesis to be implanted by following a defined axis.
This aim is attained by an intervertebral disc prosthesis comprising at least two plates, so-called first and second plates, articulated between one another by means of a curved surface, so-called articulation, of at least one of the plates, allowing pivoting and/or inclination of the plates relative to one another, by rotation about, respectively, an axis substantially perpendicular to the plane of the plates and an axis substantially in the plane of the plates, each of the plates comprising a so-called contact surface, intended to be made solid with a vertebral plate of one of the vertebrae between which the prosthesis is intended to be implanted, characterised in that the contact surface of at least one of the plates comprises at least first osseous anchoring means and at least second osseous anchoring means, the first osseous anchoring means extending to in the vicinity of the periphery of the plate on which it is situated and the second osseous anchoring means being offset according to the antero-posterior axis relative to the first osseous anchoring means, said second osseous anchoring means offset comprising a portion, so-called basal, solid with the plate on which it is situated and a portion, so-called sharp-edged, of width narrower than the basal portion and forming a guide blade intended to prevent rotation of the plates of the prosthesis between one another and facilitate insertion of the prosthesis.
In accordance with another specific characteristic, the second plate comprises a curved articulation surface whereof at least one part cooperates with a curved articulation surface of the first plate to which it is complementary, to allow pivoting and/or inclination of the plates relative to one another.
In accordance with another specific characteristic, the curved surface of the first plate is concave and the curved articulation surface of the second plate is convex.
In accordance with another specific characteristic, the curved surface of the first plate is convex and the curved articulation surface of the second plate is concave.
In accordance with another specific characteristic, it likewise comprises a core comprising a plane surface and a curved articulation surface and in that only the first plate comprises a curved articulation surface cooperating with at least one part of the curved surface of the core to which it is complementary, to allow pivoting and/or inclination of the plates relative to one another, the plane surface of the core cooperating with at least one part of a plane surface of the second plate to allow translation and/or rotation of the core relative to the second plate in at least one direction perpendicular to the vertical axis of the backbone, the second plate comprising cooperation means complementary to cooperation means of the core allowing at least this translation of the core to be limited or eliminated relative to the second plate.
In accordance with another specific characteristic, the curved surface of the first plate is concave and the curved surface of the core is convex.
In accordance with another specific characteristic, the curved surface of the first plate is convex and the curved surface of the core is concave.
In accordance with another specific characteristic, the first osseous anchoring means of the plates consist of at least one winglet located in the vicinity of the periphery of the plate and fitted with notches oriented so as to oppose withdrawal of the prosthesis from the discal space.
In accordance with another specific characteristic, the notches of the first osseous anchoring means are at a height increasing in the postero-anterior direction, such that the notches are at a height greater at the front than at the rear of the prosthesis and so that the insertion of the prosthesis in the discal space, in the antero-posterior direction of the vertebrae is facilitated by the notches attacking the osseous tissue not yet attacked by the preceding notches.
In accordance with another specific characteristic, at least the anterior edge of at least one of the plates of the prosthesis comprises 3 support faces whereof one leading face substantially perpendicular to the insertion axis of the prosthesis in the discal space and two antero-lateral faces each forming, in the plane of the plate, an angle with the anterior face and with one of the lateral edges of the plate, these 3 support faces allowing stabilising of the prosthesis during its insertion in the discal space by an instrument whereof at least a portion has a shape complementary to these 3 support faces.
In accordance with another specific characteristic, at least one of the plates has, at least on its posterior edge, at least one chamfer facilitating insertion of the prosthesis in the discal space.
In accordance with another specific characteristic, the second osseous anchoring means of the plates consists of at least one aileron located in the vicinity of an edge of the plate and oriented in the insertion axis of the prosthesis between the vertebrae.
In accordance with another specific characteristic, the aileron has a lesser height at its posterior end than at its anterior end, this difference in height imparting to the aileron an inclined profile facilitating its insertion in the discal space in the antero-posterior direction.
In accordance with another specific characteristic, at least one of the plates comprises at least one default form, such as a notch, allowing the fitting of the end of a prehension device to the prosthesis.
In accordance with another specific characteristic, the cooperation means of the second plate are male means located in the vicinity of the edges of the second plate and cooperating with female means of the core.
In accordance with another specific characteristic, the male cooperation means of the second plate are two studs located on the two lateral edges of the second plate and the female cooperation means of the core are two recesses made on the lateral edges of the core.
In accordance with another specific characteristic, the dimensions of each male cooperation means are slightly less than those of each female cooperation means so as to allow a slight clearance between the core and the second plate about the middle position of the core, corresponding to a centre of articulation of the prosthesis.
In accordance with another specific characteristic, the dimensions of each male cooperation means are substantially the same as those of each female cooperation means, so as to prevent any clearance between the core and the second plate and block the core in its middle position corresponding to a centre of articulation of the prosthesis.
In accordance with another specific characteristic, the cooperation means of the second plate are female means located in the vicinity of the edges of the second plate and cooperating with male means of the core.
In accordance with another specific characteristic, the dimensions of each male cooperation means are slightly less than those of each female cooperation means so as to allow slight clearance between the core and the second plate, about the middle position of the core, corresponding to a centre of articulation of the prosthesis.
In accordance with another specific characteristic, the dimensions of each male cooperation means are substantially the same as those of each female cooperation means so as to prevent any clearance between the core and the second plate and block the core at its middle position, corresponding to a centre of articulation of the prosthesis.
In accordance with another specific characteristic, the male cooperation means of the core are two studs located on the two lateral edges of the core and the female cooperation means of the second plate are four walls located, two by two, on each of the two lateral edges of the second plate.
In accordance with another specific characteristic, the female cooperation means of the second plate comprise a portion curved in to the centre of the plate and partially covering the male cooperation means of the core so as to prevent lifting of the core.
In accordance with another specific characteristic, the plane means representing the contact surfaces of the plates are substantially parallel or form an acute angle, the inclination obtained by such an angle allowing the overall form of the prosthesis to adapt to the anatomy of the backbone or optionally correct faults in inclination of the vertebrae of the patient for whom the prosthesis is intended.
In accordance with another specific characteristic, the same plates can be assembled with cores of different thicknesses and/or sizes and/or forms.
Another aim of the present invention is to eliminate certain disadvantages of the prior art by proposing instrumentation for insertion of an intervertebral disc prosthesis between the vertebrae allowing stability of the different elements of the prosthesis to be maintained between one another over the course of insertion of the latter between the vertebrae.
This aim is attained by insertion instrumentation of an intervertebral disc prosthesis between the vertebrae, comprising at least one prehension device for the prosthesis comprising a so-called manipulation end and a so-called prehension end, the prehension device being characterised in that it comprises a rod fitted, at the prehension end, with at least one axis of rotation on which are mounted at least two feet free in rotation about this axis, the ensemble of the rod and feet forming a clip mounted slidably in a hollow tube whereof the prehension end has an internal profile in a truncated form and comprises an axis perpendicular to the plane of the two feet of the clip, the ensemble formed by the two feet having a width, in the plane of the opening of the clip, greater than the width of the rod, the sliding of the rod in the tube, in the direction of the manipulation end, therefore causing closing of the clip by contact between the exterior of the feet and the truncated portion of the tube, the sliding of the rod in the tube, in the direction of the prehension end, causing opening of the clip by contact between the axis of the tube and the interior of the feet of the rod.
In accordance with another specific characteristic, the rod is fitted with a grip at the manipulation end, so as to allow the user to have the rod slide in the tube.
In accordance with another specific characteristic, the tube is fitted with a ring mobile in rotation relative to the tube and comprising a thread complementary to at least one threaded portion of the rod, the relative position of the thread of the ring and of the threading of the rod allowing blockage of the rod in the tube at least in the position where the clip is closed.
In accordance with another specific characteristic, the ends of the feet, at the level of the prehension end, each have at least one contact surface with at least an edge of an element of the prosthesis, imparting to the clip a profile adapted to the form of the prosthesis to be implanted.
In accordance with another specific characteristic, the profile adapted to the form of the prosthesis to be implanted consists of at least one contact surface with the leading edge of the prosthesis, at least one contact surface with the leading edge of a central core of the prosthesis and at least one contact surface with elements located on the lateral edges of the prosthesis.
In accordance with another specific characteristic, at least one contact surface with elements located on the lateral edges of the prosthesis consists of prehension means of cooperation means between the core and a plate of the prosthesis.
In accordance with another specific characteristic, at least one contact surface with elements located on the lateral edges of the prosthesis consists of cooperation means with a default form of at least one of the plates of the prosthesis.
In accordance with another specific characteristic, the profile adapted to the form of the prosthesis to be implanted consists of at least the contact surface with the leading edge of the prosthesis comprising 3 support faces complementary to 3 support faces present at least on the leading edge of at least one of the plates of the prosthesis, these 3 support faces comprising a leading face substantially perpendicular to the insertion axis of the prosthesis in the discal space and two antero-lateral faces each forming, in the plane of the plate, an angle with the leading face and with one of the lateral edges of the plate, the cooperation between this instrumentation profile and these 3 faces of the prosthesis allowing the latter to be stabilised during its insertion in the discal space.
Other specific characteristics and advantages of the present invention will emerge more clearly from reading the description hereinbelow, given in reference to the attached diagrams, in which:
The present invention relates to an intervertebral disc prosthesis comprising at least osseous anchoring means (41) forming a guide blade intended to prevent rotation of the plates of the prosthesis between one another and facilitate insertion of the prosthesis. More precisely, the prosthesis comprises at least first osseous anchoring means (42) and at least second osseous anchoring means (41), the first osseous anchoring means (42) extending to near the periphery of the plate on which it is situated and the second osseous anchoring means (41) being offset according to the antero-posterior axis relative to the first osseous anchoring means (42). The second offset osseous anchoring means (41) comprise a portion, so-called basal, solid with the plate on which it is situated and a portion, so-called sharp-edged, of width narrower than the basal portion. This sharp-edged portion forms a sort of blade intended to score the surfaces of the vertebral plates with which it comes into contact during implantation of the prosthesis and this blade then naturally forms a guide rail in the vertebra, thus preventing any displacement of the elements of the prosthesis between one another. In the various embodiments described hereinbelow, the prosthesis comprises at least two plates (1 and 2), so-called first (1) and second (2) plates, articulated between one another by means of a curved surface, so-called articulation surface, of at least one of the plates. This curved articulation surface allows pivoting of the plates (1, 2) relative to one another, by rotation about an axis substantially perpendicular to the plane of the plates and/or inclination of the plates (1, 2) relative to one another, by rotation about an axis substantially in the plane of the plates (1, 2). Each of the plates (1, 2) comprises a so-called contact surface intended to be made solid with a vertebral plate of one of the vertebrae between which the prosthesis is intended to be implanted. As is particularly evident in the embodiment illustrated in
In this illustrated embodiment, the first plate (1) comprises a curved articulation surface and this surface cooperates with at least one part of the curved surface of the core (3) to which it is complementary, to allow pivoting and/or inclination of the plates (1, 2) relative to one another. The plane surface of the core (3) cooperates with at least one part of a plane surface of the second plate (2) to allow translation of the core (3) relative to the second plate (2) in at least one direction perpendicular to the vertical axis of the spinal column and/or rotation of the core (3) relative to the second plate (2) by rotation about an axis substantially perpendicular to the plane of these plane surfaces. In the embodiments illustrated in the figures, the curved surface of the first plate (1) is concave and the curved surface of the core (3) is convex, but it could eventuate that the curved surface of the first plate (1) is convex and the curved surface of the core (3) is concave.
The second plate (2) comprises cooperation means (22) complementary to cooperation means (32) of the core (3) so as to limit or cancel at least this translation of the core (3) relative to the second plate (2). In the embodiments illustrated in the figures, the cooperation means (22) of the second plate (2) are male means located in the vicinity of the edges of the second plate (2) and cooperating with female means (32) of the core (3). In the embodiments illustrated in the figures, these male cooperation means (22) of the second plate (2) are two studs located on the two lateral edges of the second plate (2) and the female cooperation means (32) of the core (3) are two recesses made on the lateral edges of the core (3). In other possible embodiments not illustrated here, these cooperation means (32) of the core (3) can be male means consisting, for example, of two studs located on the two lateral edges of the core (3) and the cooperation means (22) of the second plate (2) can thus be female means consisting, for example, of four walls located, two by two, on each of the two lateral edges of the second plate (2). In these two embodiments, the cooperation means (22) of the second plate (2) can comprise a portion curved in towards the centre of the plate (2) and partially covering the cooperation means (32) of the core (3) so as to prevent lifting of the core (3). In an embodiment according to the present invention the dimensions of each male cooperation means (32, 22) could be slightly less than those of each female cooperation means (22, 32) so as to allow slight clearance between the core (3) and the second plate (2) about the middle position of the core (3) relative to the plates (1, 2), this middle position corresponding to a centre of articulation of the prosthesis. In another embodiment, the dimensions of each male cooperation means (32, 22) could be substantially identical to those of each female cooperation means (22, 32) so as to prevent any clearance between the core (3) and the second plate (2) and block the core (3) in its middle position corresponding to the centre of articulation. It can be interesting that the prosthesis according to the present invention can correct faults in inclination of the vertebrae between which it is intended to be implanted. In accordance with the desired result, this centre of articulation could have been provided to be at the centre of the prosthesis or be offset in at least one direction perpendicular to the axis of the spinal column. Similarly, the planes means representing the contact surfaces (14) of the plates (1, 2) could therefore be substantially parallel or form an acute angle. The inclination obtained by such an angle will allow the overall form of the prosthesis to adapt to the anatomy of the spinal column or optionally correct faults in inclination of the vertebrae of the patient for whom the prosthesis is intended. The same plates (1, 2) can be assembled with core (3) of different thicknesses and/or sizes and/or forms.
The prosthesis according to the present invention comprises osseous anchoring means ensuring good stability of the elements of the prosthesis between one another during implantation of the prosthesis between the vertebrae. For this, the prosthesis according to the present invention comprises at least first osseous anchoring means (42) and at least second osseous anchoring means (41). The first osseous anchoring means (42) extend to near the periphery of the plate on which it is situated and the second osseous anchoring means (41) is offset according to the antero-posterior axis relative to the first osseous anchoring means (42). Therefore, the first osseous anchoring means (42) could consist, in an embodiment not illustrated here, of a winglet oriented perpendicularly to the antero-posterior axis of the spinal column and located near the leading edge or posterior edge of the plate on which they are located. The second osseous anchoring means (41) will thus be located in the vicinity of the edge, respectively, trailing or leading. In the embodiment illustrated on
In an embodiment of the invention, at least the leading edge of at least one of the plates (1, 2) of the prosthesis could comprise 3 support faces, as is particularly evident in
The invention further relates to instrumentation allowing insertion of the prosthesis between the vertebrae, ensuring good stability of the different elements of the prosthesis between one another during implantation. Such instrumentation according to the present invention comprises at least a prehension device (5) of the prosthesis, comprising a so-called manipulation end and a so-called prehension end. This prehension device (5) comprises a rod (50) fitted, at the prehension end, with at least an axis of rotation (501) on which are mounted at least two feet (500) free in rotation about this axis (501). The ensemble of the rod (50) and feet (500) forms a clip mounted slidably in a hollow tube (55) whereof the prehension end has an internal profile of truncated shape. The ensemble formed by the two feet (500) have a width, in the plane of the opening of the clip, greater than the width of the rod (50), so as to cooperate with the truncated portion of the hollow tube (55). The tube (55) comprises an axis (550) perpendicular to the plane of the two feet (500) of the clip and located between the two feet, so as to cooperate with the latter. The sliding of the rod (50) in the tube (55), in the direction of the manipulation end, therefore causes closing of the clip by contact between the exterior of the feet (500) and the truncated portion of the tube (55), while the sliding of the rod (50) in the tube (55), in the direction of the prehension end, causes opening of the clip by contact between the axis (550) of the tube (55) and the interior of the feet (500) of the rod (50). The rod (50) could be fitted with a grip (56) at the manipulation end, so as to allow the user to have the rod (50) slide in the tube (55). Also, this grip could be utilised to force insertion of the prosthesis in the discal space, for example, by striking on the grip by means of a tool such as a hammer, for example. The tube (55) could, in an embodiment of the invention, be fitted with a ring (57) mobile in rotation relative to the tube (55) and comprising a thread complementary to at least one threaded portion (58) of the rod (50). The relative position of the thread of the ring (57) and of the threading (58) of the rod (50) shall allow blockage of the rod (50) in the tube (55) at least in the position where the clip is closed. So, use of the prehension device (5) will help secure the clip on the prosthesis, for example while the surgeon strikes on the grip to insert the prosthesis in the discal space.
In the embodiment illustrated on the figures, the ends of the feet (500), at the level of the prehension end, each have at least one contact surface (51, 52, 53) with at least an edge of an element of the prosthesis, imparting to the clip a profile adapted to the form of the prosthesis to be implanted. This profile adapted to the form of the prosthesis to be implanted could consist of at least one contact surface (51) with the leading edge of the prosthesis, at least one contact surface (53) with the leading edge of a central core of the prosthesis and at least one contact surface (52) with elements located on the lateral edges of the prosthesis. In the case where the prosthesis comprises a central core fitted with cooperation means cooperating with cooperation means of at least one of the plates, the contact surface (52) with elements located on the lateral edges of the prosthesis could thus consist of prehension means of at least one of the cooperation means between the core (3) and a plate (1, 2) of the prosthesis. In the same way, in the case where the prosthesis comprises a plate having a default form (43), such as a notch, the contact surface (52) with elements located on the lateral edges of the prosthesis could consist of cooperation means with this default form (43). Also, the instrumentation according to the invention could be provided to cooperate perfectly with the different variant embodiments of the prosthesis according to the present invention and comprise a profile even more adapted to the form of the prosthesis. In particular, the contact surface (51) with the leading edge of the prosthesis, as well as optionally other surfaces, could comprise 3 support faces complementary to 3 support faces present at least on the leading edge of at least one of the plates (1, 2) of the prosthesis. These 3 support faces placed in complementary fashion to those of the prosthesis, then comprise a leading face substantially perpendicular to the insertion axis of the prosthesis in the discal space and two antero-lateral faces each forming, in the plane of the plate, an angle with the leading face and with one of the lateral edges of the plate. Cooperation between this instrumentation profile and these 3 faces of the prosthesis will help stabilise the latter during its insertion in the discal space, for example by preventing its rotation.
It must be evident for those skilled in the art that the present invention allows embodiments in numerous other specific forms without departing from the field of application of the invention as claimed. Consequently, the present embodiments must be considered by way of illustration, though they can be modified in the field defined by the reach of the attached claims, and the invention does not have to be limited to the details specified hereinabove.
Number | Date | Country | Kind |
---|---|---|---|
05 12133 | Nov 2005 | FR | national |
Number | Name | Date | Kind |
---|---|---|---|
566360 | White | Aug 1896 | A |
1436573 | Choppinet et al. | Nov 1922 | A |
2836442 | Moskovitz | May 1958 | A |
3325197 | Wehner | Jun 1967 | A |
3486505 | Morrison | Dec 1969 | A |
3857642 | Miller | Dec 1974 | A |
3958278 | Lee et al. | May 1976 | A |
4074542 | Hankosky et al. | Feb 1978 | A |
4085466 | Goodfellow et al. | Apr 1978 | A |
4309777 | Patil | Jan 1982 | A |
4349921 | Kuntz | Sep 1982 | A |
4655778 | Koeneman | Apr 1987 | A |
4714469 | Kenna | Dec 1987 | A |
4756711 | Mai et al. | Jul 1988 | A |
4759766 | Buettner-Janz et al. | Jul 1988 | A |
4759769 | Hedman et al. | Jul 1988 | A |
4787908 | Wyss et al. | Nov 1988 | A |
4863476 | Shepperd | Sep 1989 | A |
4874389 | Downey | Oct 1989 | A |
4892545 | Day et al. | Jan 1990 | A |
4911718 | Lee et al. | Mar 1990 | A |
4932975 | Main et al. | Jun 1990 | A |
4946378 | Hirayama et al. | Aug 1990 | A |
4955908 | Frey et al. | Sep 1990 | A |
4955916 | Carignan et al. | Sep 1990 | A |
4997432 | Keller | Mar 1991 | A |
5002576 | Fuhrmann et al. | Mar 1991 | A |
5041139 | Branemark | Aug 1991 | A |
5071437 | Steffee | Dec 1991 | A |
5122130 | Keller | Jun 1992 | A |
5123926 | Pisharodi | Jun 1992 | A |
5171281 | Parsons et al. | Dec 1992 | A |
5192327 | Brantigan | Mar 1993 | A |
5197986 | Mikhail | Mar 1993 | A |
5246458 | Graham | Sep 1993 | A |
5258031 | Salib et al. | Nov 1993 | A |
5290312 | Kojimoto et al. | Mar 1994 | A |
5306309 | Wagner et al. | Apr 1994 | A |
5314477 | Marnay | May 1994 | A |
5358526 | Tornier | Oct 1994 | A |
5370697 | Baumgartner | Dec 1994 | A |
5397364 | Kozak et al. | Mar 1995 | A |
5401269 | Buttner-Janz et al. | Mar 1995 | A |
5425773 | Boyd et al. | Jun 1995 | A |
5507816 | Bullivant | Apr 1996 | A |
5534029 | Shima | Jul 1996 | A |
5534030 | Navarro et al. | Jul 1996 | A |
5545229 | Parsons et al. | Aug 1996 | A |
5556431 | Buttner-Janz et al. | Sep 1996 | A |
5562738 | Boyd et al. | Oct 1996 | A |
5571109 | Bertagnoli | Nov 1996 | A |
5609636 | Kohrs et al. | Mar 1997 | A |
5645596 | Kim | Jul 1997 | A |
5674294 | Bainville et al. | Oct 1997 | A |
5676701 | Yuan et al. | Oct 1997 | A |
5676702 | Ratron | Oct 1997 | A |
5683465 | Shinn et al. | Nov 1997 | A |
5702450 | Bisserie | Dec 1997 | A |
5702472 | Huebner | Dec 1997 | A |
5722977 | Wilhelmy | Mar 1998 | A |
5741253 | Michelson | Apr 1998 | A |
5766252 | Henry et al. | Jun 1998 | A |
5772661 | Michelson | Jun 1998 | A |
5776199 | Michelson | Jul 1998 | A |
5782832 | Larsen et al. | Jul 1998 | A |
5782919 | Zdeblick et al. | Jul 1998 | A |
5797909 | Michelson | Aug 1998 | A |
5824094 | Serhan et al. | Oct 1998 | A |
5827328 | Buttermann | Oct 1998 | A |
5865848 | Baker | Feb 1999 | A |
5888224 | Beckers et al. | Mar 1999 | A |
5888226 | Rogozinski | Mar 1999 | A |
5893889 | Harrington | Apr 1999 | A |
5895428 | Berry | Apr 1999 | A |
5899941 | Nishijima | May 1999 | A |
5984967 | Zdeblick et al. | Nov 1999 | A |
6001130 | Bryan et al. | Dec 1999 | A |
6010502 | Bagby | Jan 2000 | A |
6033438 | Bianchi et al. | Mar 2000 | A |
6039763 | Shelokov | Mar 2000 | A |
6045552 | Zucherman et al. | Apr 2000 | A |
6063088 | Winslow | May 2000 | A |
6063121 | Xavier et al. | May 2000 | A |
6080158 | Lin | Jun 2000 | A |
6093205 | McLeod et al. | Jul 2000 | A |
6096038 | Michelson | Aug 2000 | A |
6096080 | Nicholson et al. | Aug 2000 | A |
6113637 | Gill et al. | Sep 2000 | A |
6113638 | Williams et al. | Sep 2000 | A |
6136031 | Middleton | Oct 2000 | A |
6146421 | Gordon et al. | Nov 2000 | A |
6146422 | Lawson | Nov 2000 | A |
6149650 | Michelson | Nov 2000 | A |
6156067 | Bryan et al. | Dec 2000 | A |
6179873 | Zientek | Jan 2001 | B1 |
6179874 | Cauthen | Jan 2001 | B1 |
6193757 | Foley et al. | Feb 2001 | B1 |
6206922 | Zdeblick et al. | Mar 2001 | B1 |
6210412 | Michelson | Apr 2001 | B1 |
6221077 | Rinner et al. | Apr 2001 | B1 |
6224595 | Michelson | May 2001 | B1 |
6224607 | Michelson | May 2001 | B1 |
6228118 | Gordon | May 2001 | B1 |
6231609 | Mehdizadeh | May 2001 | B1 |
6245072 | Zdeblick et al. | Jun 2001 | B1 |
6258094 | Nicholson et al. | Jul 2001 | B1 |
6261293 | Nicholson et al. | Jul 2001 | B1 |
6264656 | Michelson | Jul 2001 | B1 |
6267763 | Castro | Jul 2001 | B1 |
6270498 | Michelson | Aug 2001 | B1 |
6277149 | Boyle et al. | Aug 2001 | B1 |
6283998 | Eaton | Sep 2001 | B1 |
6296664 | Middleton | Oct 2001 | B1 |
6306170 | Ray | Oct 2001 | B2 |
6315797 | Middleton | Nov 2001 | B1 |
6319257 | Carignan et al. | Nov 2001 | B1 |
6344057 | Rabbe et al. | Feb 2002 | B1 |
6364880 | Michelson | Apr 2002 | B1 |
6368350 | Erickson et al. | Apr 2002 | B1 |
6371988 | Pafford et al. | Apr 2002 | B1 |
6375655 | Zdeblick et al. | Apr 2002 | B1 |
6387130 | Stone et al. | May 2002 | B1 |
6395035 | Bresina et al. | May 2002 | B2 |
6402750 | Atkinson et al. | Jun 2002 | B1 |
6402785 | Zdeblick et al. | Jun 2002 | B1 |
6409765 | Bianchi et al. | Jun 2002 | B1 |
6413278 | Marchosky | Jul 2002 | B1 |
6416551 | Keller | Jul 2002 | B1 |
6419704 | Ferree | Jul 2002 | B1 |
6419706 | Graf | Jul 2002 | B1 |
6423095 | Van Hoeck et al. | Jul 2002 | B1 |
6440168 | Cauthen | Aug 2002 | B1 |
6447512 | Landry et al. | Sep 2002 | B1 |
6447547 | Michelson | Sep 2002 | B1 |
6468310 | Ralph et al. | Oct 2002 | B1 |
6471724 | Zdeblick et al. | Oct 2002 | B2 |
6478800 | Fraser et al. | Nov 2002 | B1 |
6478823 | Michelson | Nov 2002 | B1 |
6482234 | Weber et al. | Nov 2002 | B1 |
6506216 | McCue et al. | Jan 2003 | B1 |
6514260 | Zdeblick et al. | Feb 2003 | B1 |
6517580 | Ramadan et al. | Feb 2003 | B1 |
6520967 | Cauthen | Feb 2003 | B1 |
6520996 | Manasas et al. | Feb 2003 | B1 |
6524312 | Landry et al. | Feb 2003 | B2 |
6527804 | Gauchet et al. | Mar 2003 | B1 |
6527806 | Ralph et al. | Mar 2003 | B2 |
6540785 | Gill et al. | Apr 2003 | B1 |
6572653 | Simonson | Jun 2003 | B1 |
6579291 | Keith et al. | Jun 2003 | B1 |
6579320 | Gauchet et al. | Jun 2003 | B1 |
6582468 | Gauchet et al. | Jun 2003 | B1 |
6592624 | Fraser et al. | Jul 2003 | B1 |
6599320 | Kuslich et al. | Jul 2003 | B1 |
6607558 | Kuras | Aug 2003 | B2 |
6610089 | Liu et al. | Aug 2003 | B1 |
6610092 | Ralph et al. | Aug 2003 | B2 |
6610093 | Pisharodi | Aug 2003 | B1 |
6613091 | Zdeblick et al. | Sep 2003 | B1 |
6616671 | Landry et al. | Sep 2003 | B2 |
6641614 | Wagner et al. | Nov 2003 | B1 |
6645206 | Zdeblick et al. | Nov 2003 | B1 |
6645249 | Ralph et al. | Nov 2003 | B2 |
6652533 | O'Neil | Nov 2003 | B2 |
6652586 | Hunter et al. | Nov 2003 | B2 |
6656224 | Middleton | Dec 2003 | B2 |
6669730 | Ralph et al. | Dec 2003 | B2 |
6669731 | Ralph et al. | Dec 2003 | B2 |
6669732 | Serhan et al. | Dec 2003 | B2 |
6673113 | Ralph et al. | Jan 2004 | B2 |
6679915 | Cauthen | Jan 2004 | B1 |
6682562 | Viart et al. | Jan 2004 | B2 |
6695851 | Zdeblick et al. | Feb 2004 | B2 |
6695882 | Bianchi et al. | Feb 2004 | B2 |
6706068 | Ferree | Mar 2004 | B2 |
6709439 | Rogers et al. | Mar 2004 | B2 |
6719794 | Gerber et al. | Apr 2004 | B2 |
6723127 | Ralph et al. | Apr 2004 | B2 |
6726720 | Ross et al. | Apr 2004 | B2 |
6730088 | Yeh | May 2004 | B2 |
6733504 | Lin et al. | May 2004 | B2 |
6733532 | Gauchet et al. | May 2004 | B1 |
6733535 | Michelson | May 2004 | B2 |
6736850 | Davis | May 2004 | B2 |
6740117 | Ralph et al. | May 2004 | B2 |
6740118 | Eisermann et al. | May 2004 | B2 |
6749635 | Bryan | Jun 2004 | B1 |
6752832 | Neumann | Jun 2004 | B2 |
6755841 | Fraser et al. | Jun 2004 | B2 |
6764512 | Keller | Jul 2004 | B2 |
6764515 | Ralph et al. | Jul 2004 | B2 |
6767367 | Michelson | Jul 2004 | B1 |
6770074 | Michelson | Aug 2004 | B2 |
6770095 | Grinberg et al. | Aug 2004 | B2 |
6793678 | Hawkins | Sep 2004 | B2 |
6800093 | Nicholson et al. | Oct 2004 | B2 |
6814737 | Cauthen | Nov 2004 | B2 |
6824565 | Muhanna et al. | Nov 2004 | B2 |
6899735 | Coates et al. | May 2005 | B2 |
6936071 | Marnay et al. | Aug 2005 | B1 |
6964686 | Gordon | Nov 2005 | B2 |
6966929 | Mitchell | Nov 2005 | B2 |
6984245 | McGahan et al. | Jan 2006 | B2 |
6986789 | Schultz et al. | Jan 2006 | B2 |
6994727 | Khandkar et al. | Feb 2006 | B2 |
7001432 | Keller et al. | Feb 2006 | B2 |
7011684 | Eckman | Mar 2006 | B2 |
7025787 | Bryan et al. | Apr 2006 | B2 |
7056344 | Huppert et al. | Jun 2006 | B2 |
7060097 | Fraser et al. | Jun 2006 | B2 |
7060099 | Carli et al. | Jun 2006 | B2 |
7105023 | Eckman | Sep 2006 | B2 |
7105024 | Richelsoph | Sep 2006 | B2 |
7118580 | Beyersdorff et al. | Oct 2006 | B1 |
7153325 | Kim et al. | Dec 2006 | B2 |
7169153 | Keller | Jan 2007 | B2 |
7175662 | Link et al. | Feb 2007 | B2 |
7198644 | Schultz et al. | Apr 2007 | B2 |
7204851 | Trieu et al. | Apr 2007 | B2 |
7204852 | Marnay et al. | Apr 2007 | B2 |
7291170 | Huppert | Nov 2007 | B2 |
7419505 | Fleischmann et al. | Sep 2008 | B2 |
20010020185 | Ray | Sep 2001 | A1 |
20020087212 | James et al. | Jul 2002 | A1 |
20020143343 | Castro | Oct 2002 | A1 |
20030028249 | Baccelli et al. | Feb 2003 | A1 |
20030055503 | O'Neil | Mar 2003 | A1 |
20030093156 | Metzger | May 2003 | A1 |
20030109928 | Pasquet et al. | Jun 2003 | A1 |
20030149438 | Nichols et al. | Aug 2003 | A1 |
20030171814 | Muhanna et al. | Sep 2003 | A1 |
20030187506 | Ross et al. | Oct 2003 | A1 |
20030220691 | Songer et al. | Nov 2003 | A1 |
20030233145 | Landry et al. | Dec 2003 | A1 |
20040002758 | Landry et al. | Jan 2004 | A1 |
20040002761 | Rogers et al. | Jan 2004 | A1 |
20040010316 | William et al. | Jan 2004 | A1 |
20040030387 | Landry et al. | Feb 2004 | A1 |
20040034423 | Lyons et al. | Feb 2004 | A1 |
20040073309 | Bianchi et al. | Apr 2004 | A1 |
20040073311 | Ferree | Apr 2004 | A1 |
20040083000 | Keller et al. | Apr 2004 | A1 |
20040093082 | Ferree | May 2004 | A1 |
20040093083 | Branch et al. | May 2004 | A1 |
20040102846 | Keller et al. | May 2004 | A1 |
20040111160 | Evans et al. | Jun 2004 | A1 |
20040117022 | Marney et al. | Jun 2004 | A1 |
20040133278 | Marino et al. | Jul 2004 | A1 |
20040133281 | Khandkar et al. | Jul 2004 | A1 |
20040143332 | Krueger et al. | Jul 2004 | A1 |
20040148029 | Bianchi et al. | Jul 2004 | A1 |
20040158328 | Eisermann | Aug 2004 | A1 |
20040162617 | Zucherman et al. | Aug 2004 | A1 |
20040172020 | Beaurain et al. | Sep 2004 | A1 |
20040193273 | Huang | Sep 2004 | A1 |
20040199254 | Louis et al. | Oct 2004 | A1 |
20040220582 | Keller | Nov 2004 | A1 |
20040225295 | Zubok et al. | Nov 2004 | A1 |
20040225363 | Richelsoph | Nov 2004 | A1 |
20040225364 | Richelsoph | Nov 2004 | A1 |
20040243238 | Arnin et al. | Dec 2004 | A1 |
20040243240 | Beaurain et al. | Dec 2004 | A1 |
20040254577 | Delecrin et al. | Dec 2004 | A1 |
20050010215 | Delecrin et al. | Jan 2005 | A1 |
20050015094 | Keller | Jan 2005 | A1 |
20050021042 | Marnay et al. | Jan 2005 | A1 |
20050027359 | Mashburn | Feb 2005 | A1 |
20050027363 | Gordon | Feb 2005 | A1 |
20050033305 | Schultz | Feb 2005 | A1 |
20050033437 | Bao et al. | Feb 2005 | A1 |
20050033438 | Schultz | Feb 2005 | A1 |
20050043798 | Eckman | Feb 2005 | A1 |
20050043800 | Paul et al. | Feb 2005 | A1 |
20050043804 | Gordon et al. | Feb 2005 | A1 |
20050060034 | Berry et al. | Mar 2005 | A1 |
20050065611 | Huppert et al. | Mar 2005 | A1 |
20050071009 | Muhanna et al. | Mar 2005 | A1 |
20050085911 | Link | Apr 2005 | A1 |
20050085917 | Marney et al. | Apr 2005 | A1 |
20050107788 | Beaurain et al. | May 2005 | A1 |
20050113926 | Zucherman et al. | May 2005 | A1 |
20050119665 | Keller | Jun 2005 | A1 |
20050131542 | Benzel et al. | Jun 2005 | A1 |
20050143824 | Richelsoph et al. | Jun 2005 | A1 |
20050149189 | Mokhtar et al. | Jul 2005 | A1 |
20050159818 | Blain | Jul 2005 | A1 |
20050165408 | Puno et al. | Jul 2005 | A1 |
20050165485 | Trieu | Jul 2005 | A1 |
20050171610 | Humphreys et al. | Aug 2005 | A1 |
20050192671 | Bao et al. | Sep 2005 | A1 |
20050197705 | Arnin et al. | Sep 2005 | A1 |
20050197706 | Hovorka et al. | Sep 2005 | A1 |
20050216086 | Marik et al. | Sep 2005 | A1 |
20050216092 | Marik et al. | Sep 2005 | A1 |
20050228500 | Kim et al. | Oct 2005 | A1 |
20050234553 | Gordon | Oct 2005 | A1 |
20050240273 | Khandkar et al. | Oct 2005 | A1 |
20050246024 | Zeegers | Nov 2005 | A1 |
20050251260 | Gerber et al. | Nov 2005 | A1 |
20050256579 | Keller et al. | Nov 2005 | A1 |
20050267581 | Marnay et al. | Dec 2005 | A1 |
20050283242 | Zucherman et al. | Dec 2005 | A1 |
20060015183 | Gilbert et al. | Jan 2006 | A1 |
20060020341 | Schneid et al. | Jan 2006 | A1 |
20060030860 | Peterman | Feb 2006 | A1 |
20060036326 | Baumgartner et al. | Feb 2006 | A1 |
20060041313 | Allard et al. | Feb 2006 | A1 |
20060041314 | Millard | Feb 2006 | A1 |
20060069437 | Weber | Mar 2006 | A1 |
20060069441 | Zucherman et al. | Mar 2006 | A1 |
20060111783 | Aflatoon et al. | May 2006 | A1 |
20060116768 | Krueger et al. | Jun 2006 | A1 |
20060116769 | Marnay et al. | Jun 2006 | A1 |
20060122703 | Aebi et al. | Jun 2006 | A1 |
20060136063 | Zeegers | Jun 2006 | A1 |
20060142863 | Fraser et al. | Jun 2006 | A1 |
20060149273 | Ross et al. | Jul 2006 | A1 |
20060149371 | Marik et al. | Jul 2006 | A1 |
20060149378 | Chase et al. | Jul 2006 | A1 |
20060155377 | Beaurain et al. | Jul 2006 | A1 |
20060155378 | Eckman | Jul 2006 | A1 |
20060173544 | Gau | Aug 2006 | A1 |
20060178746 | Bartish, Jr. et al. | Aug 2006 | A1 |
20060190082 | Keller et al. | Aug 2006 | A1 |
20060200241 | Rothman et al. | Sep 2006 | A1 |
20060200242 | Rothman et al. | Sep 2006 | A1 |
20060200243 | Rothman et al. | Sep 2006 | A1 |
20060212123 | Lechmann et al. | Sep 2006 | A1 |
20060235520 | Pannu | Oct 2006 | A1 |
20060235526 | Lemaire | Oct 2006 | A1 |
20060259143 | Navarro et al. | Nov 2006 | A1 |
20060265072 | Richelsoph | Nov 2006 | A1 |
20060282074 | Renaud et al. | Dec 2006 | A1 |
20060287728 | Mokhtar et al. | Dec 2006 | A1 |
20070010887 | Williams et al. | Jan 2007 | A1 |
20070016217 | Dinville | Jan 2007 | A1 |
20070016299 | Eckman | Jan 2007 | A1 |
20070055378 | Ankney et al. | Mar 2007 | A1 |
20070073403 | Lombardo et al. | Mar 2007 | A1 |
20070073404 | Rashbaum et al. | Mar 2007 | A1 |
20070088362 | Bonutti et al. | Apr 2007 | A1 |
20070100454 | Burgess et al. | May 2007 | A1 |
20070100455 | Parsons | May 2007 | A1 |
20070100456 | Dooris et al. | May 2007 | A1 |
20070149974 | Mangione | Jun 2007 | A1 |
20070162130 | Rashbaum et al. | Jul 2007 | A1 |
20070270951 | Davis et al. | Nov 2007 | A1 |
Number | Date | Country |
---|---|---|
2263842 | Jul 1974 | DE |
2804936 | Aug 1979 | DE |
3023353 | Apr 1981 | DE |
8912648 | Nov 1990 | DE |
20310432 | Sep 2003 | DE |
20310433 | Sep 2003 | DE |
102004027986 | Jul 2005 | DE |
42271 | Dec 1981 | EP |
176728 | Apr 1986 | EP |
0298235 | Jan 1989 | EP |
0317972 | May 1989 | EP |
0333990 | Sep 1989 | EP |
0356112 | Feb 1990 | EP |
0512529 | Nov 1992 | EP |
0560141 | Sep 1993 | EP |
0566810 | Oct 1993 | EP |
0566810 | May 1996 | EP |
0738504 | Oct 1996 | EP |
0747025 | Dec 1996 | EP |
0852934 | Jul 1998 | EP |
0903126 | Mar 1999 | EP |
0955021 | Nov 1999 | EP |
0978258 | Feb 2000 | EP |
1250898 | Oct 2002 | EP |
1344506 | Sep 2003 | EP |
1344508 | Sep 2003 | EP |
1374808 | Dec 2005 | EP |
2124815 | Sep 1972 | FR |
2372622 | Jun 1978 | FR |
2632516 | Dec 1989 | FR |
2659226 | Sep 1991 | FR |
2716619 | Sep 1995 | FR |
2718635 | Mar 1996 | FR |
2723841 | Mar 1996 | FR |
2724108 | Mar 1996 | FR |
2730159 | Aug 1996 | FR |
2737656 | Feb 1997 | FR |
2787019 | Dec 1998 | FR |
2787021 | Jun 2000 | FR |
2824261 | Nov 2002 | FR |
2831796 | May 2003 | FR |
2843293 | Feb 2004 | FR |
2846550 | May 2004 | FR |
2865629 | Aug 2005 | FR |
2865630 | Aug 2005 | FR |
2869528 | Nov 2005 | FR |
2261446 | Oct 1990 | JP |
WO9011740 | Oct 1990 | WO |
WO9107931 | Jun 1991 | WO |
WO9113598 | Sep 1991 | WO |
WO9301771 | Feb 1993 | WO |
WO9404100 | Mar 1994 | WO |
WO9909914 | Mar 1999 | WO |
WO9953871 | Oct 1999 | WO |
WO9956675 | Nov 1999 | WO |
WO9965412 | Dec 1999 | WO |
WO9966854 | Dec 1999 | WO |
WO0053127 | Sep 2000 | WO |
WO0074606 | Dec 2000 | WO |
WO0101893 | Jan 2001 | WO |
WO0119295 | Mar 2001 | WO |
WO0141680 | Jun 2001 | WO |
WO0162191 | Aug 2001 | WO |
WO02071960 | Sep 2002 | WO |
WO02089701 | Nov 2002 | WO |
WO03015646 | Feb 2003 | WO |
WO03039400 | May 2003 | WO |
WO03045262 | Jun 2003 | WO |
WO03059212 | Jul 2003 | WO |
WO03075803 | Sep 2003 | WO |
WO03075804 | Sep 2003 | WO |
WO2004041129 | May 2004 | WO |
WO2004041131 | May 2004 | WO |
WO2005046534 | May 2005 | WO |
WO2005074839 | Aug 2005 | WO |
WO2005104996 | Nov 2005 | WO |
WO2005117728 | Dec 2005 | WO |
WO2006136760 | Dec 2006 | WO |
Entry |
---|
USPTO OA of Feb. 6, 2007 in U.S. Appl. No. 11/109,276. |
USPTO OA of Oct. 16, 2007 in U.S. Appl. No. 11/109276. |
USPTO OA of Jul. 24, 2008 in U.S. Appl. No. 11/109,276. |
USPTO OA of Feb. 13, 2009 in U.S. Appl. No. 11/109,276. |
Applicant's Reply to USPTO OA of Feb. 6, 2007 in U.S. Appl. No. 11/109,276. |
Applicant's Reply to USPTO OA of Oct. 16, 2007 in U.S. Appl. No. 11/109,276. |
Applicants Reply to USPTO OA of Jul. 24 2008 in U.S. Appl. No. 11/109,276. |
Applicant's Response to USPTO OA of Feb. 13, 2009 in U.S. Appl. No. 11/109,276. |
USPTO OA of Apr. 18, 2007 in U.S. Appl. No. 10/533,846. |
Applicant's Response to USPTO OA of Apr. 18, 2007 in U.S. Appl. No. 10/533,846. |
USPTO OA of Dec. 26, 2007 in U.S. Appl. No. 10/533,846. |
Applicants' Response to USPTO OA of Dec. 26, 2007 in U.S. Appl. No. 10/533,846. |
USPTO OA of Oct. 15, 2008 in in U.S. Appl. No. 10/533,846. |
Applicants' Response to USPTO OA of Oct. 15, 2008 in in U.S. Appl. No. 10/533,846. |
USPTO OA of Jan. 22, 2008 in U.S. Appl. No. 11/180,868. |
Applicant's Response to USPTO OA of Jan. 22, 2008 in U.S. Appl. No. 11/180,868. |
USPTO OA of Nov. 5, 2008 in U.S. Appl. No. 11/180,868. |
Response to USPTO OA of Nov. 5, 2008 in U.S. Appl. No. 11/180,868. |
USPTO OA of Apr. 13, 2009 in U.S. Appl. No. 11/341,007. |
USPTO OA of Mar. 20, 2009 in U.S. Appl. No. 11/676,237. |
A biolological basis for instantaneous centres of rotation of the vertebral column, N. Bouduk, B. Amevo, M. Pearcy, Proc Insititution Mechanical Engineers, Jun. 16, 1995, pp. 177-183. |
A Multicenter Retrospective Study of the Clinical Results of the LINK SB Charite Intervertebral Prosthesis, S. L. Griffith, PhD, A. P. Shelokov, MD, K. Buttner-Janz, MD, Jean-Phillipe LeMaire, MD and W. S. Zeegers, MD, Spine, vol. 19, No. 16, pp. 1842-1849, Mar. 21, 1994. |
A New Technique for the Three-Dimensional Study of the Spine in Vitro and in Vivo by Using a Motion-Analysis System, X. Liu, G. Fabry, K. Labey, L. Van Den Berghe, R. Van Audekercke, G. Molenaers, P. Moens, Journal of Spinal Disorders, vol. 10, No. 4, pp. 329-338, Jan. 30, 1997. |
Alternatives to Spinal Fusion, J. P. Kostuik, Spinal Fusion, vol. 29, No. 4, Oct. 1998, pp. 701-415. |
Centrode Patterns and Segmental Instability in Degenerative Disc Disease, S.D. Gertzban, MD, FRCSC, J. Seligman, MD, R. Holtby, MD, K.H. Chan, MD, A. Kapasouri, BSc, M. Tile, MD, BSc, (MED), FRCS©, and B. Cruickshank, MD, FRCPath, Spine, vol. 10., No. 3, pp. 257-261, Jan. 21, 1984. |
Clinical Biomechanics of the Spine, A. A. White III, M. M. Panjabi, pp. 128-130, 2nd Edition, J.B. Lippincott Co., 1990. |
Computer Analysis of Spinal Segment Motion in Degenerative Disc Disease With and Without Axial Loading, J.V. Seligman, S.D. Gertzbein, M. Tile, A., Kapasouri, Spine, vol. 9., No. 6, pp. 566-573, Dec. 31, 1983. |
FR 2 718 635 Preliminary Search Report, National Institute of Industrial Property (France), Jan. 16, 1995. |
FR 2 730 159 Preliminary Search Report, National Institute of Industrial Property (France), Sep. 29, 1995. |
FR 2 824 261 Preliminary Search Report, National Institute of Industrial Property (France), Feb. 25, 2002. |
FR 2 831 796 Prelininary Search Report, National Institute of Industrial Property (France), Aug. 2, 2002. |
FR 2 846 550 Prelininary Search Report, National Institute of Industrial Property (France), Jul. 10, 2003. |
FR 2 865 629 Prelininary Search Report, National Institute of Industrial Property (France), Sep. 14, 2004. |
FR 2 865 630 Prelininary Search Report, National Institute of Industrial Property (France), Jan. 12, 2005. |
FR 2 869 528 Prelininary Search Report, National Institute of Industrial Property (France), Dec. 13, 2004. |
Instantantaneous Axis of Rotation as a Function of the Three Columns of the Spine, T. R. Haher, MD, M. O'Brien, MD, W. T. Felmly, MD, D. Welin, MD, G. Perrier, MD., J. Choueka, MD, V. Devlin, MD, A. Vassiliou, ME, and G. Chow, MS, Spine, vol. 17, No. 6, pp. S149-S154, Jan. 9, 1992. |
Instantantaneous Axis of Rotation of the Lumbar Intervertebral Joints, M. J. Pearcy, H. Bogduk, Spine, vol. 13, No. 9, pp. 1033-1041, Nov. 15, 1987. |
Mobidisc (website) 1 page, www.ldrmedical.fr/mobidisc.htm, Sep. 19, 2004. |
Motion Characteristics of the Normal Lumbar Spine in Young Adults: Instantaneous of Axis of Rotation and Vertebral Center Motion Analysis, T. Yoshioka, H. Tsuji, N. Hirano and S. Sainoh, Journal of Spinal Disorders, vol. 3, No. 2, pp. 103-113, 1990. |
PCT/IB02/02998 International Search Report, EPO, Sep. 16, 2003. |
PCT/IB02/04642 International Search Report, EPO, Jul. 2, 2003. |
PCT/IB05/00280 International Search Report, EPO, Jun. 24, 2005. |
PCT/IB05/01151 International Search Report, EPO, Sep. 12, 2005. |
PCT/IB03/04872 International Search Report, EPO, Mar. 3, 2004. |
PCT/IB02/02998 International Preliminary Examination Report, EPO, Dec. 22, 2003. |
PCT/IB02/04642 International Preliminary Examination Report, EPO, Apr. 1, 2004. |
PCT/IB03/04872 International Preliminary Examination Report, EPO, Mar. 1, 2005. |
Relocation of the Bending Axis During Flexion-Extension of Lumbar Intervertebral Discs and its Implications for Prolapse, J.A. Klein and D.W.L. Hukins,Spine, vol. 8, No. 6, pp. 659-664, Nov. 18, 1982. |
The Effect of the Three Columns of the Spine on the Instantaneous Axis of Rotation in Flexion and Extension, T. R. Haher, M. Bergman, M. O'Brien, W. T. Felmly, J. Choueka, D. Welin, G. Chow, A. Vassiliou, Spine, vol. 16, No. 8, pp. S312-S318, Apr. 16, 1991. |
Number | Date | Country | |
---|---|---|---|
20070162130 A1 | Jul 2007 | US |