Intervertebral disc prosthesis

Abstract
The invention relates to an intervertebral disc prosthesis comprising at least two plates, namely first and second plates, articulated about each other by means of a curved surface, namely articulation, of at least one of the plates, each of the plates comprising a surface known as a contact surface, intended to be in contact with a vertebral plate of one of the vertebrae between which the prosthesis is intended to be inserted, this contact surface for each of the plates comprising a geometrical centre at equal distance from at least two diametrically opposite points located on the periphery of the plate, in which the geometric centres of the plates are not vertically aligned, this off-setting of the geometrical centres of the plates engendering an off-setting of the edges of the plates in at least one direction perpendicular to the vertical axis of the spinal column.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims priority from Application No. FR 0509740 filed in France on Sep. 23, 2005, which in incorporated herein by reference for all purposes.


BACKGROUND

The invention relates to an intervertebral disc prosthesis, intended to be substituted for fibrocartilaginous discs providing the liaison between the vertebrae of the spinal column.


Different types of intervertebral disc prostheses are known in the prior art. Numerous prostheses, such as for example those described in the applications WO 02 089 701 and WO 2004/041129, are constituted of a lower plate and an upper plate creating a cage articulated about a central core. Other prostheses like those disclosed in the patent U.S. Pat. No. 5,676,701 and in the application WO 03/059212 A1, for example, only comprise a lower plate and an upper plate articulated about themselves by means of a surface of articulation. These articulated prostheses have the advantage of offering the patient bearing the prosthesis a freedom of movement, by allowing the plates to tilt and/or rotate in relation to each other. The prostheses comprising a central core, movable between the plates, have the added advantage of allowing a spontaneous positioning of the core in the ideal position for absorbing the constraints imposed on the prosthesis. In these prostheses known in the prior art, the anterior, posterior and lateral edges of a plate are located on the same vertical axis as the corresponding edge of the other plate. This shape of the prosthesis is normally due to the plates being of identical size and that their respective axes of articulation are joined (coaxially), so as to facilitate the movements of the patient and to allow the correction of possible positioning defects. However, these prostheses have the inconvenience of not being perfectly suited to the morphology of the spinal column. Indeed, the posterior edges of two adjacent vertebrae are often slightly off-set to each other. Thus, the prostheses known in the prior art are difficult to properly implant. Additionally, at rest, due to the natural off-setting of the vertebrae and the anchoring of the plates in the vertebrae, the different parts of the prosthesis are under constraint in an undesirable position as it restricts freedom of movement of these parts of the prosthesis. This inconvenience will be diminished through the use of a movable core between the plates, but the possible movements of the core will be restricted and its capacity to position itself so as to absorb the constraints imposed on the prosthesis will therefore be diminished.


In this context, it is beneficial to propose a prosthesis that allows a more efficiently fit to the profile of the spinal column and thus fully attain the goals it set by offering a surface of articulation.


SUMMARY

The purpose of the invention is to overcome some of the inconveniences of the prior art by proposing an intervertebral disc prosthesis at least comprising two plates each bearing at least an edge off-set in relation to the same edge of the other plate.


This goal is reached with an intervertebral disc prosthesis comprising at least two plates, namely first and second plates, articulated about each other by means of a curved surface, namely articulation, of at least one of the plates, allowing to pivot and/or tilt the plates in relation to each other, via rotation about, respectively, an axis substantially perpendicular to the plane of the plates and an axis substantially in the plane of the plates, each of the plates comprising a surface known as a contact surface, intended to be in contact with a vertebral plate of one of the vertebrae between which the prosthesis is intended to be implanted, this contact surface for each of the plates comprising a geometric centre at equal distance from at least two diametrically opposite points located on the periphery of the plate, characterised in that the geometric centres of the plates are not vertically aligned, this off-set of the geometrical centres of the plates engendering an off-set of the edges of the plates in at least one direction perpendicular to the vertical axis of the spinal column.


According to another feature, the second plate comprises a curved surface of articulation of which at least one part co-operates with a curved surface of articulation of the first plate for which it is complementary, in order to allow the articulation, by pivoting and/or tilting, of the plates in relation to each other, the prosthesis comprising a centre of articulation vertically aligned with the vertex of the curved surface of articulation of the second plate and corresponding to the mid-position of the centre of the curved surface of the first plate in relation to the second plate.


According to another feature, the curved surface of the first plate is concave and the curved surface of articulation of the second plate is convex.


According to another feature, the curved surface of the first plate is convex and the curved surface of articulation of the second plate is concave.


According to another feature, the prosthesis also comprises a core comprising a plane surface and a curved surface of articulation and in that only the first plate comprises a curved surface of articulation co-operating with at least one part of the curved surface of the core for which it is complementary, in order to allow the pivoting and/or tilting of the plates in relation to each other, the plane surface of the core co-operating with at least one part of a plane surface of the second plate in order to allow a translation and/or a rotation of the core in relation to the second plate in at least one direction perpendicular to the vertical axis of the spinal column, the second plate comprising means for co-operating complementary with means for co-operating of the core allowing to restrict or abolish at least this translation of the core in relation to the second plate, the prosthesis comprising a centre of articulation vertically aligned with the vertex of the curved surface of articulation of the core and corresponding to the mid-position of the core between the means for co-operating of the second plate and to the mid-position of the centre of the curved surface of the first plate in relation to the core.


According to another feature, the curved surface of the first plate is concave and the curved surface of the core is convex.


According to another feature, the curved surface of the first plate is convex and the curved surface of the core is concave.


According to another feature, the prostheses comprises a centre of articulation vertically aligned with the vertex of the curved surface of articulation, said centre of articulation being vertically aligned with the geometric centre of the first plate but off-set in relation to the geometric centre of the second plate in at least one direction perpendicular to the vertical axis of the spinal column, this off-setting of the geometric centres of the plates engendering an off-setting of the edges of the plates in at least one direction perpendicular to the vertical axis of the spinal column.


According to another feature, the prostheses comprises a centre of articulation vertically aligned with the vertex of the curved surface of articulation, said centre of articulation being off-set in relation to the geometric centre of the first plate but in the opposite direction to that of its off-setting in relation to the geometric centre of the second plate, so that the vertical projection of the centre of articulation is located between the vertical projections of the geometric centres of the plates and that the off-setting of the geometric centres in relation to the centre of articulation cumulate and engender an off-setting of the edges of the plates in at least one direction perpendicular to the vertical axis of the spinal column.


According to another feature, the prostheses comprises a centre of articulation vertically aligned with the vertex of the curved surface of articulation, said centre of articulation being off-set in relation to the geometric centre of the first plate, in the same direction as that of its off-setting in relation to the geometric centre of the second plate, but at a lesser distance so that these off-settings partially compensate each other and engender an off-setting of the edges of the plates between themselves in at least one direction perpendicular to the vertical axis of the spinal column.


According to another feature, the means for co-operating of the second plate are female means located in the vicinity of the edges of the second plate and co-operating with the male means of the core.


According to another feature, the dimensions of each male means for co-operating are slightly smaller than those of the female means for co-operating in order to allow a slight travel between the core and the second plate around the position corresponding to the vertical projection of the centre of articulation.


According to another feature, the dimensions of each male means for co-operating are substantially the same as those of each female means for co-operating in order to prevent any travel between the core and the second plate and to maintain the core in the position corresponding to the vertical projection of the centre of articulation.


According to another feature, the means for co-operating of the second plate are the male means located in the vicinity of the edges of the second plate and co-operating with the female means of the core.


According to another feature, the dimensions of each male means for co-operating are slightly smaller than those of each female means for co-operating in order to allow as slight travel between the core and the second plate, around the position corresponding to the vertical projection of the centre of articulation.


According to another feature, the dimensions of each male means for co-operating are substantially the same as those of each female means for co-operating in order to prevent any travel between the core and the second plate and to maintain the core in the position corresponding to the vertical projection of the centre of articulation.


According to another feature, the male means for co-operating of the core are two studs located on the two side edges of the core and the female means for co-operating of the second plate are four walls located, in pairs, on each of the two side edges of the second plate.


According to another feature, the female means for co-operating of the second plate comprise a section dish-shaped towards the centre of the plate and partly covering the male means for co-operating of the core in order to prevent the core from lifting.


According to another feature, the median planes representing the contact surfaces of the plates are substantially parallel or create an acute angle, the slope obtained by such an angle allowing to adapt the overall shape of the prosthesis to the anatomy of the spinal column or to possibly correct any slope defects of the vertebrae of the patient for whom the prosthesis is intended for.


According to another feature, the plates comprise, at least on their lower edge, at least a bevel facilitating the insertion of the prosthesis between the vertebrae.


According to another feature, the same plates can be assembled with cores of different thicknesses and/or dimensions and/or shapes.


According to another feature, the plates comprise mobile osseous anchorage means.


According to another feature, the osseous anchorage means and/or the plates comprise means for securing the binding of the osseous anchorage means on the plates.


According to another feature, the mobile osseous anchorage means of the plates consists in at least one plate equipped with notches oriented so as to prevent this notched plate from falling out once inserted in a vertebra, one end of the plate having an inward curving section and intended to be interlocked onto at least one edge of an opening located in the vicinity of the periphery of the plates.


According to another feature, the end of the notched plate, opposite the one with an inward curving section, comprises a bevel facilitating the insertion of the notched plate into the vertebrae.


According to another feature, the opening located in the vicinity of the periphery of the plates comprises a sloping section on which the notched plate leans when the curved section of the osseous anchorage means is interlocked onto the edge of this opening, this sloping section thus allowing to set the angle of the osseous anchorage means in relation to the plates and to guide them when being inserted into the opening.


According to another feature, the means for securing consist in flexible tabs oriented towards the curved section of the osseous anchorage means and intended to fold back against the edges of the plate when inserting the osseous anchorage means into the openings in the plates, then to spring back so as to lean against the limit stops located on the walls of the openings in the plates during the interlocking of the curved sections onto the edges of the openings in the plates, so as to prevent the osseous anchorage means from falling out.


According to another feature, the inward curving section of the notched plate of the mobile osseous anchorage means extends by means of a second plate also equipped with notches oriented so as to prevent the plate from falling out once inserted into the vertebra.


According to another feature, the mobile osseous anchorage means of the plates consist in at least a winglet equipped with notches oriented so as to prevent the winglet from falling out once inserted in a groove made in a vertebra, one end of the winglet having an inward curving section and intended to be interlocked on to at least one edge of an opening in the vicinity of the periphery of the plates.


According to another feature, the means for securing the winglet consist in at least one stud located on the lower surface of the winglet and intended to be interlocked into at least one hole in the contact surfaces of the plates, the stud and the hole being of complementary shape and size so as to secure the winglet in place on the plates.




BRIEF DESCRIPTION OF THE DRAWINGS

Other features and advantages of the invention will become clearer upon reading the following description, given in reference to the annexed figures, in which:



FIGS. 1A, 1B and 1C respectively represent a side view, a rear view with a cross section plane 1C-1C and a cross section along said plane 1C-1C, of an intervertebral disc prosthesis according to an embodiment of the invention,



FIGS. 2A, 2B and 2C respectively represent a side view, a rear view with a cross section plane 2C-2C and a cross section along said plane 2C-2C, of an intervertebral disc prosthesis according to another embodiment of the invention,



FIGS. 3A and 3B respectively represent a rear view with a cross section plane 3B-3B and a cross section along said plane 3B-3B, of an intervertebral disc prosthesis according to an embodiment of the invention and FIGS. 3C and 3D respectively represent a rear view with a cross section plane 3D-3D and a cross section along said plane 3D-3D, of an intervertebral disc prosthesis according to another embodiment of the invention,



FIGS. 4A and 4B respectively represent a top view and a perspective view of an embodiment of the osseous anchorage means of an intervertebral disc prosthesis according to the invention, and FIGS. 4C and 4D respectively represent a top view and a side view of another embodiment of the osseous anchorage means of an intervertebral disc prosthesis according to the invention,



FIGS. 5A, 5B and 5C respectively represent a perspective view, a top view and a side view of an intervertebral disc prosthesis according to different embodiments of the invention.




DETAILED DESCRIPTION OF THE EMBODIMENTS

The invention relates to an intervertebral disc prosthesis comprising at least two plates (1, 2) off-set in relation to each other so as to more efficiently follow the anatomy of the spinal column. As explained in the preamble of this application, the vertebrae are generally slightly off-set to each other, so that their edges, for example posterior, are not vertically aligned. The prosthesis according to the invention is thus designed so that the edges of the plates (1, 2) are not vertically aligned and have a slight off-setting corresponding to an off-setting between the edges of the vertebrae between which the prosthesis is intended to be inserted. The off-setting of the vertebrae could have been accurately measured beforehand, in order to choose a prosthesis whose off-setting of the plates (1, 2) perfectly corresponds to the off-setting of the vertebrae.


The plates (1 and 2) of the prosthesis according to the invention each comprise a geometric centre (G1 and G2, respectively) which can be defined, generally speaking, by a point at equal distance from two diametrically opposite points located on the periphery of the plates (1, 2). Normally, the plates of the intervertebral disc prostheses have a relatively straightforward shape and their geometric centre can be of equal distance from all the points located on the periphery of the plates. Irrespective of the prosthesis, a geometric centre can be defined by a point or a surface located at equal distance from the edges of the plate. The geometric centres (G1, G2) of the plates (1, 2) of the prosthesis according to the invention are not vertically aligned but are off-set to each other in at least one direction, for example antero-posterior, perpendicular to the vertical axis of the spinal column. The two plates (1 and 2) of a single intervertebral disc prosthesis are usually substantially the same size and this off-set (D) of the geometric centres (G1, G2) of the plates engenders an off-set of the edges of the plates (1, 2). In the case of a prosthesis whose plates are not of the same size, it is envisaged to off-set the edges of the plates (1 and 2) and the geometric centres (G1, G2) will be even more off-set to each other.


In the different embodiments described below, the prosthesis comprises at least two plates (1 and 2), namely first (1) and second (2) plates, articulated about each other by means of a curved surface (11, 31), namely articulation, of at least one of the plates. This curved surface (11, 31) of articulation allows to pivot the plates (1, 2) about each other, via rotation about an axis substantially perpendicular to the plane of the plates and/or to tilt the plates (1, 2) about each other, via rotation about an axis substantially along the plane of the plates (1, 2). Each of the plates (1, 2) comprises a surface (14, 24) known as a contact surface, intended to be in contact with a vertebral plate of one of the vertebrae between which the prosthesis is intended to be inserted. The geometric centre will hereafter be defined in relation to this contact surface for the sake of ease but it must be understood that it is the vertical axis passing through the geometric centre which matters in the principle of the invention and that the exact position of the geometric centre on the width of the plates has no relevance. In the different embodiments described below, each of the plates (1, 2) therefore comprises a geometric centre (G1, G2) at equal distance from at least two diametrically opposite points located on the periphery of the plate (1, 2). The geometric centres (G1, G2) of the plates (1, 2) are not vertically aligned and this off-set (D) of the geometrical centres (G1, G2) of the plates engenders an off-set of the edges of the plates (1, 2) in at least one direction perpendicular to the vertical axis of the spinal column.


In the embodiment represented in FIGS. 2A, 2B, 2C, 3C and 3D, the prosthesis only comprises two elements: two plates (1, 2). In this case, the second plate (2) comprises a curved surface (31) of articulation of which at least one section co-operates with a curved surface (11) of articulation of the first plate (1) to which it is complementary. The co-operating of these curved surfaces (11, 31) of articulation allows to pivot and/or tilt the plates (1, 2) about each other. A centre (C) of articulation vertically aligned with the vertex of the curved surface (31) of articulation of the second plate (2) can be defined. This centre (C) of articulation corresponds to the mid-position of the centre of the curved surface (11) of the first plate (1) compared to the second plate (2). In the embodiment represented in the figures, the curved surface (11) of the first plate (1) is concave and the curved surface (31) of articulation of the second plate (2) is convex but it can be the case that the curved surface (11) of the first plate (1) is convex and that the curved surface (31) of articulation of the second plate (2) is concave.


In the embodiment represented in FIGS. 1A to 1C, 3A, 3B and 5A to 5C, the prosthesis also comprises a core (3) comprising a plane surface (33) and a curved surface (31) of articulation. In the case of a prosthesis with three elements, only the first plate (1) comprises a curved surface of articulation (11) and this surface co-operates with at least a section of the curved surface (31) of the core (3) to which it is complementary, to allow to pivot and/or tilt the plates (1, 2) about each other. The plane surface (33) of the core (3) co-operates with at least a section of a plane surface (23) of the second plate (2) to allow a translation of the core (3) in relation to the second plate (2) in at least one direction perpendicular to the vertical axis of the spinal column and/or a rotation of the core (3) in relation to the second plate (2) via rotation about an axis substantially perpendicular to the plane of these plane surfaces. The second plate (2) comprises means for co-operating (22) which are complementary with means for co-operating (32) of the core (3) so as to restrict or abolish at least this translation of the core (3) in relation to the second plate (2). In the embodiments represented in figures, the means for co-operating (22) of the second plate (2) are female means located in the vicinity of the edges of the second plate (2) and co-operating with the male means (32) of the core (3). In the embodiments represented in the figures, these male means for co-operating (32) of the core (3) are two studs located on the two side edges of the core (3) and the female means for co-operating (22) of the second plate (2) are four walls located, in pairs, on each of the two side edges of the second plate (2). These walls comprise an inward curving section towards the centre of the plate (2) and partially covering the male means for co-operating (32) of the core (3) so as to prevent the core (3) from lifting. In another embodiment of the invention, the means for co-operating (22) of the second plate (2) can be male means located in the vicinity of the edges of the second plate (2) and co-operating with the female means (32) of the core (3). In an embodiment of the invention, the dimensions of each male means for co-operating (32, 22) can be slightly smaller than those of the female means for co-operating (22, 32) so as to allow a slight travel between the core (3) and the second plate (2) around the position corresponding to the vertical projection of the centre (C) of articulation. In another embodiment, the dimensions of each male means for co-operating (32, 22) can be substantially identical to those of each female means for co-operating (22, 32) so as to prevent any travel between the core (3) and the second plate (2) and to retain the core (3) in the position corresponding to the vertical projection of the centre (C) of articulation.


In this case of a prosthesis with three elements, the centre (C) of articulation is vertically aligned with the vertex of the curved surface (31) of articulation of the core (3) and correspond to the mid-position of the core (3) between the means for co-operating (22) of the second plate (2) and to the mid-position of the centre of the curved surface (11) of the first plate (1) in relation to the core (3). In the embodiment represented in the figures, the curved surface (11) of the first plate (1) is concave and the curved surface (31) of the core (3) is convex but it could be that the curved surface (11) of the first plate (1) is convex and that the curved surface (31) of the core (3) is concave.


In an embodiment of the invention, the centre (C) of articulation is vertically aligned with the centre (G1) of geometry of the first plate (1) but off-set in relation to the geometric centre (G2) of the second plate (2) in at least a direction perpendicular to the vertical axis of the spinal column. This off-setting (D) of the geometric centres (G1, G2) of the plates engenders an off-setting of the edges of the plates (1, 2) in at least one direction perpendicular to the vertical axis of the spinal column. In another embodiment of the invention, the centre (C) of articulation can also be off-set in relation to the geometric centre (G1) of the first plate (1). This off-setting of the centre (C) of articulation in relation to the geometric centre (G1) of the first plate (1) can be in the opposite direction to that of its off-setting (D) in relation to the geometric centre (G2) of the second plate (2) so that the vertical projection of the centre (C) of articulation lies between the vertical projections of the geometric centres (G1, G2) of the plates (1, 2) and so that the off-setting of the geometric centres (G1, G2) in relation to the centre (C) of articulation cumulate and engender an off-setting of the edges of the plates (1, 2) in at least one direction perpendicular to the vertical axis of the spinal column. This off-setting of the centre (C) of articulation in relation to the geometric centre (G1) of the first plate (1) can also be in the same direction as that of its off-setting (D) in relation to the geometric centre (G2) of the second plate (2), but at a lesser distance so that these off-settings partially compensate each other and engender an off-setting of the edges of the plates (1, 2) between themselves in at least one direction perpendicular to the vertical axis of the spinal column.


It can be beneficial that prostheses according to various embodiments of the invention allow correction of the slope defects of the adjacent vertebrae. The median planes representing the contact surfaces (14, 24) of the plates (1, 2) can therefore be substantially parallel or create an acute angle. The slope obtained by such an angle will allow the overall shape of the prosthesis to be adapted to the anatomy of the spinal column or to correct any possible slope defects of the vertebrae of the patient for whom the prosthesis is intended. The same plates (1, 2) are assembled with core (3) of different thicknesses and/or dimensions and/or shapes. The plates (1, 2) can comprise, at least on their anterior edge, at least a bevel (12) facilitating the insertion of the prosthesis between the vertebrae.


An embodiment of a prosthesis according to the invention comprises mobile osseous anchorage means (4A, 4B) allowing to anchor the plates (1, 2) in the vertebrae. These osseous anchorage means (4A, 4B) and/or the plates (1, 2) can thus comprise means for securing (43 and/or 211, 212) of the binding of the osseous anchorage means (4A, 4B) on the plates (1, 2).


In one embodiment of the mobile osseous anchorage means (4B), at least a plate (40), equipped with notches (42) oriented so as to prevent this notched plate (40) from falling out once inserted in a vertebra, is intended to be interlocked on to at least one edge (21) of an opening in the vicinity of the periphery of the plates (1, 2), thanks to an inwardly curved section (41). Thus, these mobile osseous anchorage means (4B) can be inserted into the vertebrae and interlocked on to the plates of the prosthesis once the latter has been inserted between the vertebrae. This embodiment of the mobile osseous anchorage means (4B) allows a possible adjustment of the position of the prosthesis between the vertebrae prior to definitive bonding. The end of the notched plate (40) opposite the one with an inwardly curved section (41) can comprise a bevel allowing to facilitate the insertion of the notched plate (40) into the vertebrae. The opening in the vicinity of the periphery of the plates (1, 2) can comprise a sloping section (210) on to which the notched plate (40) leans when the curved section (41) of the osseous anchorage means (4B) is interlocked on to the edge (21) of this opening. This sloping section (210) allows to set the angle of the osseous anchorage means (4B) in relation to the plates and to guide them when they are being inserted into the opening. The means for securing (43) can consist in flexible tabs (43) oriented towards the curved section (41) of the osseous anchorage means (4B) and intended to fold back against the edges of the plate (40) when inserting the osseous anchorage means (4B) into the openings in the plates (1, 2). During the interlocking of the curved sections (41) onto the edges (21) of the openings in the plates (1, 2), these flexible tabs (43) separate to lean against the limit stops (211) located on the walls of the openings in the plates (1, 2), so as to prevent the osseous anchorage means (4B) from falling out. In an alternative embodiment, the inwardly curved section (41) of the notched plate (40) of the mobile osseous anchorage means (4) extends via a second plate (40) also equipped with notches (42) oriented so as to prevent the plate (40) from falling out once inserted into the vertebrae.


In another embodiment the mobile osseous anchorage means (4A, 4B) of the plates (1, 2) at least one winglet (4A) is equipped with notches (42) oriented so as to prevent the winglet (4A) from falling out once inserted into a groove made in a vertebra. One end of the winglet (4A) has an inwardly curved section (41) and intended to be interlocked on to at least one edge (21) of an opening in the vicinity of the periphery of the plates (1, 2). The means for securing (43) of the winglet (4A) can thus consist in at least a stud (43) located on the lower surface of the winglet (4A) and intended to be interlocked into at least one hole (210) on the contact surfaces (14, 24) of the plates (1, 2). The stud (43) and the hole (210) will be of complementary shape and size so as to secure the winglet (4A) on to the plates (1, 2). In this embodiment, the vertebrae, between which the prosthesis is intended to be inserted, will have been previously prepared by the surgeon by hollowing out, in the vertebral plates, grooves of complementary shape and size with the shape and size of the winglets (4A).


It should be obvious for those skilled in the art that the invention allows embodiments under numerous other specific forms whilst remaining within the scope of the invention as claimed. Consequently, the embodiments should be considered as purely illustrative, but can be modified in the field defined by the impact of the attached claims, and the invention should not be restricted to the aforementioned details.

Claims
  • 1. Intervertebral disc prosthesis for implantation between vertebrae of a spinal column comprising at least two plates, namely first and second plates, articulated about each other with curved articulation surfaces providing articulation of at least one of the plates and allowing to pivot or tilt the plates in relation to each other, via rotation about, respectively, an axis substantially perpendicular to the plane of the plates and an axis substantially in the plane of the plates, wherein each of the plates comprises edges and a contact surface configured to be placed in contact with a vertebral plate of one of the vertebrae between which the prosthesis is intended to be implanted; the contact surface for each of the plates comprises a geometric centre at equal distance from at least two diametrically opposite points located on the periphery of the plate; the geometric centres of each contact surface are off-set so that the plates are not vertically aligned; and the off-set of the geometrical centres of the contact surfaces off-sets the edges of the plates in at least one direction perpendicular to the vertical axis of the spinal column.
  • 2. Intervertebral disc prosthesis according to claim 1, in which: the first plate comprises one of the curved articulation surfaces, which curved articulation surface has a mid-position of its centre in relation to the second plate; the second plate comprises one of the curved articulation surfaces, which curved articulation surface has a vertex and at least a portion of which curved articulation surface co-operates with the curved articulation surface of the first plate; and the intervertebral disc prosthesis further comprises a centre of articulation vertically aligned with the vertex of the curved articulation surface of the second plate and corresponding to the mid-position of the centre of the curved articulation surface of the first plate.
  • 3. Intervertebral disc prosthesis according to claim 2, in which the curved articulation surface of the first plate is concave and the curved articulation surface of the second plate is convex.
  • 4. Intervertebral disc prosthesis according to claim 2, in which the curved articulation surface of the first plate is convex and the curved articulation surface of the second plate is concave.
  • 5. Intervertebral disc prosthesis according to claim 1, further comprising a core comprising at least one core stop, a plane surface, and one of the curved articulation surfaces, which curved articulation surface of the core has a vertex, in which: the first plate comprises another of the curved articulation surfaces, which curved articulation surface of the first plate has a mid-position of its centre in relation to the core; the second plate comprises a plane surface, at least a portion of which co-operates with the plane surface of the core in order to allow a translation or a rotation of the core in relation to the second plate in at least one direction perpendicular to the vertical axis of the spinal column, and at least one second plate stop cooperating with the core stop to restrict or abolish at least the translation of the core in relation to the second plate, the cooperation between said second plate stop and said core stop defining a mid-position of the core in relation to said second plate stop; and the intervertebral disc prosthesis further comprises a centre of articulation vertically aligned with the vertex of the curved articulation surface of the core and corresponding to the mid-position of the core in relation to the second plate stop and to the mid-position of the centre of the curved articulation surface of the first plate.
  • 6. Intervertebral disc prosthesis according to claim 5, in which the curved articulation surface of the first plate is concave and the curved articulation surface of the core is convex.
  • 7. Intervertebral disc prosthesis according to claim 5, in which the curved articulation surface of the first plate is convex and the curved articulation surface of the core is concave.
  • 8. Intervertebral disc prosthesis according to claim 1, further comprising a vertex of the curved articulation surfaces and a centre of articulation vertically aligned with the vertex of the curved articulation surfaces, said centre of articulation being vertically aligned with the geometric centre of the first plate but off-set in relation to the geometric centre of the second plate in at least one direction perpendicular to the vertical axis of the spinal column.
  • 9. Intervertebral disc prosthesis according to claim 1, further comprising a vertex of the curved articulation surfaces and a centre of articulation vertically aligned with the vertex of the curved articulation surfaces, said centre of articulation being off-set in relation to the geometric centre of the second plate, and said centre of articulation being off-set in relation to the geometric centre of the first plate but in the opposite direction to that of its off-setting in relation to the geometric centre of the second plate, so that the vertical projection along the axis of the spinal column of the centre of articulation is located between the vertical projections along the axis of the spinal column of the geometric centres of the first and second plates and that the off-settings of the geometric centres in relation to the centre of articulation cumulate.
  • 10. Intervertebral disc prosthesis according to claim 1, further comprising a vertex of the curved articulation surfaces and a centre of articulation vertically aligned with the vertex of the curved articulation surfaces, said centre of articulation being off-set in relation to the geometric centre of the second plate, and said centre of articulation being off-set in relation to the geometric centre of the first plate in the same direction to that of its off-setting in relation to the geometric centre of the second plate but at a lesser off-set distance so that the off-settings of the geometric centres partially overlap and preserve the off-setting of the edges of the plates.
  • 11. Intervertebral disc prosthesis according to claim 5, in which the core stop is male, and the second plate stop is female and located proximal to an edge of the second plate, said female second plate stop comprising at least one stop surface cooperating with said male core stop.
  • 12. Intervertebral disc prosthesis according to claim 11, in which the female second plate stop comprises at least two stop surfaces and in which the dimensions of the male core stop is slightly smaller than the distance between the two stop surfaces of the female second plate stop in order to allow a slight travel between the core and the second plate around a position defined by a vertical projection along the axis of the spinal column of the centre of articulation.
  • 13. Intervertebral disc prosthesis according to claim 11, in which the female second plate stop comprises at least two stop surfaces and in which the dimensions of the male core stop is substantially the same as the distance between two stop surfaces of the female second plate stop in order to prevent any travel between the core and the second plate.
  • 14. Intervertebral disc prosthesis according to claim 5 comprising plural core stops, in which the core stops are female, and each of the second plate stops is male and located proximal to an edge of the second plate and co-operating with a female core stop.
  • 15. Intervertebral disc prosthesis according to claim 14, in which the dimensions of each male second plate stop is slightly smaller than those of each female core stop in order to allow a slight travel between the core and the second plate around a position defined by a vertical projection along the axis of the spinal column of the centre of articulation.
  • 16. Intervertebral disc prosthesis according to claim 14, in which the dimensions of each male second plate stop is substantially the same as the dimensions of each female core stop in order to prevent any travel between the core and the second plate.
  • 17. Intervertebral disc prosthesis according to claim 11 comprising two male core stops and two female second plate stops located proximal to each of the lateral edges of the second plate and each comprising at least two stop surfaces, in which the male core stops are two studs located on opposite lateral sides of the core and each cooperating with one female second plate stop.
  • 18. Intervertebral disc prosthesis according to claim 17, in which the female second plate stops comprise a section dish-shaped towards the centre of the plate and partly covering portions of the male core stops in order to prevent the core from lifting.
  • 19. Intervertebral disc prosthesis according to claim 1, in which a median plane represents the contact surfaces of each of the first and second plates, and said median planes are either substantially parallel or intersect to create an acute angle, the slope of said acute angle devised to adapt the intervertebral disc prosthesis to the spinal column or to correct one or more slope defects of the vertebrae of the spinal column.
  • 20. Intervertebral disc prosthesis according to claim 1, in which each of the plates further comprises, at least on one edge, a bevel configured to facilitate the insertion of the prosthesis between the vertebrae.
  • 21. Intervertebral disc prosthesis according to claim 5, in which the first and second plates are configured to cooperate with a core that can have one or more thicknesses, dimensions, or shapes.
  • 22. Intervertebral disc prosthesis according to claim 1, in which the plates further comprise mobile osseous anchorage means.
  • 23. Intervertebral disc prosthesis according to claim 22, further comprising means for securing the binding of each of the osseous anchorage means on one of the first or the second plates.
  • 24. Intervertebral disc prosthesis according to claim 23, in which: at least one of the first or second plates comprises an anchor opening located in the vicinity of the periphery of said plate and having at least one edge; at least one of the mobile osseous anchorage means comprises at least one anchor plate having notches oriented to retain the anchor plate in a vertebra; and at least one of the means for securing the binding comprises a curved section on a first end of the anchor plate, which curved section can be interlocked onto at least one edge of the anchor opening.
  • 25. Intervertebral disc prosthesis according to claim 24, in which the anchor plate has a second end opposite the first end, which second end comprises a bevel facilitating the insertion of the notched plate into a vertebrae.
  • 26. Intervertebral disc prosthesis according to claim 24, in which the anchor opening comprises a sloping section on which the anchor plate leans when interlocked onto the edge of the anchor opening, said sloping section establishing an angle of the osseous anchorage means in relation to the first or second plate.
  • 27. Intervertebral disc prosthesis according to claim 24, in which the anchor opening comprises walls and limit stops located on the walls; and the means for securing the binding of the osseous anchorage means further comprises flexible tabs oriented towards the curved section on the end of the anchor plate, which flexible tabs are configured to fold back against the edges of the anchor plate to permit inserting the osseous anchorage means into an anchor opening in the first or second plate, and further configured to engage the limit stops located on the walls of an anchor opening and retain the osseous anchorage means in the anchor opening.
  • 28. Intervertebral disc prosthesis according to claim 24, in which the inward curving section of the anchor plate connects to an extension anchor plate that has notches oriented to retain the extension anchor plate in a vertebra.
  • 29. Intervertebral disc prosthesis according to claim 22, in which at least one of the first or second plates comprises an anchor opening located in the vicinity of the periphery of said plate and having at least one edge; and at least one of the mobile osseous anchorage means comprises a winglet having notches oriented to retain the winglet in a vertebra, one end of the winglet having a curved section that can be interlocked onto at least one edge of the anchor opening.
  • 30. Intervertebral disc prosthesis according to claim 23, in which the means for securing the binding of the winglet comprises at least one stud located on the lower surface of the winglet and configured to interlock into at least one hole in the contact surfaces of the plates, the stud and the hole being of complementary shape and size so as to secure the winglet in place on the plates.
Priority Claims (1)
Number Date Country Kind
05 09740 Sep 2005 FR national