The invention pertains to spinal implants and surgical procedures for spinal fusion and stabilization.
Back and neck pain are the leading causes of disability and lost productivity for American workers under the age of 45. Degenerative disc disease and its sequelae, whereby the fibrocartilaginous disc between adjacent vertebral bodies loses height, hydration and structural integrity, is one of the most common causes of back and neck pain and may develop secondary to traumatic injuries, inflammatory processes or various degenerative disorders. When conservative treatment fails, surgical fusion of the vertebral segments across the abnormal disc may be the only currently available procedure for pain relief. An increasing number of these spinal fusions are performed each year. It is estimated that over half a million of these procedures were performed in the United States last year alone.
Various surgical approaches to abnormal lumbar disc spaces are employed and include anterior interbody fusions, posterior interbody fusions and tranforaminal fusions. At cervical levels, an anterior approach is employed. These procedures may be augmented by various posterior element instrumentation techniques. Regardless of the surgical approach, the goal is to achieve solid bony fusion between the involved endplates and eliminate the symptoms caused by motion and associated degenerative and other reactive changes between these unstable vertebral segments.
The first lumbar fusion procedures involved removal of a portion of the abnormal disc and placement of autologous bone graft material in the disc space without instrumentation of posterior elements. This approach often failed due to inadequate structural integrity. Subsequently, cortical bone dowels and femoral ring allografts were employed in an attempt to restore disc space height and augment structural integrity. After U.S. Pat. No. 4,961,740 (“Ray, et al.”) introduced the concept of the threaded cylindrical interbody fusion cage in 1990, numerous other interbody fusion devices were developed. These devices include cylindrical, rectangular, and tapered cages and spacers composed of metals, polymers, human bone allograft and other materials. Some of these devices incorporate or are coated with human bone morphogenetic protein or other agents to promote new bone formation and accelerate fusion. Despite these advancements, failure rates for spinal fusion surgeries remain unacceptably high, greater than 10 percent in most series.
Therefore, there is a need in the art for an improved method to effect a more rapid, reliable fusion between unstable vertebral segments and avoid the considerable medical and economic impact of failed spinal fusions.
Some embodiments of the invention disclose an apparatus for achieving rapid mechanical fusion between two vertebral bodies. In some embodiments, an interbody fusion member (e.g., a shaped block, such as a rectangular or oblong block) with one or more tubular channels is positioned between the endplates of adjacent vertebrae following partial or complete discectomy. In this position, two or more sides of the fusion member are in contact with the opposed endplates. These contacting sides may be parallel to each other, or nonparallel such that the fusion block presents a tapered profile when viewed laterally so as to restore both disc height and physiologic lordosis.
Once properly positioned, one or more needles (e.g., large gauge needles 1-10 mm in outer diameter) are passed through the fusion member's channels and advanced into the marrow space of the adjacent vertebral body. In some embodiments, a flange at the base of each needle fits into a recess of increased diameter where the tubular channel meets the exposed block surface locking the needle's position and anchoring it to the block. A needle is open or closed at its tip. Moreover, a needle may have perforations of various spacing and configuration along its shaft. In some embodiments, the needle's opening and/or perforations communicate directly with a central lumen, which extends to the needle base. In some embodiments, a needle also has various surface contours along its shaft, including angled teeth and backfacing ridges.
In some embodiments, the segments of the needles comprising these contours (e.g., angled teeth and backfacing ridges) have a diameter or circumference that is less than or equal to the diameter or circumference of proximal or distal needle segments. This allows the needle to pass through the fusion member's channel and into the bone readily (i.e., into the adjacent vertebral body).
Once a needle is in position, an adhesive may be injected through the needle. Examples of such an adhesive include any quickly hardening adhesives, such as polymethyl methacrylate (PMMA) or other bone cement or polymer. This material passes through the perforations and/or openings of the needle into the marrow space of the vertebral body, contiguous with or adjacent to the surface contours of the needle, including angled teeth and/or back facing ridges. The adhesive clouds in some embodiments form a spherical or ellipsoidal “cloud” of PMMA contiguous with the needle tip. Once the adhesive cloud hardens, the surface contours anchor the needle and prevent it from being withdrawn from the trabecular bone, and thereby enhances the structural integrity of the inserted fusion device. In some embodiments, more than one needle is advanced through multiple channels of a fusion member into the same vertebral body and adhesives (PMMA or other bone cement or polymer) are injected through these needles. The resultant PMMA clouds from adjacent needle tips or perforations may unite to form a single larger cloud upon polymerization. The united cloud along with multiple contoured and perforated needles locks the fusion member with the trabecular bone of the vertebral body. One or more additional needles may be passed through additional channels and into the marrow space of the vertebral body contiguous with the opposite face of the fusion member and the injection process repeated. The final result is an intervertebral fusion member anchored via multiple contoured, perforated needles to collections of adhesive clouds (e.g., PMMA clouds) and to the trabecular bone of adjacent vertebral bodies yielding solid mechanical fusion.
The fusion member may be composed of any number of materials, such as metals (including stainless steel, titanium, or nitinol), various polymers (including PMMA or polyetheretherketone), carbon fiber, etc. In some embodiments, the fusion member is partially or completely made of bioabsorbable or biodegradable materials, so that it can partially or completely be absorbed. In some instances, the fusion member's faces that are in contact with the vertebral endplates may have ridges or other surface contouring to enhance stability. The fusion member may comprise additional channels or cavities to be packed with bone graft material or bone graft substitutes to enhance progressive solid bony fusion. The fusion member may also be coated with or partially composed of human morphogenetic protein or other bone-inducing substances.
Like the fusion member, the needles that are inserted in it can be composed of many materials. Examples of such materials include nitinol, stainless steel, titanium or other metals or metallic alloys or of high density polymers, carbon fiber or of a combination of these materials.
The novel features of the invention are set forth in the appended claims. However, for purpose of explanation, several embodiments of the invention are set forth in the following figures.
a, 27b, and 28 illustrate different views of an alternative fusion member embodiment comprising curved tubular channels that run in parallel planes with respect to each other but are nonparallel to the adjacent faces of the fusion block member.
a and 29b illustrate alternative needle tips
In the following description, numerous details are set forth to provide a better understanding of the various embodiments of the invention. However, one of reasonable skill in the art will realize that the invention may be practiced without the use of the specific details presented herein. In some instances of describing the invention, well-known structures may be omitted or shown in block diagram form to avoid obscuring the description of the invention with unnecessary detail. Therefore, the examples provided herein for description and clarification should not be interpreted as in anyway limiting the language of the claims.
Some embodiments of the invention provide an apparatus for achieving rapid mechanical fusion between adjacent vertebral bodies in a living organism. In some embodiments, an interbody fusion member (e.g., a shaped block, such as a rectangular or oblong block) with one or more tubular channels is positioned between the endplates of adjacent vertebrae following partial or complete discectomy. In this position, two or more sides of the fusion member are in contact with the opposed endplates. These contacting sides may be parallel to each other, or nonparallel such that the fusion block presents a tapered profile when viewed laterally so as to restore both disc height and physiologic lordosis.
Once properly positioned, one or more needles (e.g., large gauge needles 1-10 mm in outer diameter) are passed through the fusion member's channels and advanced into the marrow space of the adjacent vertebral body. In some embodiments, a flange at the base of each needle fits into a recess of increased diameter where the tubular channel meets the exposed block surface locking the needle's position and anchoring it to the block. In some embodiments, a smaller gauge needle is advanced into the marrow space of the adjacent vertebral body before placement of the large gauge needle. This creates a guide to help ensure the large gauge needle will be advanced into the proper position within the trabecular bone of the vertebral body. A needle may be open or closed at its tip. Moreover, a needle may have perforations of various spacing and configuration along its shaft. In some embodiments, the needle's opening and/or perforations communicate directly with a central lumen, which extends to the needle base. In some embodiments, a needle also has various surface contours along its shaft, including angled teeth and backfacing ridges.
In some embodiments, the segments of the needles comprising these contours (e.g., angled teeth and backfacing ridges) have a diameter or circumference that is less than or equal to the diameter or circumference of proximal or distal needle segments. This allows the needle to pass through the fusion member's channel and into the bone readily (i.e., into the adjacent vertebral body).
Once a needle is in position, an adhesive may be injected through the needle. Examples of such an adhesive include any quickly hardening adhesives, such as polymethyl methacrylate (PMMA) or other bone cement or polymer. This material passes through the perforations and/or openings of the needle into the marrow space of the vertebral body, contiguous with or adjacent to the surface contours of the needle, including angled teeth and back facing ridges. The adhesive clouds in some embodiments form a spherical or ellipsoidal “cloud” of PMMA contiguous with the needle tip. Once the adhesive cloud hardens, the surface contours anchor the needle and prevent it from being withdrawn from the trabecular bone, and thereby enhances the structural integrity of the inserted fusion device.
In some embodiments, more than one needle is advanced through multiple channels of a fusion member into the same vertebral body and adhesives (PMMA or other bone cement or polymer) are injected through these needles. The resultant PMMA clouds from adjacent needle tips or perforations may unite to form a single larger cloud upon polymerization. The united cloud along with multiple contoured and perforated needles locks the fusion member within the trabecular bone of the vertebral body. One or more additional needles may be passed through additional channels and into the marrow space of the vertebral body contiguous with the opposite face of the fusion member and the injection process repeated. The final result is an intervertebral fusion member anchored via multiple contoured, perforated needles to collections of hardened adhesive clouds (e.g., PMMA and other polymeric collections) and to the trabecular bone of adjacent vertebral bodies yielding solid mechanical fusion.
The fusion member may be composed of any number of materials, such as metals (including stainless steel, titanium, or nitinol), various polymers (including PMMA or polyetheretherketone), carbon fiber, etc. In some embodiments, the fusion member is partially or completely made of bioabsorbable or biodegradable materials, so that it can partially or completely be absorbed. In some instances, the fusion member's faces that are in contact with the vertebral endplates may have ridges or other surface contouring to enhance stability. The fusion member may comprise additional channels or cavities to be packed with bone graft material or bone graft substitutes to enhance progressive solid bony fusion. The fusion member may also be coated with or partially composed of human morphogenetic protein or other bone-inducing substances.
Like the fusion member, the needles that passed through its channels can be composed of many materials. Examples of such materials include nitinol, stainless steel, titanium or other metals or metallic alloys or of high density polymers, carbon fiber or of a combination of these materials.
To better understand these embodiments, it is helpful to understand relevant terminology and describe an example of the invention in use. Therefore, the following sections present relevant terminology, and provide an overview of an exemplary fusion procedure of some embodiments and of a number of specific design features and variations.
The spinal column of humans and other vertebrates comprises vertebral bodies and posterior osseous elements that provide structural support and also serve to protect the spinal cord and other spinal canal contents. The vertebral bodies are the cylindrical segmental osseous structures that form the anterior margin of the spinal canal and are separated from each other by fibrocartilaginous intervertebral discs. In the present discussion, the term “fusion member” refers to a device positioned between vertebral bodies. In some embodiments, the fusion member has one or more channels for the passage of contoured fusion needles and/or the retention and positioning of bone graft material or bone graft substitutes between adjacent vertebral bodies.
Some embodiments of the invention have particular utility when placed between the endplates of adjacent vertebral bodies following discectomy to effect a rapid mechanical fusion of adjacent vertebral segments.
As shown in
The superior block face 135 will abut one vertebrae, while the inferior block face 150 will abut the other vertebrae between which the block is placed. As further described below, large gauge needles (e.g., 1-10 mm in outer diameter) are passed through the proximal openings 155, 160, 165, and 170 on the face 175 of the block that are closest to the operator, and pass through the tubular channels 105, 110, 115, and 120, out of the distal openings 125, 130, 140, and 145 and into the trabecular bone of the vertebral bodies.
Examples of such needles are illustrated in
The use of the fusion block 100 and the needles will now be further described by reference to
Once these needles are advanced into the vertebral bodies, adhesive material is injected through their openings 820, 830, 840, and 850, through their central lumens, and out of their perforations in order to deliver adhesive to the area immediately adjacent to their angled, backfacing ridges, or other surface contours in the vertebral bodies.
Some embodiments insert more than one fusion member between a pair of adjacent vertebral bodies. One such example is illustrated in
The shape and composition of the fusion members and needles are different in different embodiments.
A. Arc Shaped Channels and Needles
For instance, in some embodiments, the needles and the fusion-member channels are in shape of an arc.
In some embodiments, the arcs are circular arcs as shown in
In
B. Channels Traversing in all Three Dimensions
Another shape that the channels can take is to have a shape that traverses in x-, y-, and z-directions.
C. Arc Shaped Channels and Needles that Traverse in all Three Dimensions
a and 28 depict an alternate embodiment of a fusion member with channels that traverse in parallel planes with respect to each other but are not parallel with respect to the block faces of the fusion member. As shown in these figures, the block 2700 includes two tubular channels 2710 and 2720 that traverse in both x-, y-, and z-directions. As shown in
D. Alternative Needle Tips
a provides a detailed view of alternative needle tips. In some embodiments, the needles may be arc-shaped. In other embodiments, the needles may be angled, semi-circular, arc-shaped, or straight. As shown in this figure, the central lumen 2900, 2905, and 2910 of the needle of some embodiments is in direct communication with perforations 2915, 2920, and 2925 along the needle shaft as well as the “teeth” or retention ridges 2930, 2935, and 2940.
In some embodiments, the maximum diameter or circumference of the segment of the needle that includes retention ridges or other surface features intended to engage the adhesive material (e.g., PMMA or bone cement) is less than or equal to the diameter or circumference of proximal and distal needle segments. This allows the needle to be hammered, tapped, or simply pushed into position within the marrow space of the vertebral bodies rather than being screwed into place.
E. Blocks with Ridges and Additional Bone-Grafting Channels
Next, the caregiver positions (at 3110) an interbody fusion member (e.g., one of the blocks described above) with one or more tubular channels between the endplates of adjacent vertebrae. Any number of known technique/procedures for inserting a block between two adjacent vertebrae can be used (at 3110) to insert the interbody fusion member between adjacent vertebrae.
The block faces are in contact with the opposed endplates. These faces may be parallel to each other, or nonparallel such that the fusion member presents a tapered profile when viewed laterally so as to restore both disc height and physiologic lordosis.
Once properly positioned, a large gauge needle (at 3120) is (1) passed through a channel of the fusion member inserted at 3110 and (2) advanced into the marrow space of the adjacent vertebral body. In some embodiments, a flange at the base of each needle fits into a recess of increased diameter where the tubular channel meets the exposed block surface locking the needle's position and anchoring it to the block. These needles may be open or closed at their tips and perforations of various spacing and configuration along the needle shafts communicate directly with a central lumen, which extends to the needle base. In some embodiments, various surface contours along the needle shaft, including angled teeth and backfacing ridges, allow the needle to be passed through the block's channel and into the bone but prevent it from being easily withdrawn from the bone, enhancing structural integrity.
In some embodiments, the inserted needle is tapped at its proximal end in order to cause its distal end to penetrate the vertebral body, which the needle encounters as it exits the fusion-member channel in which it is inserted. To facilitate this penetration, some embodiments insert a smaller gauge needle into this channel and into the marrow space of the adjacent vertebral body before inserting the large-gauge needle at 3120. This creates a guide to help ensure the large gauge needle will be advanced into the proper position within the trabecular bone of the vertebral body.
Once a needle is in position, polymethyl methacrylate (PMMA), other bone cement or polymer, or other adhesive may be injected (at 3130) through the needle and pass through its openings/perforations into the marrow space of the vertebral body, ideally forming a spherical or ellipsoidal “cloud” of adhesive material (e.g., PMMA) contiguous with the needle tip.
In some embodiments, one or more needle(s) are advanced through multiple channels of a fusion member into the same vertebral body and PMMA or other bone cement or polymer injected through these needles. Accordingly, after 3130, a determination is made (at 3140) whether additional needles need to be inserted into the fusion member inserted at 3110. If so, another needle is pushed (at 3120) through another channel of the fusion member, and adhesive material is injected (at 3130) into this other needle and through its openings/perforations into the marrow space of vertebral body. The resultant adhesive (PMMA) clouds from adjacent needle tips may unite to form a single larger cloud upon polymerization, with multiple contoured and perforated needles locked to the fusion member and anchored to the solid PMMA and trabecular bone of the vertebral body. One or more additional needles may be passed (at 3120) through additional channels and into the marrow space of the vertebral body contiguous with the opposite face of the fusion member and the injection process repeated. The final result is an intervertebral fusion member anchored via multiple contoured, perforated needles to collections of PMMA and to the trabecular bone of adjacent vertebral bodies yielding solid mechanical fusion.
In some embodiments, more than one fusion member is inserted between two adjacent vertebral bodies. Accordingly, a determination is made (at 3150) whether another fusion member needs to be inserted between the vertebral bodies between which the last fusion member was inserted at 3110. If so, the medical procedure is repeated from 3110 to 3150. Also, in some embodiments, the medical procedure 3100 is performed multiple times to replace multiple discs between multiple pairs of vertebral bodies.
In some embodiments, the needles may be without a central lumen or perforations along their shaft. In some embodiments, angled teeth, backfacing ridges, and other surface retention ridges may be greater in circumference or diameter than the more proximal or distal needle segments. In these instances, after the needles are advanced into the marrow space of the vertebral bodies, injection of adhesive materials may not be needed to anchor the vertebral bodies to the fusion member. The surface contours of the needles will anchor the vertebral bodies to the fusion member.
While the invention has been described with reference to numerous specific details, one of ordinary skill in the art will recognize that the invention can be embodied in other specific forms without departing from the spirit of the invention. For example, prior to advancing a large gauge needle through the fusion member channel into the marrow space of the vertebral body, some embodiments of this invention may insert a smaller gauge needle through the fusion member channel into the marrow space of the vertebral body and then remove the smaller gauge needle to create a guiding channel for placement of the large gauge needle into the proper position within the trabecular bone or the marrow space of the vertebral body.
Also, in several of the above-described embodiments, the channels and needles have circular-arc cross-sectional profiles. However, in other embodiments, the channels and needles have alternative curved arc shapes.
This Application claims benefit to U.S. Provisional Patent Application 61/040,136, entitled “Intervertebral Fusion Device and Method of Use”, filed Mar. 27, 2008.
Number | Name | Date | Kind |
---|---|---|---|
4554914 | Kapp et al. | Nov 1985 | A |
D312309 | Michelson | Nov 1990 | S |
5015247 | Michelson | May 1991 | A |
5484437 | Michelson | Jan 1996 | A |
5505732 | Michelson | Apr 1996 | A |
5522899 | Michelson | Jun 1996 | A |
D377095 | Michelson | Dec 1996 | S |
D377096 | Michelson | Dec 1996 | S |
D377527 | Michelson | Jan 1997 | S |
5593409 | Michelson | Jan 1997 | A |
5609635 | Michelson | Mar 1997 | A |
5653761 | Pisharodi | Aug 1997 | A |
D392387 | Michelson | Mar 1998 | S |
5741253 | Michelson | Apr 1998 | A |
5772661 | Michelson | Jun 1998 | A |
5776199 | Michelson | Jul 1998 | A |
5785710 | Michelson | Jul 1998 | A |
5797909 | Michelson | Aug 1998 | A |
5860973 | Michelson | Jan 1999 | A |
D425989 | Michelson | May 2000 | S |
6080155 | Michelson | Jun 2000 | A |
6096038 | Michelson | Aug 2000 | A |
6120502 | Michelson | Sep 2000 | A |
6120503 | Michelson | Sep 2000 | A |
6123705 | Michelson | Sep 2000 | A |
6136001 | Michelson | Oct 2000 | A |
6139551 | Michelson | Oct 2000 | A |
6149650 | Michelson | Nov 2000 | A |
RE37005 | Michelson | Dec 2000 | E |
6159215 | Urbahns et al. | Dec 2000 | A |
6190388 | Michelson | Feb 2001 | B1 |
6210412 | Michelson | Apr 2001 | B1 |
RE37161 | Michelson | May 2001 | E |
6224595 | Michelson | May 2001 | B1 |
6224607 | Michelson | May 2001 | B1 |
6241770 | Michelson | Jun 2001 | B1 |
6264656 | Michelson | Jul 2001 | B1 |
6270498 | Michelson | Aug 2001 | B1 |
6302914 | Michelson | Oct 2001 | B1 |
6350283 | Michelson | Feb 2002 | B1 |
6436098 | Michelson | Aug 2002 | B1 |
6447544 | Michelson | Sep 2002 | B1 |
6447547 | Michelson | Sep 2002 | B1 |
6478823 | Michelson | Nov 2002 | B1 |
6485517 | Michelson | Nov 2002 | B1 |
6500205 | Michelson | Dec 2002 | B1 |
6537320 | Michelson | Mar 2003 | B1 |
6554836 | Michelson | Apr 2003 | B2 |
6558423 | Michelson | May 2003 | B1 |
6565574 | Michelson | May 2003 | B2 |
6582432 | Michelson | Jun 2003 | B1 |
6605089 | Michelson | Aug 2003 | B1 |
6652584 | Michelson | Nov 2003 | B2 |
6666890 | Michelson | Dec 2003 | B2 |
6709458 | Michelson | Mar 2004 | B2 |
6716247 | Michelson | Apr 2004 | B2 |
6730127 | Michelson | May 2004 | B2 |
6733535 | Michelson | May 2004 | B2 |
6749636 | Michelson | Jun 2004 | B2 |
6758849 | Michelson | Jul 2004 | B1 |
6767367 | Michelson | Jul 2004 | B1 |
6770074 | Michelson | Aug 2004 | B2 |
6793679 | Michelson | Sep 2004 | B2 |
6808537 | Michelson | Oct 2004 | B2 |
6814756 | Michelson | Nov 2004 | B1 |
6827740 | Michelson | Dec 2004 | B1 |
6849093 | Michelson | Feb 2005 | B2 |
6875213 | Michelson | Apr 2005 | B2 |
6890355 | Michelson | May 2005 | B2 |
6923810 | Michelson | Aug 2005 | B1 |
6923830 | Michelson | Aug 2005 | B2 |
6962606 | Michelson | Nov 2005 | B2 |
6972019 | Michelson | Dec 2005 | B2 |
6972035 | Michelson | Dec 2005 | B2 |
6981975 | Michelson | Jan 2006 | B2 |
6989031 | Michelson | Jan 2006 | B2 |
7008453 | Michelson | Mar 2006 | B1 |
7022137 | Michelson | Apr 2006 | B2 |
7033394 | Michelson | Apr 2006 | B2 |
7041135 | Michelson | May 2006 | B2 |
7051417 | Michelson | May 2006 | B2 |
7056342 | Michelson | Jun 2006 | B2 |
7063701 | Michelson | Jun 2006 | B2 |
7063702 | Michelson | Jun 2006 | B2 |
7066961 | Michelson | Jun 2006 | B2 |
7094239 | Michelson | Aug 2006 | B1 |
7112206 | Michelson | Sep 2006 | B2 |
7115128 | Michelson | Oct 2006 | B2 |
7115143 | Michelson | Oct 2006 | B1 |
7118579 | Michelson | Oct 2006 | B2 |
7118598 | Michelson | Oct 2006 | B2 |
7128760 | Michelson | Oct 2006 | B2 |
7156875 | Michelson | Jan 2007 | B2 |
7163561 | Michelson | Jan 2007 | B2 |
7166107 | Anderson | Jan 2007 | B2 |
7166129 | Michelson | Jan 2007 | B2 |
7207991 | Michelson | Apr 2007 | B2 |
7244275 | Michelson | Jul 2007 | B2 |
7255698 | Michelson | Aug 2007 | B2 |
7264622 | Michelson | Sep 2007 | B2 |
7288093 | Michelson | Oct 2007 | B2 |
7291149 | Michelson | Nov 2007 | B1 |
7320686 | Serhan et al. | Jan 2008 | B2 |
7326214 | Michelson | Feb 2008 | B2 |
7326248 | Michelson | Feb 2008 | B2 |
7354442 | Sasso et al. | Apr 2008 | B2 |
7387643 | Michelson | Jun 2008 | B2 |
7396365 | Michelson | Jul 2008 | B2 |
7399303 | Michelson | Jul 2008 | B2 |
7410501 | Michelson | Aug 2008 | B2 |
7431722 | Michelson | Oct 2008 | B1 |
7435262 | Michelson | Oct 2008 | B2 |
7442209 | Michelson | Oct 2008 | B2 |
7445636 | Michelson | Nov 2008 | B2 |
7452359 | Michelson | Nov 2008 | B1 |
7455672 | Michelson | Nov 2008 | B2 |
7455692 | Michelson | Nov 2008 | B2 |
7462195 | Michelson | Dec 2008 | B1 |
7491205 | Michelson | Feb 2009 | B1 |
7503933 | Michelson | Mar 2009 | B2 |
7534254 | Michelson | May 2009 | B1 |
7540882 | Michelson | Jun 2009 | B2 |
7569054 | Michelson | Aug 2009 | B2 |
7608107 | Michelson | Oct 2009 | B2 |
7611536 | Michelson | Nov 2009 | B2 |
7618423 | Valentine et al. | Nov 2009 | B1 |
7637951 | Michelson | Dec 2009 | B2 |
7637954 | Michelson | Dec 2009 | B2 |
7655027 | Michelson | Feb 2010 | B2 |
7686805 | Michelson | Mar 2010 | B2 |
7691148 | Michelson | Apr 2010 | B2 |
7722619 | Michelson | May 2010 | B2 |
7771475 | Michelson | Aug 2010 | B2 |
7789914 | Michelson | Sep 2010 | B2 |
7794502 | Michelson | Sep 2010 | B2 |
7828800 | Michelson | Nov 2010 | B2 |
7887565 | Michelson | Feb 2011 | B2 |
7892286 | Michelson | Feb 2011 | B2 |
7914530 | Michelson | Mar 2011 | B2 |
7914554 | Michelson | Mar 2011 | B2 |
7922729 | Michelson | Apr 2011 | B2 |
7931840 | Michelson | Apr 2011 | B2 |
7935116 | Michelson | May 2011 | B2 |
7935149 | Michelson | May 2011 | B2 |
7942933 | Michelson | May 2011 | B2 |
7972365 | Michelson | Jul 2011 | B2 |
7972381 | Michelson | Jul 2011 | B2 |
7976566 | Michelson | Jul 2011 | B2 |
20020099378 | Michelson | Jul 2002 | A1 |
20030191371 | Smith et al. | Oct 2003 | A1 |
20050137707 | Malek | Jun 2005 | A1 |
20070225813 | Haines | Sep 2007 | A1 |
20080281428 | Meyers et al. | Nov 2008 | A1 |
20090149959 | Conner et al. | Jun 2009 | A1 |
20100114317 | Lambrecht et al. | May 2010 | A1 |
Number | Date | Country |
---|---|---|
199 44 681 | Mar 2001 | DE |
2004218 | Dec 1993 | RU |
Number | Date | Country | |
---|---|---|---|
61040136 | Mar 2008 | US |