Intervertebral fusion implant

Information

  • Patent Grant
  • 9358127
  • Patent Number
    9,358,127
  • Date Filed
    Wednesday, February 1, 2012
    12 years ago
  • Date Issued
    Tuesday, June 7, 2016
    8 years ago
Abstract
The present invention provides an intervertebral implant for implantation in a treated area of an intervertebral space between vertebral bodies of a spine. The implant includes a spacer portion having an inferior and superior surface, wherein the inferior and superior surfaces each have a contact area capable of engaging with anatomy in the treated area, and the inferior and superior surfaces define a through-hole extending through the spacer body. The present invention further provides screw holes extending from a side portion to the inferior and superior surfaces of the spacer portion and a plate portion rigidly coupled to the spacer portion through a coupling means, wherein the plate portion contains screws holes for receiving screws. A screw back out prevention mechanism adapted on the plate portion and prevents the back out of screws from the screw holes.
Description
FIELD OF THE INVENTION

The present disclosure generally relates to a fixation device for positioning and immobilizing at least two adjacent vertebra. In particular, the present invention relates to a stand alone interbody fusion device for implementation in the spine.


BACKGROUND OF THE INVENTION

The vertebral spine is the axis of the skeleton on which all of the body parts “hang”. In humans, the normal spine has seven cervical, twelve thoracic and five lumbar segments. The lumbar spine sits upon the sacrum, which then attaches to the pelvis, and in turn is supported by the hip and leg bones. The bony vertebral bodies of the spine are separated by intervertebral discs, which act as joints but allow known degrees of flexion, extension, lateral bending, and axial rotation and translation.


The typical vertebra has a thick anterior bone mass called the vertebral body, with a neural (vertebral) arch that arises from the posterior surface of the vertebral body. The central of adjacent vertebrae are supported by intervertebral discs. The spinal disc and/or vertebral bodies may be displaced or damaged due to trauma, disease, degenerative defects, or wear over an extended period of time. One result of this displacement or damage to a spinal disc or vertebral body may be chronic back pain. In many cases, to alleviate back pain from degenerated of herniated discs, the disc is removed along with all or part of at least one neighboring vertebrae and is replaced by an implant that promotes fusion of the remaining bony anatomy.


However, the success or failure of spinal fusion may depend upon several factors. For instance the spacer or implant or cage used to fill the space left by the removed disc and bony anatomy must be sufficiently strong to support the spine under a wide range of loading conditions. The spacer should also be configured so that it likely to remain in place once it has been positioned in the spine by the surgeon. Additionally the material used for the spacer should be biocompatible material and should have a configured that promotes bony ingrowth.


In combination with spacers or cages, a plating system is used to further stabilize the spine during the fusion process. These devices, commonly referred to as bone fixation plating systems, typically include one or more plates and screws for aligning and holding vertebrae in a fixed position with respect to one another. Plating systems independent of the spacers provide additional complications such as loosening and failure of the hardware. Two common failures are the breakage of the plates, and the backing out of screws into soft tissues of the patient's body. The backing out of the screws is typically a result of the screws failure to achieve a sufficient purchase in the bone, although the stripping of the screws has also been known to cause this problem. Another common problems is that plating systems require “carpentry” work to match fit aspects of the vertebral bodies.


There is a need for a spine stabilization system that in promotes fusion of adjacent vertebrae while at the same time provides stabilization of the spinal area where fusion occurs. There is a need for a system that incorporates both the fusion element and the plating element in one system to reduce the possible complications that may occur. There is also a need to provide a system that reduces the complications that may occur in the fusion element and the plating element and a need for this system to be configured so that positioning this system is efficient and easy.


SUMMARY OF THE INVENTION

The present invention provides an intervertebral implant for implantation in a treated area of an intervertebral space between vertebral bodies of a spine. The implant includes a spacer portion having an inferior and superior surface, wherein the inferior and superior surfaces each have a contact area capable of engaging with anatomy in the treated area, and the inferior and superior surfaces define a through-hole extending through the spacer body. The present invention further provides screw holes extending from a side portion to the inferior and superior surfaces of the spacer portion and a plate portion rigidly coupled to the spacer portion through a coupling means, wherein the plate portion contains screws holes for receiving screws. A screw back out prevention mechanism is adapted on the plate portion and prevents the back out of screws from the screw holes.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a perspective view of one embodiment of an intervertebral implant according to the present invention;



FIG. 2 is another perspective view of the embodiment of the implant shown in FIG. 1;



FIG. 3 is a side view of the intervertebral implant of FIG. 1;



FIG. 4 is a top view of the intervertebral implant of FIG. 1;



FIG. 5 is an exploded view of the intervertebral implant of FIG. 1;



FIGS. 6 and 7 is a perspective view of the intervertebral implant of FIG. 1 which include illustrations of bone fasteners;



FIG. 8 is another side view of the intervertebral implant of FIG. 1 incorporating bone fasteners;



FIG. 9 is a perspective view of another embodiment of the intervertebral implant;



FIG. 10 is a front view of the intervertebral implant with bone screws locked of FIG. 9;



FIG. 11 is a front view of the intervertebral implant illustrated in FIG. 9;



FIG. 12 is an exploded view of the intervertebral implant with bone fasteners unlocked of FIG. 9;



FIG. 13 is yet another embodiment of the intervertebral implant;



FIG. 14-16 are different views of the intervertebral implant of FIG. 13; and



FIG. 17 is an exploded view of the intervertebral implant of FIG. 14 according to the present invention.





DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS

Embodiments of the disclosure are generally directed to flexible stabilization systems for use with the anterior, antero-lateral, lateral, and/or posterior portions of at least one motion segment unit of the spine. The systems of the invention are designed to be conformable to the spinal anatomy, so as to be generally less intrusive to surrounding tissue and vasculature than existing rigid stabilization systems.


Certain embodiments may be used on the cervical, thoracic, lumbar, and/or sacral segments of the spine. For example, the size and mass increase of the vertebrae in the spine from the cervical to the lumbar portions is directly related to an increased capacity for supporting larger loads. This increase in load bearing capacity, however, is paralleled by a decrease in flexibility and an increase in susceptibility to strain. When rigid immobilization systems are used in the lumbar segment, the flexibility is decreased even further beyond the natural motion restriction of that segment. Replacing the conventional rigid immobilization systems with certain embodiments disclosed herein may generally restore a more natural movement and provide added support to the strain-susceptible area.



FIGS. 1-8 illustrate the different views of one particular embodiment of the present invention. The intervertebral fusion implant as shown in FIGS. 1-8 is a stand-alone anterior lumbar interbody fusion device used to provide structural stability in skeletally mature individuals following discectomies. These implants are available in various heights and geometric options to fit the anatomically needs of a wide variety of patients. Specifically, FIGS. 1-4 illustrate one embodiment of an intervertebral fusion implant 10 according to the present invention. Implant 10 is generally positioned in the intervertebral space between two adjacent vertebrae. As shown in the figures, implant 10 primarily incorporates a spacer portion 12 and a plate portion 14. In this particular embodiment, the spacer portion 12 includes a graft window 16 for the placement of bone graft to enhance fusion between two adjacent vertebrae. The plate portion 14 includes at least one screw hole 18, however, in the preferred embodiment of the present invention, three screw holes 18 are provided. Also, in the plate portion 14 of the implant 10, a screw back out prevention mechanism 20 is provided. There is also provided a coupling means 26 which connect the spacer portion 12 and the plate portion 14 rigidly to each other. The coupling means 26 will be discussed in greater detail with reference to FIGS. 5-8.


The spacer portion 12 can be comprised of any material that is conducive to the enhancement of fusion between the two adjacent vertebrae. In one particular embodiment, the spacer portion 12 is made of PEEK material which is physiologically compatible. It should be noted that any other material that are physiologically compatible may also be used. The spacer portion 12 contains tantalum pins that enable radiographic visualization. The spacer portion 12 further comprises superior and inferior portions that are provided with a plurality of pyramidal protrusions 13. The superior and inferior portions of the spacer portion are bi-convex for greater contact with the vertebral endplates of the adjacent vertebrae. The protrusions 13 can be configured to be any size or shape for further anchoring the spacer portion 12 to each of the adjacent vertebrae. Protrusions 13 on the superior and inferior surfaces of each implant grip the endplates of the adjacent vertebrae to aid in expulsion resistance.


The plate portion 14 can also be comprised of any physiologically compatible material. In the preferred embodiment, the plate portion of the implant 10 is composed of titanium. The plate portion 14 as illustrated in FIG. 1, are provided with three screw holes. However, it should be noted that implant 10 may be comprised of only one screw hole. The screw holes 18 are situated both in the spacer portion 12 and the plate portion 14 for receiving bone screws which are attached to the adjacent vertebral bodies at different angles.



FIG. 5 illustrates an exploded view of the intervertebral stand along fusion device 10. In this exploded view, clearer view of the combination of the plate portion 14 and the spacer portion 12 is illustrated. The spacer portion 12 and the plate portion 14 are coupled to each other view connection points 24 and through the use of connection pins 26 and 28.



FIGS. 6-8 illustrate the fusion device 10 in various views associated with the screws 30 provided in screw holes 18. The screw holes 18 are configured to receive screws 30 at various angles. The screws 30 enter the screw holes 18 at specified angles to enter the adjacent vertebral bodies at the optimal locations. The screws 30 are configured and adapted to provide optimal purchase with the adjacent vertebral bodies.


Now, turning to the method of positioning the implant, it should be noted that the intervertebral implant 10 is positioned in the spine after the disc portion between two vertebral bodies is exposed and removed using rongeurs and other suitable instruments. The posterior and lateral walls of the annulus are generally preserved to provide peripheral support for the implant and graft materials. A trial device attached to a trial holder is then inserted into the disc space to determine size of the implant. This procedure is generally conducted using fluoroscopy and tactile feel. After the appropriate sized implant is selected and attached to an implant holder and drill guide, the implant may be inserted into the disc space. Once the implant is positioned with the disc space, supplemental graft material can used to enhance fusion. Once the implant is positioned inside the disc, an awl or any similar type of instrument can be used to drill through the screw hole and break the cortex of the adjacent vertebral body. The surgeon performing this procedure may then use a depth gauge to determine the screw length. Once the appropriate screw length is determined, screws are inserted using a self-retaining screwdriver. After the screws are finally inserted and secured thereby providing solid purchase with the adjacent vertebral bodies, the screw anti-back out mechanism is engaged and secured. In this particular embodiment, the anti-back out mechanism is two set screws that retain the three screws with the implant. It should be noted that the implant may be implanted in the vertebral space using an anterior, posterior and/or lateral approach.



FIG. 9 illustrates a perspective view of the zero-profile intervertebral implant 32 for positioning in the cervical region of the spine. The present invention relates to an implant having a peek spacer portion 33 that is coupled to a titanium plate portion 34 through the use of titanium dowel pins 39. However, it should be noted that the titanium plate portion 34 and the peek spacer portion 33 maybe coupled through any other feasible means such as hooks, screws, and any other type of fastening means. The implant 32 also allows for at least two titanium screws 36 and 37 to be inserted at a compound angle for maximum screw purchase into the superior and inferior vertebral bodies. A locking mechanism 38 is provided on the plate portion 34 to capture the sides of both of the at least two screws 36 and 37 with a 90 degree turn preventing the titanium screws 36 and 37 from backing out. It should be noted that the present application is not limited to being of a PEEK spacer and a titanium plate. Other materials that are physiologically compatible which are similar and which may be unique to spacers and plates may be utilized in various combinations.



FIGS. 10 and 11 illustrate the front view of the plate portion of the implant. Specifically, FIGS. 10 and 11 illustrate a closed and an open position respectively with reference to the anti-back out mechanism 38. Also, it should be noted that the titanium plate 34 is provided with knife like edges 35 which are designed to engage the vertebral body and provides additional torsional stability to that of the bone screws. The plate 35 is also provided with “eye brow” like structure which fully captures the bone screws 36 and 37 while still allowing for the screws to reside about the tooth root plane and remaining lower than the tooth (protrusions on the spacer portion 33). The plate 35 geometry allows for the minimum reduction of peek volume. The plate 35 height remains level to the peek tooth root so that compressive loads are always subjected to the peek body where the graft is contained. Compound holes are drilled to accept bone screws 36 and 37 and to allow for fixed or variable angle screws. The anti-back out mechanism is engaged so that the screws 26 and 37 do not back out of the implant 32.



FIG. 12 illustrates an exploded view of the intervertebral implant. The plate portion 34 and spacer portion 33 have at least 2 male and female ledges which are capable of interfacing with each other. The connection of the male and female ledges are offset at different heights to minimize cross-sectional area loss. Also illustrated in FIG. 12 is the dowel pins used to connect the spacer portion to the plate portion as one means of coupling of the spacer portion 33 and the plate portion 34. It should be noted that various means such as hooks, staples and screws can be used to attach the spacer portion to the plate portion of the present invention.


The spacer portion 33 of the implant provides a leading edge chamfer which enables self distraction of the vertebral bodies while inserting. The spacer portion 33 also provides teeth like structures in the superior and inferior aspects of the spacer body to help prevent migration of the implant. The root of the teeth or protrusions on the base of the implant serves as the defining plane for the superior and inferior vertebral bodies. Finally, the spacer portion 33 provides an axial shaped hole which enables a maximum amount of graft for packing within the implant. However, it should be noted that the graft hole can be designed to be multiple holes or any in other geometrical shape to enhance fusion through the insertion of graft material.



FIGS. 13-16 illustrate an intervertebral implant for positioning in the intervertebral space using a lateral approach. The intervertebral implant 40 consists of a spacer portion 42 and a plate potion 44. The spacer portion and the plate portion are configured to be able to receive screws 46 and 48 for attachment to adjacent vertebral bodies. The spacer portion 42 and the plate portion 44 are rigidly coupled together through a coupling means 52. The plate portion 44 is provided with an anti-back out mechanism 50 so that the screws 46 and 48 are fixedly retained within the fusion device 40.



FIG. 17 illustrates another embodiment of an intervertebral implant 60 that is positioned into the disc space laterally. In this embodiment, which is similar to the embodiment disclosed in FIGS. 13-16, the spacer portion 62 is provided with a plurality of protrusions in the superior and inferior portions. These protrusions grip the endplates of the adjacent vertebrae to aid in expulsion resistance. The spacer portion 62 also contains a plate receiving area 63 for receiving the plate portion 64. The plate receiving area 63 is configured to receive a plate protrusion 66 for coupling the spacer portion 62 and the plate portion 64 together through the use of pins or any other similar type of coupling means. The spacer portion 62 and the plate portion 64 are rigidly coupled together through the use of the coupling means.


The plate portion 64 is configured with at least two screw holes for receiving screws 68. The screws 68 are positioned at angles to insert through the spacer and the adjacent vertebral body to gain maximum purchase and stability. The screws 68 are retained with the implant 60 through the use of an anti-screw back out mechanism 70. When this mechanism is engaged by turning at least 90 degrees through the use an instrument such as a screwdriver, the screws 68 are maintained within the implant and the honey structure of the adjacent vertebral bodies.


While it is apparent that the invention disclosed herein is well calculated to fulfill the objects stated above, it will be appreciated that numerous modifications and embodiments may be devised by those skilled in the art.

Claims
  • 1. An intervertebral implant for implantation in a treated area of an intervertebral space between vertebral bodies of a spine, wherein said implant comprises: a spacer portion having an inferior and a superior surface, an anterior surface, posterior surface, and first and second sides, wherein the inferior and superior surfaces each have a contact area capable of engaging with anatomy in the treated area, and the inferior and superior surfaces define a through-hole extending through the spacer portion;at least a first hole extending from the anterior surface to the superior surface of the spacer portion and at least a second hole extending from the anterior surface to the inferior surface of the spacer portion;a plate portion rigidly coupled to the spacer portion through a coupling mechanism, wherein the plate portion contains at least first and second holes extending from an anterior surface of the plate to a posterior surface of the plate, the at least first and second holes configured for receiving fasteners; andwherein a fastener back out prevention mechanism is adapted on the plate portion and prevents the back out of the fasteners from the first and second holes,wherein the spacer portion length from the anterior surface to the posterior surface is greater than a distance from a first side to a second side of the plate portion,wherein a width of the spacer portion from the first side to the second side is greater than the width of the plate portion,wherein the spacer portion and the plate portion are configured to be positioned laterallywherein the through-hole extending through the spacer portion from the inferior surface to the superior surface is configured with a length extending from the anterior surface of the spacer portion towards the posterior surface of the spacer portion, wherein the length of the through-hole is greater than the width of the plate portionwherein the plate portion is configured with no more than the first and second holes,wherein the plate portion further includes extensions with no openings andwherein the extensions are generally flush with the anterior surface of the plate.
  • 2. The intervertebral implant of claim 1, wherein the fasteners are inserted into adjacent vertebral bodies at divergent angles.
  • 3. The intervertebral implant of claim 1, wherein the coupling mechanism is at least one pin that rigidly couples the spacer portion with the plate portion.
  • 4. The intervertebral implant of claim 1, wherein the plate portion and the spacer portion are configured to structurally mate with one another.
  • 5. The intervertebral implant of claim 1, wherein the plate portion is configured to be substantially flush with the vertebral body.
  • 6. The intervertebral implant of claim 1, wherein the plate portion is comprised of metal.
  • 7. The intervertebral implant of claim 6, wherein the metal is comprised of titanium.
  • 8. The intervertebral implant of claim 1, wherein the spacer portion is comprised of plastic.
  • 9. The intervertebral implant of claim 1, wherein the spacer portion comprises a plurality of protrusions on superior and inferior portions.
  • 10. A method of implanting an intervertebral implant for implantation in a treated area of an intervertebral space between vertebral bodies of a spine, wherein said implant comprises: accessing the intervertebral space from a lateral approach;removing a disc portion with instruments adapted to be used in a lateral approach to the vertebral space;positioning the intervertebral implant within the intervertebral space, wherein the intervertebral implant comprises:a spacer portion comprising an inferior and superior surface, an anterior and posterior surface, and first and second sides,wherein the inferior and superior surfaces each have a contact area capable of engaging with anatomy in the treated area, and the inferior and superior surfaces define a through-hole extending through the spacer body;a first and second through hole extending from an anterior surface of the spacer portion to the inferior and superior surfaces of the spacer portion;a plate portion rigidly coupled to the spacer portion, wherein the plate portion contains a first and second through hole for receiving a first and second fastener; anda fastener back out prevention mechanism adapted on the plate portion and prevents the back out of the first and second fastener from the first and second through hole,wherein the spacer portion has a length from the anterior surface to the posterior surface that is greater than a distance from a first side of the plate portion to a second side of the plate portion and the plate portion is provided with torsional stabilizers, the torsional stabilizers configured with no openings,wherein width of the spacer portion from the first side to a second side is greater than the distance from the first side of the plate portion to the second side of the plate portionplacing a first and second fastener into the first and second through hole and engaging the adjacent vertebral bodies with the first and second fasteners; andengaging and locking the fastener back out prevention mechanism to prevent the first and second fasteners from backing out of the intervertebral implantwherein the spacer portion and the plate portion are configured to be positioned laterallywherein the through-hole extending through the spacer portion from the inferior surface to the superior surface is configured with a length extending from the anterior surface of the spacer portion towards the posterior surface of the spacer portion, wherein the length of the through-hole is greater than the distance from the first side of the plate portion to the second side of the plate portion,wherein the plate portion is configured with no more than the first and second through hole for receiving a first and second fastenerwherein the torsional stabilizers are generally flush with the anterior surface of the plate.
  • 11. An intervertebral implant comprising: a spacer having an upper surface, a lower surface, a first sides surface, a second side surface, an anterior surface, and a posterior surface, wherein the upper and lower surfaces each have a contact area capable of engaging with adjacent vertebral bodies, and wherein the spacer includes a through-hole extending from the upper surface to the lower surface of the spacer,a plate having an anterior surface, a posterior surface, a first side, a second side, a upper surface and a lower surface, the plate configured to be coupled to the spacer by a coupling mechanism, the plate includes a first through hole and a second through hole that extends from an anterior surface of the plate to the posterior surface of the plate,wherein spacer includes a first through hole extending from the anterior surface to the upper surface of the spacer and a second through hole extending from the anterior surface to the lower surface of the spacer,wherein the plate includes extensions on the upper and lower surfaces that have no openings,wherein the first and second through holes of the plate and the spacer are configured to receive fasteners,wherein a fastener back out prevention mechanism is adapted on the plate for preventing the back out of the fasteners from the first and second through holes of the plate.wherein the spacer length defined from the anterior surface to the posterior surface is greater than a distance from the first side of the plate to the second side of the plate,wherein a width of the spacer from the first side to the second side is greater than the distance from the first side of the plate to the second side of the plate,wherein the spacer and the plate are configured to be positioned laterallywherein the through-hole extending through the spacer from the upper surface to the lower surface is configured with a length extending from the anterior surface of the spacer towards the posterior surface of the spacer, wherein the length of the through-hole is greater than a distance from the first side of the plate to the second side of the platewherein the extensions are generally flush with the anterior surface of the plate.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of patent application Ser. No. 12/202,690 filed on Sep. 2, 2008 now U.S. Pat. No. 8,328,872, which is incorporated by its entirety herein.

US Referenced Citations (355)
Number Name Date Kind
1673630 Madge Jun 1928 A
4349921 Kuntz Sep 1982 A
4599086 Doty Jul 1986 A
4743256 Brantigan May 1988 A
4834757 Brantigan May 1989 A
4904261 Dove et al. Feb 1990 A
4917704 Frey Apr 1990 A
4955908 Frey Sep 1990 A
5002576 Fuhrmann et al. Mar 1991 A
5163949 Bonutti Nov 1992 A
5163960 Bonutti Nov 1992 A
5197971 Bonutti Mar 1993 A
5269785 Bonutti Dec 1993 A
5295994 Bonutti Mar 1994 A
5329846 Bonutti Jul 1994 A
5331975 Bonutti Jul 1994 A
5345927 Bonutti Sep 1994 A
5364399 Lowery et al. Nov 1994 A
5397364 Kozak et al. Mar 1995 A
5403317 Bonutti Apr 1995 A
5403348 Bonutti Apr 1995 A
5441538 Bonutti Aug 1995 A
5454365 Bonutti Oct 1995 A
5458641 Jiminez Oct 1995 A
5464426 Bonutti Nov 1995 A
5496348 Bonutti Mar 1996 A
5514153 Bonutti May 1996 A
5514180 Heggeness May 1996 A
5522846 Bonutti Jun 1996 A
5527343 Bonutti Jun 1996 A
5534012 Bonutti Jul 1996 A
5545222 Bonutti Aug 1996 A
5549612 Yapp et al. Aug 1996 A
5549630 Bonutti Aug 1996 A
5549631 Bonutti Aug 1996 A
5569305 Bonutti Oct 1996 A
5577517 Bonutti Nov 1996 A
5584862 Bonutti Dec 1996 A
5593425 Bonutti Jan 1997 A
5624462 Bonutti Apr 1997 A
5645596 Kim et al. Jul 1997 A
5662710 Bonutti Sep 1997 A
5667520 Bonutti Sep 1997 A
5685826 Bonutti Nov 1997 A
5694951 Bonutti Dec 1997 A
5707390 Bonutti Jan 1998 A
5716325 Bonutti Feb 1998 A
5733306 Bonutti Mar 1998 A
5735875 Bonutti Apr 1998 A
5827318 Bonutti Oct 1998 A
5845645 Bonutti Dec 1998 A
5860997 Bonutti Jan 1999 A
5861041 Tienboon Jan 1999 A
5888196 Bonutti Mar 1999 A
5888219 Bonutti Mar 1999 A
5888223 Bray, Jr. Mar 1999 A
5928267 Bonutti Jul 1999 A
5935131 Bonutti Aug 1999 A
5941900 Bonutti Aug 1999 A
5954739 Bonutti Sep 1999 A
6010525 Bonutti Jan 2000 A
6017305 Bonutti Jan 2000 A
6042596 Bonutti Mar 2000 A
6045579 Hochshuler Apr 2000 A
6059817 Bonutti May 2000 A
6066175 Henderson et al. May 2000 A
6077292 Bonutti Jun 2000 A
6086593 Bonutti Jul 2000 A
6099531 Bonutti Aug 2000 A
6102928 Bonutti Aug 2000 A
6132472 Bonutti Oct 2000 A
RE36974 Bonutti Nov 2000 E
6146421 Gordon Nov 2000 A
6156037 LeHuec et al. Dec 2000 A
6159234 Bonutti Dec 2000 A
6171236 Bonutti Jan 2001 B1
6171299 Bonutti Jan 2001 B1
6174313 Bonutti Jan 2001 B1
6187023 Bonutti Feb 2001 B1
6200347 Anderson et al. Mar 2001 B1
6203565 Bonutti Mar 2001 B1
6206922 Zdeblick et al. Mar 2001 B1
6217617 Bonutti Apr 2001 B1
6231592 Bonutti May 2001 B1
6231610 Geisler May 2001 B1
6235059 Benezech May 2001 B1
6258089 Campbell et al. Jul 2001 B1
6277136 Bonutti Aug 2001 B1
6287325 Bonutti Sep 2001 B1
6342074 Simpson Jan 2002 B1
6358266 Bonutti Mar 2002 B1
6361565 Bonutti Mar 2002 B1
6364880 Michelson Apr 2002 B1
6368343 Bonutti Apr 2002 B1
6383186 Michelson May 2002 B1
6425920 Hamada Jul 2002 B1
6432106 Fraser Aug 2002 B1
6447516 Bonutti Sep 2002 B1
6451042 Bonutti Sep 2002 B1
6464713 Bonutti Oct 2002 B2
6468289 Bonutti Oct 2002 B1
6468293 Bonutti Oct 2002 B2
6471724 Zdeblick Oct 2002 B2
6475230 Bonutti Nov 2002 B1
6482233 Aebi Nov 2002 B1
6500195 Bonutti Dec 2002 B2
6503267 Bonutti Jan 2003 B2
6503277 Bonutti Jan 2003 B2
6520993 James Feb 2003 B2
6540785 Gill et al. Apr 2003 B1
6543455 Bonutti Apr 2003 B2
6558387 Errico May 2003 B2
6558423 Michelson May 2003 B1
6558424 Thalgott May 2003 B2
6562073 Foley May 2003 B2
6569187 Bonutti May 2003 B1
6575982 Bonutti Jun 2003 B1
6585750 Bonutti Jul 2003 B2
6592531 Bonutti Jul 2003 B2
6592609 Bonutti Jul 2003 B1
6607534 Bonutti Aug 2003 B2
6620181 Bonutti Sep 2003 B1
6629998 Lin Oct 2003 B1
6630000 Bonutti Oct 2003 B1
6635073 Bonutti Oct 2003 B2
6638309 Bonutti Oct 2003 B2
6652532 Bonutti Nov 2003 B2
6666889 Commarmond Dec 2003 B1
6682563 Scharf Jan 2004 B2
6702821 Bonutti Mar 2004 B2
6702856 Bonutti Mar 2004 B2
6709458 Michelson Mar 2004 B2
6719803 Bonutti Apr 2004 B2
6730127 Michelson May 2004 B2
6736853 Bonutti May 2004 B2
6740118 Eisermann et al. May 2004 B2
6770078 Bonutti Aug 2004 B2
6776938 Bonutti Aug 2004 B2
6793658 Lehuec Sep 2004 B2
6805714 Sutcliffe Oct 2004 B2
6827740 Michelson Dec 2004 B1
6835198 Bonutti Dec 2004 B2
6835206 Jackson Dec 2004 B2
6849093 Michelson Feb 2005 B2
6860885 Bonutti Mar 2005 B2
6860904 Bonutti Mar 2005 B2
6887272 Shinomiya May 2005 B2
6899735 Coates et al. May 2005 B2
6905517 Bonutti Jun 2005 B2
6908466 Bonutti Jun 2005 B1
6932835 Bonutti Aug 2005 B2
6972019 Michelson Dec 2005 B2
6989029 Bonutti Jan 2006 B2
6990982 Bonutti Jan 2006 B1
7001432 Keller et al. Feb 2006 B2
7025787 Bryan et al. Apr 2006 B2
7044972 Mathys, Jr. May 2006 B2
7048755 Bonutti May 2006 B2
7070557 Bonutti Jul 2006 B2
7087073 Bonutti Aug 2006 B2
7094251 Bonutti Aug 2006 B2
7104996 Bonutti Sep 2006 B2
7114500 Bonutti Oct 2006 B2
7128753 Bonutti Oct 2006 B1
7134437 Bonutti Nov 2006 B2
7137997 Paul Nov 2006 B2
7147652 Bonutti Dec 2006 B2
7147665 Bryan et al. Dec 2006 B1
7153325 Kim et al. Dec 2006 B2
7163561 Michelson Jan 2007 B2
7172627 Fiere et al. Feb 2007 B2
7192447 Rhoda Mar 2007 B2
7208013 Bonutti Apr 2007 B1
7217273 Bonutti May 2007 B2
7217290 Bonutti May 2007 B2
7232464 Mathieu et al. Jun 2007 B2
7238203 Bagga et al. Jul 2007 B2
7276082 Zdeblick et al. Oct 2007 B2
7309357 Kim Dec 2007 B2
7311719 Bonutti Dec 2007 B2
7320708 Bernstein Jan 2008 B1
7329263 Bonutti Feb 2008 B2
7429266 Bonutti Sep 2008 B2
7462200 Bonutti Dec 2008 B2
7481831 Bonutti Jan 2009 B2
7510557 Bonutti Mar 2009 B1
7594931 Louis et al. Sep 2009 B2
7615054 Bonutti Nov 2009 B1
7618456 Mathieu et al. Nov 2009 B2
7635390 Bonutti Dec 2009 B1
7708740 Bonutti May 2010 B1
7708741 Bonutti May 2010 B1
7727283 Bonutti Jun 2010 B2
7749229 Bonutti Jul 2010 B1
7771475 Michelson Aug 2010 B2
7780670 Bonutti Aug 2010 B2
7794502 Michelson Sep 2010 B2
7806896 Bonutti Oct 2010 B1
7806897 Bonutti Oct 2010 B1
7828852 Bonutti Nov 2010 B2
7837736 Bonutti Nov 2010 B2
7846207 Lechmann et al. Dec 2010 B2
7850731 Brittain Dec 2010 B2
7854750 Bonutti Dec 2010 B2
7862616 Lechmann et al. Jan 2011 B2
7875076 Mathieu et al. Jan 2011 B2
7879072 Bonutti Feb 2011 B2
7892236 Bonutti Feb 2011 B1
7892261 Bonutti Feb 2011 B2
7896880 Bonutti Mar 2011 B2
7931690 Bonutti Apr 2011 B1
7959635 Bonutti Jun 2011 B1
7972381 Michelson Jul 2011 B2
8100976 Bray et al. Jan 2012 B2
8105383 Michelson Jan 2012 B2
8114162 Bradley Feb 2012 B1
8128669 Bonutti Mar 2012 B2
8133229 Bonutti Mar 2012 B1
8137405 Kostuik et al. Mar 2012 B2
8162977 Bonutti Apr 2012 B2
8216312 Gray Jul 2012 B2
8268000 Waugh et al. Sep 2012 B2
8323343 Michelson Dec 2012 B2
8328872 Duffield et al. Dec 2012 B2
8343222 Cope Jan 2013 B2
8425522 Bonutti Apr 2013 B2
8425607 Waugh et al. Apr 2013 B2
8439977 Kostuik et al. May 2013 B2
8486066 Bonutti Jul 2013 B2
8623030 Bonutti Jan 2014 B2
8632552 Bonutti Jan 2014 B2
8641726 Bonutti Feb 2014 B2
8690944 Bonutti Apr 2014 B2
8739797 Bonutti Jun 2014 B2
8747439 Bonutti Jun 2014 B2
8784495 Bonutti Jul 2014 B2
8795363 Bonutti Aug 2014 B2
8814902 Bonutti Aug 2014 B2
8834490 Bonutti Sep 2014 B2
8840629 Bonutti Sep 2014 B2
8845699 Bonutti Sep 2014 B2
8858557 Bonutti Oct 2014 B2
8956417 Bonutti Feb 2015 B2
9044322 Bonutti Jun 2015 B2
9044341 Bonutti Jun 2015 B2
9050152 Bonutti Jun 2015 B2
20010005796 Zdeblick Jun 2001 A1
20010023371 Bonutti Sep 2001 A1
20010034553 Michelson Oct 2001 A1
20020004683 Michelson Jan 2002 A1
20020010511 Michelson Jan 2002 A1
20020016595 Michelson Feb 2002 A1
20020029055 Bonutti Mar 2002 A1
20020040246 Bonutti Apr 2002 A1
20020082597 Fraser Jun 2002 A1
20020095160 Bonutti Jul 2002 A1
20020138146 Jackson Sep 2002 A1
20020143399 Sutcliffe Oct 2002 A1
20020147450 Lehuec Oct 2002 A1
20030009147 Bonutti Jan 2003 A1
20030023260 Bonutti Jan 2003 A1
20030045939 Casutt Mar 2003 A1
20030105528 Shimp et al. Jun 2003 A1
20030125739 Bagga et al. Jul 2003 A1
20030167091 Scharf Sep 2003 A1
20030181981 Lemaire Sep 2003 A1
20040010287 Bonutti Jan 2004 A1
20040078078 Shepard Apr 2004 A1
20040082998 Shinomiya Apr 2004 A1
20040082999 Mathys, Jr. Apr 2004 A1
20040097794 Bonutti May 2004 A1
20040098016 Bonutti May 2004 A1
20040117018 Michelson Jun 2004 A1
20040138689 Bonutti Jul 2004 A1
20040138690 Bonutti Jul 2004 A1
20040143270 Zucherman et al. Jul 2004 A1
20040143285 Bonutti Jul 2004 A1
20040143332 Krueger et al. Jul 2004 A1
20040172033 Bonutti Sep 2004 A1
20040176853 Sennett et al. Sep 2004 A1
20040193181 Bonutti Sep 2004 A1
20040230223 Bonutti Nov 2004 A1
20050055098 Zdeblick et al. Mar 2005 A1
20050065607 Gross Mar 2005 A1
20050101960 Fiere et al. May 2005 A1
20050149192 Zuchermann et al. Jul 2005 A1
20050149193 Zuchermann et al. Jul 2005 A1
20050159819 McCormack et al. Jul 2005 A1
20050171607 Michelson Aug 2005 A1
20050177236 Mathieu et al. Aug 2005 A1
20050187625 Wolek et al. Aug 2005 A1
20050216059 Bonutti Sep 2005 A1
20050240267 Randall et al. Oct 2005 A1
20050240271 Zubok et al. Oct 2005 A1
20050256574 Paul et al. Nov 2005 A1
20050267534 Bonutti Dec 2005 A1
20060085071 Lechmann et al. Apr 2006 A1
20060129240 Lessar et al. Jun 2006 A1
20060167495 Bonutti Jul 2006 A1
20060217809 Albert et al. Sep 2006 A1
20060235470 Bonutti Oct 2006 A1
20060265009 Bonutti Nov 2006 A1
20070088441 Duggal et al. Apr 2007 A1
20070106388 Michelson May 2007 A1
20070123987 Bernstein May 2007 A1
20070135923 Peterman et al. Jun 2007 A1
20070162130 Rashbaum et al. Jul 2007 A1
20070168032 Muhanna et al. Jul 2007 A1
20070208378 Bonutti Sep 2007 A1
20070225806 Squires et al. Sep 2007 A1
20070225810 Colleran et al. Sep 2007 A1
20070225812 Gill Sep 2007 A1
20070233253 Bray et al. Oct 2007 A1
20070250167 Bray et al. Oct 2007 A1
20070270961 Ferguson Nov 2007 A1
20080039873 Bonutti Feb 2008 A1
20080047567 Bonutti Feb 2008 A1
20080051890 Waugh et al. Feb 2008 A1
20080051907 Marik Feb 2008 A1
20080058822 Bonutti Mar 2008 A1
20080065140 Bonutti Mar 2008 A1
20080103519 Bonutti May 2008 A1
20080108916 Bonutti May 2008 A1
20080114399 Bonutti May 2008 A1
20080133013 Duggal et al. Jun 2008 A1
20080140116 Bonutti Jun 2008 A1
20080140117 Bonutti Jun 2008 A1
20090076608 Gordon et al. Mar 2009 A1
20090210062 Thalgott et al. Aug 2009 A1
20100057206 Duffield et al. Mar 2010 A1
20100145460 Mcdonough Jun 2010 A1
20100305704 Messerli Dec 2010 A1
20110087327 Lechmann Apr 2011 A1
20110166658 Garber et al. Jul 2011 A1
20110251689 Seifert et al. Oct 2011 A1
20120010623 Bonutti Jan 2012 A1
20120215226 Bonutti Aug 2012 A1
20120215233 Bonutti Aug 2012 A1
20120221017 Bonutti Aug 2012 A1
20120245690 Cowan, Jr. et al. Sep 2012 A1
20130110247 Doran et al. May 2013 A1
20130226185 Bonutti Aug 2013 A1
20130237989 Bonutti Sep 2013 A1
20130289729 Bonutti Oct 2013 A1
20140012380 Laurence et al. Jan 2014 A1
20140018854 Bonutti Jan 2014 A1
20140025110 Bonutti Jan 2014 A1
20140025111 Bonutti Jan 2014 A1
20140025112 Bonutti Jan 2014 A1
20140039623 Iott et al. Feb 2014 A1
20140148905 Messerli May 2014 A1
20140228963 Bonutti Aug 2014 A1
20140257380 Bonutti Sep 2014 A1
20104030956 Bonutti Oct 2014
20140343573 Bonutti Nov 2014 A1
Foreign Referenced Citations (7)
Number Date Country
2727003 May 1996 FR
9723175 Jul 1997 WO
9963914 Dec 1999 WO
2005007040 Jan 2005 WO
2007098288 Aug 2007 WO
WO 2007098288 Aug 2007 WO
2008014258 Jan 2008 WO
Non-Patent Literature Citations (4)
Entry
Guidance Document: Intervertebral Body Fusion Device, U.S. Dept of Health and Human Services, Food and Drug Administration (Jun. 12, 2007).
M. Spruit et al., The in vitro stabilizing effect of polyether-etherketone cages versus a titanium cage of similar design for anterior lumbar interbody fusion, 14(8) Eur. Spine J. 752, 752-758 (2005).
P. Schleicher et al., Biomechanical comparison of two different concepts for stand alone anterior lumbar interbody fusion, 17(12) Eur. Spine J. 1757, 1757-1765 (2008).
P.W. Pavlov et al., Anterior lumbar interbody fusion with threaded fusion cages and autologous bone grafts, 9 Eur. Spine J. 224, 224-229 (2000).
Related Publications (1)
Number Date Country
20120130496 A1 May 2012 US
Continuations (1)
Number Date Country
Parent 12202690 Sep 2008 US
Child 13363539 US