Intervertebral implant inserter and related methods

Abstract
An insertion instrument is configured to attach and secure to an expandable implant. The insertion instrument includes a securement member that is configured to be secured to the implant both when the implant is in a collapsed configuration and when the implant is in an expanded configuration. The insertion instrument further includes a drive member that is configured to actuate the implant to the expanded configuration.
Description
TECHNICAL FIELD

The present invention relates to an expandable intervertebral implant, insertion instrument, system, kit, and method.


BACKGROUND

The human spine is comprised of a series of vertebral bodies separated by intervertebral discs. The natural intervertebral disc contains a jelly-like nucleus pulposus surrounded by a fibrous annulus fibrosus. Under an axial load, the nucleus pulposus compresses and radially transfers that load to the annulus fibrosus. The laminated nature of the annulus fibrosus provides it with a high tensile strength and so allows it to expand radially in response to this transferred load.


In a healthy intervertebral disc, cells within the nucleus pulposus produce an extracellular matrix (ECM) containing a high percentage of proteoglycans. These proteoglycans contain sulfated functional groups that retain water, thereby providing the nucleus pulposus within its cushioning qualities. These nucleus pulposus cells may also secrete small amounts of cytokines such as interleukin-1.beta. and TNF-.alpha. as well as matrix metalloproteinases (“MMPs”). These cytokines and MMPs help regulate the metabolism of the nucleus pulposus cells.


In some instances of disc degeneration disease (DDD), gradual degeneration of the intervetebral disc is caused by mechanical instabilities in other portions of the spine. In these instances, increased loads and pressures on the nucleus pulposus cause the cells within the disc (or invading macrophases) to emit larger than normal amounts of the above-mentioned cytokines. In other instances of DDD, genetic factors or apoptosis can also cause the cells within the nucleus pulposus to emit toxic amounts of these cytokines and MMPs. In some instances, the pumping action of the disc may malfunction (due to, for example, a decrease in the proteoglycan concentration within the nucleus pulposus), thereby retarding the flow of nutrients into the disc as well as the flow of waste products out of the disc. This reduced capacity to eliminate waste may result in the accumulation of high levels of toxins that may cause nerve irritation and pain.


As DDD progresses, toxic levels of the cytokines and MMPs present in the nucleus pulposus begin to degrade the extracellular matrix, in particular, the MMPs (as mediated by the cytokines) begin cleaving the water-retaining portions of the proteoglycans, thereby reducing its water-retaining capabilities. This degradation leads to a less flexible nucleus pulposus, and so changes the loading pattern within the disc, thereby possibly causing delamination of the annulus fibrosus. These changes cause more mechanical instability, thereby causing the cells to emit even more cytokines, thereby upregulating MMPs. As this destructive cascade continues and DDD further progresses, the disc begins to bulge (“a herniated disc”), and then ultimately ruptures, which may cause the nucleus pulposus to contact the spinal cord and produce pain.


One proposed method of managing these problems is to remove the problematic disc and replace it with a device that restores disc height and allows for bone growth between the adjacent vertebrae. These devices are commonly called fusion devices, or “interbody fusion devices”. Current spinal fusion procedures include transforaminal lumbar interbody fusion (TLIF), posterior lumbar interbody fusion (PLIF), and extreme lateral interbody fusion (XLIF) procedures.


SUMMARY

According to one embodiment of the present disclosure, an insertion instrument is configured to implant an expandable intervertebral implant in an intervertebral space. The insertion instrument can include a drive shaft elongate along a longitudinal direction, and a drive member disposed at a distal end of the drive shaft. The drive member can be configured to 1) couple to a complementary driven member of the implant, and 2) iterate the intervertebral implant from a collapsed configuration to an expanded configuration. The insertion instrument can further include a securement member that is spaced from the drive member along a lateral direction that is perpendicular to the longitudinal direction, the securement member having at least one guide rail that has a height along a transverse direction sufficient to 1) reside in a corresponding at least one guide channel of the implant when the implant is in the collapsed configuration, 2) ride along the implant in the at least one guide channel as the implant expands to the expanded configuration, and 3) remain in the corresponding at least one guide channel when the implant is in the expanded configuration. The transverse direction is perpendicular to each of the longitudinal direction and the lateral direction.


According to another embodiment, an insertion instrument is configured to implant an expandable intervertebral implant in an intervertebral space. The insertion instrument can include a securement member configured to couple to both an inferior endplate and a superior endplate of the implant, and an engagement member configured to couple to the securement member. Further, the insertion instrument can include a driver having a drive shaft and a drive member disposed at a distal end of the drive shaft. The drive shaft can be elongate along a longitudinal direction and configured to be received by the engagement member. The drive member can be configured to 1) couple to a complementary driven member of the implant, and 2) iterate the intervertebral implant from a collapsed configuration to an expanded configuration. The drive shaft can be configured such that, when an impaction force is applied by an impaction instrument to a proximal end of the drive shaft, opposite the distal end, the impaction force causes the drive shaft to move from an extended configuration, wherein a proximal end of the drive shaft extends out of the engagement member in a proximal direction, to a retracted configuration, wherein the proximal end of the drive shaft is retracted into the engagement member, so that the impaction force is applied to the engagement member.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing summary, as well as the following detailed description of illustrative embodiments of the intervertebral implant of the present application, will be better understood when read in conjunction with the appended drawings. For the purposes of illustrating aspects of the present disclosure, there is shown in the drawings illustrative embodiments. It should be understood, however, that the disclosure is not limited to the precise arrangements and instrumentalities shown. In the drawings:



FIG. 1 is a perspective view of an expandable implant shown implanted in an intervertebral disc space, showing the implant in a collapsed position;



FIG. 2A is a perspective view of the expandable implant of FIG. 1;



FIG. 2B is a perspective view of the expandable implant of FIG. 2A, but shown in an expanded configuration;



FIG. 3 is an exploded perspective view of the expandable implant of FIG. 2A:



FIG. 4A is a side elevation view of an intervertebral implant system including the expandable implant of FIG. 1 and an insertion instrument configured to secure to and actuate the expandable implant;



FIG. 4B is a perspective view of the insertion instrument of FIG. 4A;



FIG. 4C is an exploded side elevation view of the insertion instrument of FIG. 4B;



FIG. 4D is an enlarged top plan view of a securement member of the insertion instrument of FIG. 4B;



FIG. 4E is an enlarged partial cut-away perspective view of a portion of the insertion instrument illustrated in FIG. 4C;



FIG. 5A is a sectional plan view of the insertion instrument aligned for securement with the expandable implant;



FIG. 5B is an enlarged sectional plan view of a portion of the insertion instrument and the expandable implant of FIG. 5A, taken at Region 5B;



FIG. 6A is a sectional plan view similar to FIG. 5A, but showing the insertion instrument attached to the expandable implant;



FIG. 6B is an enlarged sectional plan view of a portion of the insertion instrument and the expandable implant of FIG. 6A, taken at Region 6B;



FIG. 7A is a sectional plan view similar to FIG. 6A, but showing the insertion instrument secured to the expandable implant;



FIG. 7B is an enlarged sectional plan view of a portion of the insertion instrument and the expandable implant of FIG. 7A, taken at Region 7B;



FIG. 8A is a sectional plan view similar to FIG. 7A, but showing a drive member of the insertion instrument rotationally coupled to a driven member of the expandable implant;



FIG. 8B is an enlarged perspective view showing the insertion instrument secured to the expandable implant with the drive member of the insertion instrument coupled to the driven member of the expandable implant as illustrated in FIG. 7A, showing the implant in a collapsed configuration;



FIG. 9A is a sectional plan view similar to FIG. 8A, but after the insertion instrument has driven the implant to expand from the collapsed configuration to the expanded configuration;



FIG. 9B is an enlarged sectional plan view of a portion of the insertion instrument and the expandable implant of FIG. 9A, taken at Region 9B;



FIG. 9C is a perspective view of a portion of the instrument and expandable implant of FIG. 9A;



FIG. 10A is a sectional plan view similar to FIG. 9A, but showing the drive member of the insertion instrument decoupled from the driven member of the expandable implant;



FIG. 10B is an enlarged sectional plan view of a portion of the insertion instrument and the expandable implant of FIG. 10A, taken at Region 10B;



FIG. 11 is a sectional plan view similar to FIG. 10A, but after removal of the securement of the insertion instrument to the expandable implant, such that the insertion instrument is configured to be removed from the expandable implant;



FIG. 12 is a perspective view of the insertion instrument of FIG. 4A without the knob of the drive shaft;



FIG. 13 is an exploded side elevation view of an insertion instrument according to another embodiment;



FIG. 14 is an exploded perspective view of a portion of a drive shaft of the insertion instrument of FIG. 13;



FIG. 15 is a sectional plan view of a distal portion the insertion instrument of FIG. 13;



FIG. 16 is a sectional plan view of a proximal portion of the insertion instrument of FIG. 13 with the driver extended according to one embodiment;



FIG. 17 is a sectional plan view of a proximal portion of the insertion instrument of FIG. 13 with the driver retracted according to the embodiment of FIG. 16;



FIG. 18 is a sectional plan view of a proximal portion of the insertion instrument of FIG. 13 with the driver extended according to another embodiment; and



FIG. 19 is a sectional plan view of a proximal portion of the insertion instrument of FIG. 13 with the driver retracted according to the embodiment of FIG. 18.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

Referring initially to FIGS. 1-3, an expandable intervertebral implant 20 is configured for implantation in an intervertebral space 22 that is defined between a first or superior vertebral body 24 and a second or inferior vertebral body 26. The vertebral bodies 24 and 26 can be anatomically adjacent each other, or can be remaining vertebral bodies after a corpectomy procedure has removed a vertebral body from a location between the vertebral bodies 24 and 26. The intervertebral space 22 in FIG. 1 is illustrated after a discectomy, whereby the disc material has been removed or at least partially removed from the intervertebral space 22 to prepare the intervertebral space 22 to receive the intervertebral implant 20.


The intervertebral implant 20 defines a distal or leading end 28 and a proximal or trailing end 30 opposite the leading end 28 along a longitudinal direction L. As used herein, the term “distal” and derivatives thereof refer to a direction from the trailing end 30 toward the leading end 28. As used herein, the term “proximal” and derivatives thereof refer to a direction from the leading end 28 toward the trailing end 30. The distal and proximal directions can be oriented along the longitudinal direction L. The leading end 28 can also be referred to as an insertion end with respect to the direction of insertion of the implant 20 into the intervertebral space 22. Thus, the longitudinal direction L can define an insertion direction into the intervertebral space 22. The leading end 28 is spaced from the trailing end 30 in the insertion direction. In this regard, the insertion direction can be defined by the distal direction. In one example, the leading end 28 can be tapered and configured for insertion into the intervertebral space 22 between the first and second vertebral bodies 24 and 26. As will be described in more detail below, the trailing end 30 is configured to couple to an insertion instrument 96 shown in FIG. 4, which is configured to rigidly support and deliver the implant 20 into the intervertebral space 22, and iterate the implant 20 from a collapsed configuration shown in FIG. 2A to an expanded configuration shown in FIG. 2B. The implant 20 has a first height when in the collapsed configuration, and defines a second height when in the expanded configuration that is greater than the first height.


The intervertebral implant 20 includes a first or superior endplate 32 that defines a first or superior vertebral engagement surface 34 that is configured to abut the superior vertebral body 24, and a second or inferior endplate 36 that defines a second or inferior vertebral engagement surface 38 that is configured to abut the inferior vertebral body 26. In particular, the first and second endplates 32 and 36 of the implant 20 are configured to abut respective first and second vertebral endplates 25 and 27, respectively, of the superior and inferior vertebral bodies 24 and 26. The first and second vertebral endplates 25 and 27 can also be referred to as superior and inferior vertebral endplates 25 and 27, respectively. As used herein, the term “superior” and “up” and derivatives thereof refer to a direction from the second vertebral engagement surface 38 toward the first vertebral engagement surface 34. As used herein, the term “inferior” and “down” and derivatives thereof refer to a direction from the first vertebral engagement surface 34 toward the second vertebral engagement surface 38. The superior and inferior directions can be oriented along a transverse direction T. The first and second endplates 32 and 36, and thus the first and second vertebral engagement surfaces 34 and 38 are spaced from each other along the transverse direction T. The transverse direction T is oriented substantially perpendicular to the longitudinal direction L. In one example, the first and second endplates 32 and 36 can be configured to grip the first and second vertebral bodies, respectively. In one example, the first and second endplates 32 and 36 can have teeth 40 that project out from the vertebral engagement surfaces 34 and 38. The teeth 40 are configured to grip the superior and inferior vertebral bodies 24 and 26, respectively. In particular, the teeth 40 are configured to grip the superior and inferior vertebral endplates 25 and 27, respectively.


The intervertebral implant 20 is expandable from a collapsed position shown in FIG. 2A to an expanded position shown in FIG. 2B. Thus, the intervertebral implant 20 is configured to be inserted into the intervertebral disc space 22 in the collapsed configuration. The implant 20 is configured to be expanded from the collapsed configuration to the expanded configuration after the implant 20 has been implanted into the intervertebral space 22. Thus, a method can include the step of inserting the implant 20 into the intervertebral space 22 in a collapsed position, and subsequently iterating the implant 20 to the expanded position such that the first and second vertebral engagement surfaces 34 and 38 bear against the first and second vertebral endplates 25 and 27, respectively.


When the intervertebral implant 20 is in the collapsed configuration, the first and second vertebral engagement surfaces 34 and 38 are spaced apart a first distance along the transverse direction T. The first and second endplates 32 and 36 move apart from each other along the transverse direction T as the implant 20 moves from the collapsed configuration to the expanded configuration. In one example, respective entireties of the first and second endplates 32 and 36 are configured to move away from each other as the implant 20 expends from the collapsed position to the expanded position. When the intervertebral implant 20 is in the expanded configuration, the first and second vertebral engagement surfaces 34 and 38 are spaced apart a second distance along the transverse direction T that is greater than the first distance. Thus, the implant 20 is configured to impart appropriate height restoration to the intervertebral space 22. It should be appreciated that the implant 20 is configured to remain in the expanded configuration in the presence of compressive anatomical forces after implantation, and that the implant 20 is prevented from moving toward the collapsed position in response to the compressive anatomical forces. The intervertebral space 22 that receives the implant 20 can be disposed anywhere along the spine as desired, including at the lumbar, thoracic, and cervical regions of the spine.


Referring now also to FIG. 3, the intervertebral implant 20 further includes at least one expansion member 42 that is configured to move between first and second positions that iterate the implant 20 between the collapsed configuration and the expanded configuration. The at least one expansion member 42 can include a first wedge member 46 and a second wedge member 48. The first and second wedge members 46 and 48 can be configured to couple the first and second endplates 32 and 36 to each other. The first and second wedge members 46 and 48 are translatable in a first direction along the longitudinal direction L so as to cause the first and second endplates 32 and 36 to move away from each other, thereby expanding the implant 20. The first and second wedge members 46 and 48 are translatable in a second direction along the longitudinal direction L opposite the first direction so as to cause the first and second endplates 32 and 36 to move toward from each other, thereby collapsing the implant 20.


The implant 20 can further include an actuator 50 coupled to the first and second wedge members 46 and 48. The actuator 50 includes a threaded actuator shaft 52 and an actuation flange 54 that protrudes from the actuator shaft 52. The actuation flange 54 fits into respective complementary slots 56 of the first and second endplates 32 and 36 so as to prevent the actuator 50 from translating relative to the endplates 32 and 36 along the longitudinal direction L.


The first endplate 32 defines first and second ramp surfaces 58 and 60 that are opposite the first vertebral engagement surface 34 along the transverse direction T. The first ramp surface 58 is angled in the superior direction as it extends in the proximal direction toward the second ramp surface 60. The second ramp surface 60 is angled in the superior direction as it extends in the distal direction toward the first ramp surface 58. The first wedge member 46 is configured to ride along the first ramp surface 58. Similarly, the second wedge member 48 is configured to ride along the second ramp surface 60.


The first ramp surface 58 can partially define a first ramped slot 62 in first and second side walls 64 and 66 of the first endplate 32 that are opposite each other along a lateral direction A that is perpendicular to each of the longitudinal direction L and the transverse direction T. The first wedge member 46 can define first upper rails 49 that are configured to ride in the first ramped slots 62. Thus, the first upper rails 49 are configured to ride along the first ramp surface 58. Similarly, the second ramp surface 60 can partially define a second ramped slot 68 in the first and second side walls 64 and 66. The second wedge member 48 can define second upper rails 51 that are configured to ride in the second ramped slots 68. Thus, the second upper rails 51 are configured to ride along the second ramp surface 60.


Similarly, the second endplate 36 defines first and second ramp surfaces 70 and 72 that are opposite the second vertebral engagement surface 38 along the transverse direction T. The first ramp surface 70 is angled in the inferior direction as it extends in the proximal direction toward the second ramp surface 72. The second ramp surface 72 is angled in the inferior direction as it extends in the distal direction toward the first ramp surface 70. The first wedge member 46 is configured to ride along the first ramp surface 70. Similarly, the second wedge member 48 is configured to ride along the second ramp surface 72.


The first ramp surface 70 can partially define a first ramped slot 74 in first and second side walls 76 and 78 of the second endplate 36 that are opposite each other along the lateral direction A. The first wedge member 46 can define first lower rails 80 that are configured to ride in the first ramped slots 74. Thus, the first lower rails 80 are configured to ride along the first ramp surface 70. Similarly, the second ramp surface 72 can partially define a second ramped slot 82 in the first and second side walls 76 and 78. The first side walls 64 and 76 can cooperate to define a first side 77 of the implant 20, and the second side walls 66 and 78 can cooperate to define a second side 79 of the implant 20. The second wedge member 48 can define second lower rails 84 that are configured to ride in the second ramped slots 82. Thus, the second lower rails 84 are configured to ride along the second ramp surface 72.


As the first and second wedge members 46 and 48 move in a first expansion direction, the first and second wedge members 46 and 48 push the first and second endplates 32 and 36 away from each other along the transverse direction T, thereby causing the implant 20 to expand along the transverse direction T. As the first and second wedge members 46 and 48 move in a second collapsing direction opposite the first expansion direction, the first and second wedge members 46 and 48 can draw the first and second endplates 32 and 36 toward each other along the transverse direction T, thereby collapsing the implant to collapse along the transverse direction T. The first expansion direction of the first and second wedge members 46 and 48 can be defined by movement of the first and second wedge members 46 and 48 toward each other. The second collapsing direction of the first and second wedge members 46 and 48 can be defined by movement of the first and second wedge members 46 and 48 away from each other. It should be appreciated, of course, that the implant can alternatively be constructed such that the first expansion direction of the first and second wedge members 46 and 48 can be defined by movement of the first and second wedge members 46 and 48 away each other, and the second collapsing direction of the first and second wedge members 46 and 48 can be defined by movement of the first and second wedge members 46 and 48 toward from each other.


With continuing reference to FIGS. 2A-3, the actuator 50 is configured to cause the first and second wedge members 46 and 48 to move in the first expansion direction. Further, the actuator 50 can be configured to cause the first and second wedge members 46 and 48 to move in the second collapsing direction. In particular, the actuator shaft 52 can be threaded so as to threadedly mate with the first and second wedge members 46 and 48, respectively. In one example, the actuator shaft 52 can define exterior threads 86. The actuation flange 54 can divide the actuator shaft 52 into a first or distal shaft section 52a and a second or proximal shaft section 52b.


The threads 86 can include a first threaded portion 88 that extends along the distal shaft section 52a, and a second threaded portion 90 that extends along the proximal shaft section 52b. The first wedge member 46 can include internal threads that are threadedly mated to the distal shaft section 52a. The second wedge member 48 can include internal threads that are threadedly mated to the proximal shaft section 52b. The first and second threaded portions 88 and 90 have respective thread patterns, respectively that are oriented in opposite directions. Accordingly, rotation of the actuator 50 in a first direction of rotation drives the wedge members 46 and 48 to threadedly travel away from each other along the actuator shaft 52. The actuator shaft 52 can be oriented along the longitudinal direction L. Thus, rotation of the actuator 50 in the first direction can cause the wedge members 46 and 48 to move in the expansion direction. Rotation of the actuator 50 in a second direction of rotation opposite the first direction of rotation drives the wedge members 46 and 48 to threadedly travel toward each other along the actuator shaft 52. Thus, rotation of the actuator 50 in the second direction can cause the wedge members 46 and 48 to move in the collapsing direction. The first and second directions of rotation can be about the central axis of the actuator shaft 52, which can be oriented along the longitudinal direction L.


The actuator 50, and thus the implant 20, can further include a driven member 92 that is rotationally fixed to the actuator shaft 52, such that a rotational force applied to the driven member 92 drives the actuator shaft 52, and thus the actuator 50, to rotate. The driven member 92 can be monolithic with the actuator shaft 52, and in one example can be defined by the actuator shaft 52. For instance, the driven member 92 can be configured as a socket that extends distally into the proximal end of the actuator shaft 52. Alternatively, the driven member 92 can be attached to the actuator shaft 52. The driven member 92 can be configured to couple to the insertion instrument 96 so as to receive a drive force that causes the actuator shaft 52, and thus the actuator 50, to rotate. In one embodiment, the driven member 92 can define a socket that is configured to receive a drive member of the insertion instrument 96. Alternatively, the driven member 92 can be configured to be received by the drive member.


The actuator 50, and thus the implant 20, can further include an implant coupler 93 that is supported by the driven member 92. In particular, the implant coupler 93 can be supported by the actuator shaft 52. The implant coupler 93 can be monolithic with the actuator shaft 52, or can be secured to the actuator shaft 52. For instance, the implant coupler 93 can be threadedly attached to the actuator shaft 52. In one example, the implant coupler 93 can be aligned with the driven member 92 along a plane that includes the lateral direction A and the transverse direction T. The implant coupler 93 can be configured to attach to a complementary attachment member of the insertion instrument 96. For instance, the implant coupler 93 can define an external groove 95 that is configured to receive the attachment member of the insertion instrument 96. The implant coupler 93 can be configured as a ring, or can be configured as any suitable alternatively constructed attachment member as desired. Aspects of the implant 20 are further described in U.S. patent application Ser. No. 14/640,264 filed Mar. 6, 2015, the disclosure of which is hereby incorporated by reference as if set forth in its entirety herein.


Referring to FIG. 4A-4B, an intervertebral implant system 94 can include the intervertebral implant 20 and an insertion instrument 96. The insertion instrument 96 can be configured to implant the expandable intervertebral implant 20 in the intervertebral space. For instance, the insertion instrument 96 can be configured to removably attach and further secure to the implant 20 so as to define a rigid construct with the implant 20. The insertion instrument 96 can further be configured to apply an actuation force to the actuator 50 that drives the actuator to rotate. For instance, the insertion instrument 96 can drive the actuator 50 to selectively rotate in the first direction of rotation and in the second direction of rotation.


Thus, a method can include the step of attaching the insertion instrument 96 to the intervertebral implant 20 to form a rigid construct. The implant 20 can initially be in the collapsed configuration when the insertion instrument 96 is coupled to the implant 20. Alternatively, the insertion instrument 96 can move the implant 20 to the collapsed position. The method can further include the step of actuating the drive member to rotate the actuator 50 of the implant 20 in the first direction of rotation, thereby causing the implant 20 to expand in the manner described above to a desired height. Once the implant 20 has achieved the desired height, the method can include the step of removing the insertion instrument 96 from the implant 20.


Referring now also to FIGS. 2A-3 and 4C-4E, the insertion instrument 96 can include a driver 97 that has a drive shaft 98 and a drive member 100. The driver 97 can further include a knob 99. The drive shaft 98 has a proximal end 98a and a distal end 98b spaced from one another along the longitudinal direction L. The drive shaft 98 is elongate along the longitudinal direction L from the proximal end 98a to the distal end 98b. The drive shaft 98 can include an engagement feature 101 at its proximal end 98a that is configured to couple to an engagement feature 103 of the knob 99 such that the knob 99 can be gripped and rotated, to thereby rotate the drive shaft 98 about a longitudinal axis of rotation. In one example, the engagement feature 101 of the drive shaft 98 can include an outer surface having a non-circular cross section and the engagement feature 103 of the knob 99 can define a socket having a non-circular cross section. Accordingly, when the drive shaft 98 is inserted into the socket, rotation of the knob 99 causes the drive shaft 98 to correspondingly rotate. Alternatively, the knob 99 can be monolithic with the drive shaft 98.


The drive member 100 can be disposed at the distal end 98b of the drive shaft 98. The drive member 100 can be monolithic with the drive shaft 98 or attached to the drive shaft 98. The drive member 100 is configured to couple to the driven member 92 (see FIG. 3). For instance, the drive member 100 and the socket defined by the driven member 92 can have a non-circular cross section. Accordingly, when the drive member 100 is inserted into the socket, rotation of the drive member 100 causes the actuator shaft 52 of the implant 20 to correspondingly rotate. Thus, it should be appreciated that rotation of the drive member 100 in the first direction of rotation causes the actuator 50 of the implant 20 to rotate in the first direction of rotation. Thus, the drive member 100 of the insertion instrument 96 can be configured to couple to the complementary driven member 92 of the implant 20, and iterate the intervertebral implant 20 from the collapsed configuration to the expanded configuration. Similarly, rotation of the drive member 100 in the second direction of rotation causes the actuator 50 of the implant 20 to rotate in the second direction of rotation. Thus, the drive member 100 can further iterate the intervertebral implant 20 from the expanded configuration to the collapsed configuration. As will be appreciated from the description below, the drive member 100 can be translated along the longitudinal direction between an extended position whereby the drive member 100 is positioned to be coupled to the driven member 92 when the insertion instrument 96 is attached to the implant 20, and a retracted position whereby the drive member 100 is removed from the driven member 92 when the insertion instrument 96 is attached to the implant 20.


The insertion instrument 96 can further include a securement member 102 that is configured to attach and secure to the implant 20. In particular, the securement member 102 is configured to iterate between an engaged configuration and a disengaged configuration. The securement member 102 is configured to attach to the implant 20 when in the disengaged configuration, and is secured to the implant 20 when in the engaged configuration. The securement member 102 is further configured to be removed from the implant 20 when in the disengaged configuration. The securement member 102 is configured to be prevented from removal from the implant 20 when the securement member 102 is in the engaged configuration, and thus when the securement member 102 is secured to the implant 20.


The securement member 102 can include a securement shaft 104 and a securement end 105 that extends distally from the securement shaft 104. The securement end 105 can include first and second securement plates 106 and 108 that extend from the securement shaft 104 in the distal direction. The first and second securement plates 106 and 108 can be spaced from each other along a direction perpendicular to the longitudinal direction L. For instance, the first and second securement plates 106 and 108 can be spaced from each other along the lateral direction A. The first and second securement plates 106 and 108 can be oriented parallel to each other. The first and second securement plates 106 and 108 can be positioned such that the drive member 100 extends between the first and second securement plates 106 and 108 along the lateral direction A. Further, the drive member 100 can be aligned with the first and second securement plates 106 and 108 along the lateral direction A.


The securement member 102 can further include at least one projection that can define at least one guide rail 110 that projects from a corresponding one of the first and second securement plates 106 and 108 toward the other of the first and second securement plates 106 and 108. The at least one guide rail is configured to slide along a respective at least one pair of side walls of the implant. The at least one pair can include a first pair 63 (see FIG. 2A) defined by the side walls 64 and 76 of the implant 20, and a second pair 65 (see FIG. 2A) defined by the side walls 66 and 78 of the implant 20. The implant 20 can define a first side 77 and a second side 79 that is opposite the first side 77 with respect to the lateral direction A. The first side 77 can be defined by the side walls 64 and 76 of the first pair 63. The second side 79 can be defined by the side walls 66 and 78 of the second pair 65. The first and second sides 77 and 79 are opposite each other along the lateral direction A. The side walls of each pair can be aligned with each other along the transverse direction T. Further, the side walls of each pair can abut each other when the implant is in the collapsed configuration.


The implant 20 can include at least one guide channel 112 that is defined by an outer surface of each of the pair of side walls of the implant 20. The at least one guide channel 112 is configured to receive the at least one first guide rail 110, such that the at least one guide rail 110 resides in the at least one guide channel 112 when the insertion instrument 96 is secured to the implant 20. The at least one guide rail 110 can also reside in the at least one guide channel 112 when the insertion instrument 96 is attached, but not secured, to the implant 20. The at least one guide rail 110 can have a height along the transverse direction T that is sufficient to 1) reside in the at least one guide channel 112 when the implant 20 is in the collapsed configuration, 2) ride along the implant 20 in the at least one guide channel 112 as the implant 20 expands to the expanded configuration, and 3) remain in the corresponding at least one guide channel 112 when the implant 20 is in the expanded configuration.


In one example, the securement member 102 can include a first guide rail 110a that projects from the first securement plate 106 toward the second securement plate 108, and a second guide rail 110b that projects from the second securement plate 108 toward the first securement plate 106. Thus, the first and second guide rails 110a and 110b can be spaced from each other along the lateral direction A, and can be inwardly facing. Further, the first and second guide rails 110a and 110b can be aligned with each other along the lateral direction A. The implant 20 can include a guide channel 112 that is defined by the outer surface of each of the first and second pairs 63 and 65 of side walls (see first and second guide channels 112 in FIG. 5B). Thus, the side walls 64 and 76 can each define a portion of a first guide channel 112. The side walls 66 and 78 can further define a portion of a second guide channel. The guide channel 112 of the first pair 63 of side walls is sized to receive the first guide rail 110a, and the guide channel 112 of the second pair 65 of side walls is sized to receive the second guide rail 110b.


The outer surface of the side walls of each of the first and second pairs 63 and 65 of side walls can further cooperate to define respective lead-in recesses 114 to the guide channel 112 (see first and second lead-in recesses 114 in FIG. 5B). The respective lead-in recess 114 is spaced in the proximal direction from the guide channel 112. For instance, each of the side walls of the implant 20 defines a corresponding portion of the respective lead-in recess. The respective endplates 32 and 36 can terminate the lead-in recesses 114 and the guide channels 112 along the transverse direction T. The guide channels 112 have a depth in the lateral direction A that is greater than the depth of the lead-in recesses 114 in the lateral direction A. As will be described in more detail below, the first and second guide rails 110a and 110b are configured to ride distally along the outer surface of the implant 20 in the respective lead-in recesses 114 and into the guide channels 112 when the insertion instrument 96 is in the disengaged configuration.


Because the securement plates 106 and 108 are resiliently supported by the securement shaft 104, and in particular by the first and second securement plates 106 and 108 respectively, and because the guide channels 112 are deeper than the lead-in recesses 114, the first and second guide rails 110a and 110b can resiliently move apart along the lateral direction as they cam over the implant 20, and can snap into the guide channels 112.


The distal end of the guide channels 112 can be defined by respective shoulders 116 that are defined by the respective side walls. The shoulders can protrude laterally outward with respect to the outer surface of the side walls at the lead-in recesses 114. Thus, the implant 20 defines a width along the lateral direction A at the guide channels 112 that is less than the width at the lead-in recesses 114. The width of the implant 20 at the lead-in recesses 114 is less than the width at the shoulders 116. The shoulders 116 provide stop surfaces configured to abut the guide rails 110a and 110b so as to prevent the guide rails 110a and 110b from traveling distally past the guide channels 112.


The first and second securement plates 106 and 108 define a height along the transverse direction T that is less than the height of the lead-in recesses 114 along the transverse direction T, both when the implant 20 is in the collapsed configuration and when the implant 20 is in the expanded configuration. Accordingly, the first and second securement plates 106 and 108 can reside in the lead-in recesses 114 when the first and second guide rails 110a and 110b are disposed in the respective guide channels 112. Further, in one example, the securement plates 106 and 108 have a width that is no greater than the depth of the lead-in recesses 114 with respect to the shoulders 116. Thus, the securement plates 106 and 108 can nest in the respective lead-in recesses 114. It is also appreciated in one example that the securement plates 106 and 108 are no wider along the lateral direction A, and no taller in the transverse direction T, than the intervertebral implant 20 when the implant 20 is in the collapsed configuration.


Further, the height of the first and second securement plates 106 and 108 can be greater than the distance between the respective pairs of side walls when the implant 20 is in the expanded configuration. Thus, the first and second guide rails 110a and 110b can remain inserted in the respective guide channels 112 when the implant 20 is in the expanded position. In one example, the first and second guide rails 110a and 110b can extend along respective entireties of the heights of the first and second securement plates 106 and 108, respectively. Alternatively, the first and second guide rails 110a and 110b can extend along respective portions less than the entireties of the heights of the first and second securement plates 106 and 108, respectively. In one example, the first and second guide rails 110a and 110b can have a height along the transverse direction T of between approximately 3 mm to approximately 7 mm, depending on the height of the intervertebral implant 20. In one narrow example, the height of the guide rails can be between approximately 3.7 mm and approximately 4 mm. As used herein, the terms “approximate” and “substantial” and derivatives thereof are used to account for variations in size and/or shape, such as may occur due to manufacturing tolerances and other factors.


The insertion instrument 96 can further include at least one instrument coupler 118 that is configured to attach to the implant coupler 93. For instance, the securement member 102 can include the at least one instrument coupler 118 that is configured to attach to the implant coupler 93 when the securement member 102 is in the disengaged configuration, and secure to the implant coupler 93 when the securement member 102 is in the engaged configuration. The at least one instrument coupler 118 can project from a corresponding one of the first and second securement plates 106 and 108 toward the other of the first and second securement plates 106 and 108. The at least one instrument coupler 118 is configured to be inserted into the external groove 95 of the implant coupler 93. For instance, the at least one attachment member can be configured to seat against the implant coupler 93 in the external groove 95 when the securement member 102 is in the engaged configuration.


The at least one instrument coupler 118 can be configured as a first collar 120a that projects from the first securement plate 106 toward the second securement plate 108, and a second collar 120b that projects from the second securement plate 108 toward the first securement plate 106. Each of the first and second collars 120a and 120b are configured to be inserted into the external groove 95 of the implant coupler 93 when the securement member 102 is in the disengaged configuration, and secured to the implant coupler 93 in the external groove 95 when the securement member 102 is in the engaged configuration. In particular, the first and second collars 120a and 120b can cam over the implant coupler 93 and snap into the groove 95 as the insertion instrument 96 is attached to the implant 20. In particular, when the insertion instrument 96 is in the disengaged configuration, the first and second collars 120a and 120b can be spaced from each other along the lateral direction A a distance that is less than the width of a portion of the implant coupler 93 that is disposed proximally from the external groove 95. Because the first and second collars 120a and 120b are resiliently supported by the securement shaft 104, and in particular by the first and second securement plates 106 and 108 respectively, the first and second collars 120a and 120b can resiliently move apart along the lateral direction A as they cam over the portion of the implant coupler 93, and can snap toward each other once they have cleared the portion of the implant coupler and travel into the external groove 95.


The first and second collars 120a and 120b can be aligned with each other along the lateral direction A. Further, at least a portion of each of the first and second collars 120a and 120b is aligned with a portion of the drive member 100 along the lateral direction A when the drive member 100 is in the engaged position. The collars 120a-b can be positioned such that the drive member 100 is disposed between the guide rails 110a-b and the collars 120a-b with respect to the longitudinal direction L when the drive member 100 is in the extended position.


As described above, the first and second securement plates 106 and 108 can be resiliently supported by the securement shaft 104. For instance, in one example, the securement shaft 104 can be forked so as to define first and second securement shaft portions 104a and 104b spaced from each other along the lateral direction A, and separated from each other by a slot 122. Thus, the first and second securement shaft portions 104a and 104b are resiliently movable with respect to each other along the lateral direction A. The first securement plate 106 can extend distally from the first securement shaft portion 104a, and the second securement plate 108 can extend distally from the second securement shaft portion 104b. Accordingly, the first and second securement plates 106 and 108 are resiliently movable with respect to each other along the lateral direction A. Thus, it should be appreciated that the first and second guide rails 110a and 110b are resiliently movable with respect to each other along the lateral direction A. Further, the first and second collars 120a and 120b are resiliently movable with respect to each other along the lateral direction A.


When the securement member 102 is in an initial position the first and second securement plates 106 and 108 are spaced from each other a first distance along the lateral direction A. In the initial position, the securement member 102 is in the disengaged configuration whereby the securement member is configured to be attached to, or removed from, the implant 20. The securement member 102 is configured to receive a biasing force that urges the securement plates 106 and 108 toward each other along the lateral direction A, such that the securement plates 106 and 108 are spaced from each other a second distance along the lateral direction A that is less than the first distance. The securement member 102 thus iterates to the engaged position in response to the biasing force, whereby the securement member 102, and thus the insertion instrument 96, is configured to be secured to the implant 20. Accordingly, the biasing force can urge the first and second guide rails 110a and 110b into the respective guide channels 112. Similarly, the biasing force can urge the first and second collars 120a and 120b into the groove 95 of the driven member 92. It is recognized that increased biasing forces increases the securement of the securement member 102 to the implant 20, and thus of the insertion instrument 96 to the implant 20.


With continuing reference to FIGS. 2A-3 and 4C-4E, the insertion instrument 96 can further include a biasing member 124. As will be appreciated from the description below, the securement member 102 is movable with respect to the biasing member 124 between an engaged position and a disengaged position. When the securement member 102 is in the engaged position, the biasing member 124 delivers the biasing force to the securement member 102. The biasing force can cause the securement member 102 to iterate to the engaged configuration. When the securement member 102 is in the disengaged position, the biasing member 124 removes the biasing force from the securement member 102, thereby causing the securement member 102 to be in the relaxed disengaged configuration. The movement of the securement member 102 between the engaged position and the disengaged position can be along the longitudinal direction L.


The securement member 102 can include at least one bearing member that is in mechanical communication with the first and second securement plates 106 and 108. For instance, the at least one bearing member can extend from the first and second securement plates 106 and 108 such that the biasing force can be applied to the bearing member that, in turn, urges the first and second securement plates toward each other, thereby iterating the securement member 102 to the engaged configuration. The at least one bearing member can include first and second bearing members 126a and 126b that are spaced from each other along the lateral direction A. The biasing member 124 is configured to bear against the bearing members 126a and 126b as the securement member 102 travels toward the engaged position, such that the biasing member 124 applies the biasing force to the bearing members 126a and 126b.


The first and second bearing member 126a can extend between the securement shaft 104 and the first securement plate 106, and the second bearing member 126b can extend between the securement shaft 104 and the second securement plate 108. For instance, the first bearing member 126a can extend between the first securement shaft portion 104a and the first securement plate 106. The second bearing member 126b can extend between the second securement shaft portion 104b spaced and the second securement plate 108. The first bearing member 126a can define a first bearing surface 128a that flares away from the second bearing member 126b as it extends toward the first securement plate 106. Similarly, the second bearing member 126b can define a second bearing surface 128b that flares away from the first bearing member 126a as it extends toward the second securement plate 108. Thus, the first and second bearing surfaces 128a and 128b can flare away from each other each other as they extend toward the first and second securement plates 106 and 108, respectively.


As the securement member 102 travels from the disengaged position to the engaged position, the biasing member 124 bears against one or both of the first and second bearing surfaces 128a and 128b, thereby applying a biasing force that urges the bearing surfaces 128a and 128b toward each other along the lateral direction A. As a result, the first and second bearing members 126a and 126b are urged toward each other along the lateral direction A, which in turn urges the first and second securement plates 106 and 108 to move toward each other along the lateral direction A.


In particular, the biasing member 124 can include respective biasing surfaces 130 at its distal end. The biasing surfaces 130 are aligned with the bearing surfaces 128a and 128b along the longitudinal direction L. Thus, as the securement member 102 travels relative to the biasing member 124 toward the engaged position, the biasing surfaces 130 are brought into contact with the respective first and second bearing surfaces 128a and 128b, thereby causing the biasing force to be applied to the securement plates 106 and 108. Further movement of the securement member 102 with respect to the biasing member 124 toward the engaged position causes the biasing surfaces 130 to travel distally along the outwardly tapered bearing surfaces 128a and 128b. The distal travel of the biasing surfaces 130 along the first and second bearing surfaces 128a and 128b causes the biasing forces to increase. The biasing force can be sufficient to retain the first and second guide rails 110a and 110b in the respective first and second guide channels 112 of the implant 20 both when the implant 20 is in the collapsed configuration and when the implant 20 is in the expanded configuration. Further, the biasing force can be sufficient to retain the collars 120a and 120b in the external groove 95 of the implant coupler 93.


It is appreciated that movement of the securement member 102 in the proximal direction with respect to the biasing member 124 moves the securement member 102 toward the engaged position. Movement of the securement member 102 in the distal direction with respect to the biasing member 124 moves the securement member 102 toward the disengaged position, whereby the biasing surfaces 130 move proximally along the inwardly tapered bearing surfaces 128a and 128b. Proximal movement of the biasing surfaces 130 with respect to the bearing surfaces 128a and 128b causes the biasing forces to decrease until the biasing surfaces 130 are removed from the bearing surfaces 128a and 128b.


The insertion instrument 96 can further include an engagement member 132 having an opening extending therethrough along the longitudinal direction L that is configured to receive the driver 97. Further, the engagement member 132 is configured to be received in an opening that extends through the biasing member 124 along the longitudinal direction L. The engagement member 132 is configured to engage the securement member 102 so as to cause the securement member 102 to travel with respect to the biasing member 124. In particular, the engagement member 132 can include threads 134, and the securement member 102 can similarly include threads 136 that threadedly mate with the threads 134 of the engagement member 132. The threads 136 can be divided into proximal and distal threaded segments that are spaced from each other by a gap. The gap can have a length along the longitudinal direction L that is greater than the length of the threads 134 along the longitudinal direction. Thus, as will be described in more detail below, the threads 134 can become captured in the gap, such that relative rotation between then engagement member 132 and the securement member 102 will not cause relative translation until the threads 134 and 136 are engaged. The securement member 102 can extend into the engagement member. Thus, the threads 134 of the engagement member 132 can be internal threads, and the threads 136 of the securement member 102 can be external threads that are defined by the securement shaft 104. Accordingly, rotation of the engagement member 132 in a first direction of rotation with respect to the securement member 102 causes the securement member 102 to translate proximally with respect to the biasing member 124 toward the engaged position. Rotation of the engagement member 132 in a second direction of rotation opposite the first direction of rotation causes the securement member 102 to translate distally with respect to the biasing member 124 toward the disengaged position. The engagement member 132 and the biasing member 124 can be translatably fixed to each other with respect to relative translation along the longitudinal direction L. Accordingly, translation of the securement member 102 with respect to the engagement member 132 is also with respect to the biasing member 124. The engagement member 132 can include a knob 138 at its proximal end that can be grasped by a user to facilitate rotation of the engagement member 132. The insertion instrument 96 can further include a handle 131 that is fixedly attached to the biasing member 124 with respect to relative translation along the longitudinal direction. In one example, the handle 131 can be rigidly fixed to the biasing member 124. For instance, the handle 131 can be attached to the biasing member 124 or can be monolithic with the biasing member 124. Thus, as the user grasps and holds the handle 131, the biasing member 124 can remain stationary while the securement member 102 translates relative to the biasing member 124.


The securement member 102 can be prevented from rotating as the engagement member 132 is rotated. In particular, the securement shaft 104 can define an outer surface that is non-circular, and the biasing member 124 can define an inner surface that is non-circular and contacts the non-circular outer surface of the securement shaft 104. The non-circular surfaces can engage so as to prevent relative rotation between the securement shaft 104 and the biasing member 124. Thus, the securement member 102 is rotatably fixed to the biasing member 124. Accordingly, rotation of the engagement member 132 does not cause the securement member 102 to correspondingly rotate with respect to the biasing member 124. As a result, the first and second securement plates 106 and 108 can remain spaced from each other along the lateral direction A.


The insertion instrument 96 can be arranged such that the engagement member 132 extends into the biasing member 124, and the securement member 102 extends into both the biasing member 124 and the engagement member 132. For instance, the proximal end of the securement member 102 can extend into the distal end of the engagement member 132. The drive shaft 98 can extend through the engagement member 132 and the securement member 102, such that the drive member 100 can extend to a location between and aligned with the first and second securement plates 106 and 108 with respect to the lateral direction A. The drive shaft 98 can translate proximally and distally with respect to each of the engagement member 132 and the securement member 102.


Operation of the intervertebral implant system 94 will now be described with reference to FIGS. 5A-11. In particular, referring initially to FIGS. 5A-5B, the insertion instrument 96 can be aligned with the implant 20 along the longitudinal direction L while the securement member 102 is in the disengaged configuration. The implant 20 is in the collapsed configuration. When the insertion instrument 96 is aligned with the implant 20 along the longitudinal direction L, the first guide rail 110a can be substantially aligned with the first pair of side walls 64 and 76 along the longitudinal direction L, and the second guide rail 110b can be substantially aligned with the second pair 65 of side walls 66 and 78 along the longitudinal direction L. For instance, the first securement plate 106, and thus the first guide rail 110a, can be substantially aligned with the lead-in recess 114 at the first side 77 of the implant 20 along the longitudinal direction L. The second securement plate 108, and thus the second guide rail 110b, can be substantially aligned with the lead-in recess 114 at the second side 79 of the implant 20 along the longitudinal direction L. Further, the first and second collars 120a and 120b can be aligned with opposite sides of the implant coupler 93 of the implant 20 along the longitudinal direction L.


Referring now to FIGS. 6A-6B, the insertion instrument 96 can be advanced distally with respect to the implant 20 so as to removably attach the insertion instrument 96 to the implant 20. This advancement of the insertion instrument 96 relative to the implant 20 can be achieved by moving the insertion instrument 96 distally, or by moving the implant 20 proximally, or both. As the insertion instrument 96 is advanced distally relative to the implant 20, the first and second guide rails 110a and 110b ride along the first and second sides 77 and 79 of the implant 20, respectively, in the respective lead-in recesses 114. The distance between the first and second guide rails 110a and 110b along the lateral direction A when the securement member 102 is in the disengaged configuration can be less than the width of the implant 20 at the lead-in recesses 114. Thus, the first and second securement plates 106 and 108 can flex outward away from each other as the first and second guide rails 110a and 110b ride distally along the first and second sides 77 and 79 of the implant 20 in the lead-in recesses 114. The insertion instrument 96 is advanced distally 96 until the first and second guide rails 110a and 110b are inserted into the respective guide channels 112 of the first and second sides 77 and 79 of the implant 20. When the first and second guide rails 110a and 110b are inserted into the respective guide channels 112, the first and second securement plates 106 and 108 can nest in the respective lead-in recesses 114.


Similarly, the distance between the first and second collars 120a and 120b along the lateral direction A when the securement member 102 is in the disengaged configuration can be less than the width of the implant coupler 93. The implant coupler 93 can have a circular cross-section such that the width is a diameter, though the implant coupler 93 can have any suitable size and shape. Thus, as the first and second securement plates 106 and 108 flex outward away from each other, the first and second collars 120a and 120b ride distally along opposed sides of the implant coupler 93 until the first and second guide couplers 120a and 120b are inserted into the external groove 95. With the guide rails 110a and 110b received in the guide channels 112 and with the collars 120a and 120b received in the groove 95, the insertion instrument 96 can be said to be attached to the implant 20. It should be appreciated that when the insertion instrument 96 is attached to the implant 20, the spring constant defined by the resiliently deflected first and second securement plates 106 and 108 provides an attachment force that maintains the attachment of the insertion instrument to the implant 20. The insertion instrument 96 can be removed from the implant 20 by moving the insertion instrument 96 proximally with respect to the implant 20 so as to overcome the attachment force.


Referring now to FIGS. 7A-7B, the insertion instrument 96 can be secured to the implant 20 to define a rigid construct with the implant 20. In particular, the engagement member 132 can be rotated in the first direction of rotation with respect to the securement member 102, thereby causing the securement member 102 to translate with respect to the biasing member 124 toward the engaged position. The securement member 102 translates proximally until the biasing member 124 applies the biasing force to the securement member 102 in the manner described above. In particular, the biasing member 124 can apply the biasing force to the first and second bearing members 126a and 126b. The biasing force increases as the securement member 102 translates in the proximal direction while the biasing member 124 is in contact with the bearing members 126a and 126b. As the biasing force increases, the securement plates 106 and 108, including the alignment rails 110a-b, are urged against the implant 20 with increasing force, thereby increasing the rigidity of the construct defined by the insertion instrument 96 and the implant 20. The collars 120a-b can be seated in the groove without contacting the outer surface of the implant coupler 93. Thus, the collars 120a-b can be captured by the implant coupler 93 with respect to the longitudinal direction L so as to attach the collars 120a-b to the implant coupler 93. It should be appreciated that the collars 120a-b can remain attached to the implant coupler 93 both when the implant 20 is in the collapsed configuration and when the implant 20 is in the expanded configuration.


Referring now to FIGS. 8A-8B, the drive shaft 98 can be advanced distally until the drive member 100 is rotatably coupled to the driven member 92. For instance, the drive member 100 can be inserted into the driven member 92. Alternatively, the drive member 100 can be received by the driven member 92. It should be appreciated that the step of rotatably coupling the drive shaft 98 to the driven member 92 can be performed before, after, or during securement of the insertion instrument 96 to the implant 20. Further, the step of rotatably coupling the drive shaft 98 to the driven member 92 can be performed before or after the insertion instrument 96 is attached to the implant 20. When the drive member 100 is coupled to the driven member 92, it is recognized that the insertion instrument 96 is attached and secured to the implant 20 at three different attachment and securement locations. A first attachment and securement location is defined by the insertion of the guide rails 110a-b in to the guide slots 112, a second attachment and securement location is defined by the insertion of the collars 120a-b into the groove 95, and a third attachment and securement location is defined by the attachment of the drive member 100 to the driven member 92. When the insertion instrument 96 is secured to the implant 20, the insertion instrument 96 can deliver the implant 20 into the intervertebral space 22 (see FIG. 1).


Referring now to FIGS. 9A-9C, when the insertion instrument 96 is secured to the implant 20 and the drive member 100 is coupled to the driven member 92, the drive member 100 can be rotated in the first direction of rotation so as to cause the implant 20 to expand from the collapsed configuration to the expanded configuration as described above. It should be appreciated that the first direction of rotation of the drive member 100 can be the same direction as the first direction of rotation of the engagement member 132. Alternatively, the first direction of rotation of the drive member 100 can be in an opposite direction with respect to the first direction of rotation of the engagement member 132. As the drive member 100 rotates in the first direction of rotation, the first and second wedge members 46 and 48 move in the expansion direction, so as to cause the first and second endplates 32 and 36 to translate away from each other in the manner described above.


When the implant 20 is in the expanded position, the first and second pairs 63 and 65 of side walls can separate from each other so as to define a gap therebetween. The first and second securement plates 106 and 108 can have a height sufficient to span the gap and remain the respective portions of the lead-in recess 114 defined by the respective side walls of each pair of side walls when the implant 20 is in the expanded position. Similarly, the guide rails 110a and 110b can have a height sufficient to span the gap and remain in respective portions of the guide slots 112 defined by the respective side walls of each pair of side walls when the implant 20 is in the expanded position. The guide rails 110a-110b can ride in the guide slots 112 along the transverse direction T as the implant 20 expands to the expanded position. Similarly, the securement plates 106 and 108 can ride in the lead-in recesses 114 along the transverse direction T as the implant 20 expands to the expanded position. In this regard, it is appreciated that increased biasing forces can cause the instrument 20 add increase resistance to the expansion of the implant 20.


If it is desired to move the implant from the expanded configuration toward the collapsed configuration, the drive member 100 can be rotated in the second direction of rotation, thereby causing the wedge members 46 and 48 to move in the collapsing direction as described above.


Referring now to FIGS. 10A-11, once the implant 20 has reached a desired height in the intervertebral space, the insertion instrument 96 can be removed from the implant 20. In particular, as illustrated in FIGS. 10A-10B, the securement member 102 can iterate from the engaged configuration to the disengaged configuration. In particular, the engagement member 132 can be rotated in the respective second direction of rotation with respect to the securement member 102, thereby causing the securement member 102 to travel with respect to the biasing member 124 toward the disengaged position. As described above, travel of the securement member 102 in the distal direction can be toward the disengaged position. As the securement member 102 travels with respect to the biasing member 124 to the disengaged position, the biasing member 124 removes the biasing force from the securement member 102. The engagement member 132 can be rotated until the threads 134 of the engagement member 132 are disengaged from the distal threaded segment of the threads 136 of the securement member 102, and captured in the gap that extends between the proximal and distal threaded segments of the threads 136. Accordingly, the engagement member 132 is preventing from rotating a sufficient amount that would inadvertently detach the securement member 102 from the engagement member 132. Rather, once the threads 134 are disposed in the gap, the engagement member 132 can be pulled distally with respect to the securement member so as to engage the threads 134 with the proximal segment of the threads 136. The engagement member 132 can then be rotated with respect to the securement member 102 so as to detach the securement member from the engagement member 132. Alternatively, the entire length of the threads 136 can be continuous and uninterrupted along the longitudinal direction L. Alternatively still, the threads 134 can be divided into proximal and distal segments that are configured to capture the threads 136 therebetween.


Referring to FIG. 11, the drive member 100 can be rotatably decoupled from the driven member 92. Thus, rotation of the drive member 100 does not cause the drive member 92 to rotate. In one example, the drive member 100 can be translated proximally so as to rotatably decouple from the driven member 92. It should be appreciated that the drive member can be rotatably decoupled from the driven member 92 before, after, or during movement of the securement member 102 with respect to the biasing member 124 to the disengaged position. Finally, the insertion instrument 96 can be moved proximally with respect to the implant 20 so as to entirely remove the insertion instrument 96 from the implant 20 as illustrated in FIGS. 5A-5B. In particular, the securement plates 106 and 108 are removed from the lead-in recesses 114.


It should be appreciated that the insertion instrument 96 has been described in accordance with one embodiment whereby the securement member 102 is configured to travel along the longitudinal direction L so as to iterate the securement member 102 between the engaged configuration and the disengaged configuration. Movement of the securement member 102 relative to the biasing member 124 causes the biasing member to apply and release the biasing force. It should be appreciated in alternative embodiments that the biasing member 124 can alternatively travel along the longitudinal direction L and the securement member 102 can remain stationary. In this alternative embodiment, relative travel exists between the securement member 102 and the biasing member 124. Thus, in this alternative embodiment, it can be said that the securement member 102 travels with respect to the biasing member 124, thereby causing the securement member 102 to iterate between the engaged configuration and the disengaged configuration in the manner described above.


During insertion of the implant 20 into the intervertebral space 22, an impaction force can be applied to a proximal end of the insertion instrument 96 to drive the implant 20 into the intervertebral space. For instance, and with reference to FIGS. 4B and 12, an impaction force can be applied to the proximal end 98a of the drive shaft 98 or to the knob 99. However, applying an impaction force to the proximal end 98a of the drive shaft 98 or knob 99 can result in the force being transmitted down the drive shaft 98 of the insertion instrument 96, through the drive member 100 of the insertion instrument 96, and to the driven member 92 of the implant 20. This can result in damage to one or more of the drive shaft 98, the drive member 100, and the driven member 92. Therefore, the insertion instrument can be configured such that an impaction force applied to the proximal end of the insertion instrument is transmitted down a path that does not include the drive shaft 98. For instance, the impaction force can be transmitted down the engagement member 132 of the insertion instrument, through the securement member 102 of the insertion instrument, and to the implant 20. Thus, the impaction force can be applied to the first and second endplates 32 and 36 of implant 20 as opposed to the driven member 92.


As an example, consider the insertion instrument 140 of FIGS. 13 and 14 in which like reference numerals identify similar or identical elements to those discussed above. The insertion instrument 140 is similar to the insertion instrument 96 above, except that the insertion instrument 140 has a driver 142 that is different from the driver 97. The insertion instrument 140 can include a biasing member 124, a handle 131 that is fixedly attached to the biasing member 124, an engagement member 132, and a securement member 102 as described above. The engagement member 132 has an opening extending therethrough along the longitudinal direction L that is configured to receive the driver 142. The driver 142 is configured to absorb an impaction force applied to a proximal end of the driver 142 so as to prevent the impaction force from being transmitted through the driver 142 to the driven member 92 of the implant 20. For example, the impaction force can instead be transmitted through the engagement member 132, through the securement member 102 of the insertion instrument, and to the implant 20.


Now with reference to FIGS. 13-15, the driver 142 has a drive shaft 144 having a first or proximal drive shaft portion 146 and a second or distal drive shaft portion 148 coupled to the first drive shaft portion 146. The first drive shaft portion 146 and the second drive shaft portion 148 can be configured to translate relative to one another. For example, when an impaction force is applied by an impaction instrument to the drive shaft 144, the first drive shaft portion 146 can telescope relative to the second drive shaft portion 148. Thus, the first drive shaft portion 146 can translate distally to thereby retract at least partially into the engagement member 132. Further, the second drive portion 148 can remain stationary relative to the engagement member 132 such that the impaction force is not transferred to the driven member 92 of the implant 20. As a result, the impaction instrument is permitted to impact a proximal end of the engagement member 132 such that substantially all of the impaction force applied by the impaction instrument is applied to the proximal end of the engagement member 132.


The first drive shaft portion 146 has a proximal end 146a and a distal end 146b spaced from one another along the longitudinal direction L. The first drive shaft portion 146 can include an engagement feature 101 at its proximal end 146a. The engagement feature 101 can be configured as described above in relation to FIG. 4C to engage an engagement feature 103 of the knob 99. Further, the engagement feature 101 can include an engagement surface or shoulder 101a that can extend away from a central axis of the drive shaft 144 such that the engagement surface 101a is angularly offset from the central axis. For example, the engagement surface 101a can face in a direction that extends towards the distal end of the drive shaft 144. The first drive shaft portion 146 can further include an engagement feature 150 at its distal end 146b.


The second drive shaft portion 148 has a proximal end 148a and a distal end 148b spaced from one another along the longitudinal direction L. The drive shaft 144 can include a drive member 100 disposed at the distal end 148b of the second drive shaft portion 148. The drive member 100 can be monolithic with the second drive shaft portion 148 or attached to the second drive shaft portion 148. As described above, the drive member 100 is configured to couple to the driven member 92 of the implant 20 (see FIG. 3).


The second drive shaft portion 148 can further include an engagement feature 152 at its proximal end 148a that is configured to engage the engagement feature 150 of the first drive shaft portion 146. In one example, one of the engagement feature 150 of the first drive shaft portion 146 and the engagement feature 152 of the second drive shaft portion 148 can include an outer surface, and the other of the engagement feature 150 and the engagement feature 152 can define a socket 154 (see FIG. 15). The socket 154 can have a length L1 along the longitudinal direction L. For example, as shown in FIG. 15, the engagement feature 152 of the second drive shaft portion 148 can include the outer surface, and the engagement feature 150 of the first drive shaft portion 146 can define the socket 154 (see FIG. 15), where the socket 154 extends into the distal end 146b of the first drive shaft portion 146 by a length L1. It will be understood that, alternatively, the socket 154 can extend into the proximal end 148a of the second drive shaft portion 148.


The first and second drive shaft portions 146 and 148 can be rotationally coupled to one another such that rotation of the first drive shaft portion 146 causes the second drive shaft portion 148 to correspondingly rotate. For example, the engagement feature 150 of the first drive shaft portion 146 can have a non-circular cross section in a plane perpendicular to the longitudinal direction L. Similarly, the engagement feature 152 of the second drive shaft portion 148 can have a non-circular cross section in a plane perpendicular to the longitudinal direction L. The non-circular cross section of the engagement feature 150 can be configured to engage the non-circular cross section of the engagement feature 152 such that rotation of the first drive shaft portion 146 causes the second drive shaft portion 148 to correspondingly rotate.


The second drive shaft portion 148 can be configured to be coupled to the securement member 102 such that the second drive shaft portion 148 is translatably fixed with respect to the securement member 102 along the longitudinal direction L. Thus, when the second drive shaft portion 148 is coupled to the securement member 102, the second drive shaft portion 148 and the securement member 102 are prevented from translating relative to one another along the longitudinal direction. Further, the second drive shaft portion 148 can be configured to be coupled to the securement member 102 such that the second drive shaft portion 148 is rotatable relative to the securement member 102 about a central longitudinal axis of the second drive shaft portion 148. Thus, the second drive shaft portion 148 can rotate while the securement member 102 remains stationary.


In one example, the second drive shaft portion 148 can define a groove 156 that extends into an outer surface of the second drive shaft portion 148. The groove 156 can be annular in shape. Further, the insertion instrument 140 can include a pin 158 that is configured to be coupled to both the securement member 102 and the second drive shaft portion 148. For example, a first portion 158a of the pin 158 can be received in an opening 107 (see FIG. 4D) in the securement member 102, while a second portion 158b of the pin 158, spaced from the first portion 158a, can be received in the groove 156. The pin 158 can be received in the groove 156 such that a central axis of the pin 158 that extends from the first portion 158a to the second portion 158b is perpendicular to a central longitudinal axis of the second drive shaft portion 148.


The second drive shaft portion 148 can include a first shoulder 156a and a second shoulder 156b, offset from the first shoulder 156a along the longitudinal direction L. The first and second shoulders 156a and 156b can at least partially define the groove 156. The first shoulder 156a can face towards the proximal direction. The First shoulder 156a can be substantially annular in shape. The first shoulder 156a can act as a stop that contacts the pin 158 so as to prevent the second drive shaft portion 148 from moving in the proximal direction relative to the securement member 102. The second shoulder 156b can face towards the distal direction. The second shoulder 156b can be substantially annular in shape. The second shoulder 156b can act as a stop that contacts the pin 158 so as to prevent the second drive shaft portion 148 from moving in the distal direction relative to the securement member 102.


Turning briefly to FIGS. 16 and 17, the driver 142 has an extended configuration, wherein the proximal end 144a of the drive shaft 144 extends out of a proximal end 132a of the engagement member 132 in the proximal direction. For example, the drive shaft 144 can extend out of the proximal end 132a by a second length L2. Further, the driver 142 has a retracted configuration, wherein the proximal end 144a of the drive shaft 144 extends out of the proximal end 132a by a third length L3, which is less than the second length L2. The third length L3 can be greater than zero as shown in FIG. 17. Thus, the proximal end 144a can be partially retracted into the proximal end 132a. For example, in FIG. 17, one or both of (i) the surface 101a of the engagement feature 101 and (ii) the distal end 99a of the knob 99 can contact the proximal end 132a of the engagement member 132 so as to limit further translational movement of the first drive shaft portion 146 into the engagement member 132.


Correspondingly, and with reference to FIG. 15, the first drive shaft portion 146 can translate relative to the second drive shaft portion 148 by at least the difference between the second length L2 and the third length L3. The first length L1 of the socket 154 can be greater than or equal to the difference L2−L3 so as to allow the first and second drive shaft portions 146 and 148 to translate relative to one another by the difference L2-L3. Stated differently, the first drive shaft portion 146 can translate relative to the second drive shaft portion 148 by a distance that is less than or equal to the first length L1.


In another example, and with Reference to FIG. 19, the third length L3 can be less than or equal to zero. Thus, when the knob 99 is removed, the proximal end 144a can be retracted so as to be flush with, or extend within, the proximal end 132a of the engagement member 132. Stated differently, the first drive shaft portion 146 can translate into the proximal end 132a of the engagement member 132 by at least the second length L2. Correspondingly, and with reference to FIG. 15, the first drive shaft portion 146 can translate relative to the second drive shaft portion 148 by at least the second length L2. For example, the first length L1 of the socket 154 can be greater than or equal to the second length L2 so as to allow the first and second drive shaft portions 146 and 148 to translate relative to one another by the second length L2.


In operation, an impaction force is applied by an impaction instrument 200 to the proximal end 144a of the drive shaft 144 or to the knob 99. The impaction force causes the drive shaft 144 to move from the extended configuration (e.g., FIG. 16 or FIG. 18) to the retracted configuration (e.g., FIG. 17 or 19) until the impaction force is applied to a proximal end 132a of the engagement member 132 by one or more of (i) the engagement member 101, (ii) the knob 99, and (iii) the impaction instrument. The impaction force is then transmitted down the engagement member 132, through the securement member 102 of the insertion instrument, and to the first and second endplates 32 and 36 of the implant 20.


Referring back to FIGS. 13-15, the driver 142 can further include features that return the drive shaft 144 to the extended configuration after an impaction force is removed and that retain the drive shaft 144 in the extended configuration when an impaction force is not applied. For example, the driver 142 can include a biasing member 160 such as (without limitation) a spring that returns the drive shaft 144 to the extended configuration. To support the biasing member 160, the driver 142 can include a first stop 153 and a second stop 155. In general, the first and second stops 153 and 155 can be supported by one of the first and second drive shaft portions 146 and 148 such that the first and second stops 153 and 155 are spaced from one another along the longitudinal direction L. In FIGS. 13-15, the first and second stops 153 and 155 are supported by the second drive shaft portion 148 and the socket 154 extends into the first drive shaft portion 146. However, it will be understood that the first and second stops 153 and 155 could alternatively be supported by the first drive shaft portion 146 and the socket 154 could extend into the second drive shaft portion 148.


The biasing member 160 can be supported by the drive shaft 144 between the first and second stops 153 and 155. A first end of the biasing member 160 can abut the first stop 153, and the second end of the biasing member 160 can be translatable between the first stop 153 and the second stop 155. The biasing member 160 is configured to apply an outward biasing force to the first and second stops 153 and 155. The outward biasing force causes the second stop 155 to bias the first drive shaft portion 146 in the proximal direction away from the second drive shaft portion 148, while the second drive shaft portion 148 is translatably fixed to the securement member 102 by pin 158.


The first stop 153 can be a collar that is fixed relative to one of the first and second drive shaft portions 146 and 148. The collar can have a cross-sectional dimension that is greater than a cross-sectional dimension of the second drive shaft portion 148. The first stop 153 can have a stop surface 153a that faces in a direction towards the second stop 155. The stop surface 153a can be configured to abut a first end of the biasing member 160. The second stop 155 can be defined by a surface of one of the engagement members 150 and 152.


The driver can include a securement member 164 that is configured to secure one end of the biasing member 160. The securement member can be translatable along the one of the first and second drive shaft portions 146 and 148 so as to allow the biasing member 160 to expand and compress along the longitudinal direction L. In one embodiment, the securement member 164 can be a cap. The securement member 164 can define a recess 164a that extends into the securement member 164 in a direction opposite the first stop 153. The recess 164a can be configured to receive a second end of the biasing member 160. The securement member 164 can further include an opening 164b that extends through the securement member 164 along the longitudinal direction L. The opening 164b can be configured to receive the engagement member 152. Thus, the opening 164b can have a cross-sectional dimension that is greater than a cross-sectional dimension of the engagement member 152 so as to allow the securement member 164 to be received by the engagement member 152. The securement member 164 can further be translatable along the shaft portion between the first stop 153 and the second stop 155.


The driver 142 can further include a clip 162 configured to secure the securement member 164 to the engagement member 152. The clip 162 can define an opening 162a therethrough that has a cross-sectional dimension that is less than a cross-sectional dimension of the second stop 155. The second stop 155 can also have a cross-sectional dimension that is greater than a cross-sectional dimension of the second drive shaft portion 148 between the first and second stops 153 and 155. The clip 162 can further define a slot 162b that is open to the opening 162a. The slot 162a can permit the clip 162 to expand and contact so as to be positionable over the second drive shaft portion 148 between the first and second stops 153 and 155. The slot 162a can further permit the clip 162 to expand and contact so as to be positionable in a groove in the securement member 164. When the clip 162 is received over the second drive shaft portion 148 and in the securement member 164, the clip 162 traps the securement member 164 between the first and second stops 153 and 155 so as to prevent the securement member 164 from translating off of the second drive shaft portion 148 along the proximal direction.


Referring specifically to FIG. 15, in operation, the biasing member 160 applies an outward biasing force to the securement member 164. The outward biasing force causes the securement member 164 to translate along the longitudinal direction L until the securement member 164 abuts the second stop 155. Further, the securement member 164 in turn applies a biasing force to the distal end 146b of the first drive shaft portion 146 so as to bias the first drive shaft portion 146 in the proximal direction away from the second drive shaft portion 148, while the second drive shaft portion 148 is translatably fixed by pin 158. In alternative embodiments, the features can be reversed such that the socket 154 extends into the second drive shaft portion 148, the first and second stops are supported by the first drive shaft portion 146, and the securement member 164 applies a biasing force to the proximal end 148a of the second drive shaft portion 148.


Although the disclosure has been described in detail, it should be understood that various changes, substitutions, and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present disclosure is not intended to be limited to the particular embodiments described in the specification. As one of ordinary skill in the art will readily appreciate from that processes, machines, manufacture, composition of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present disclosure.

Claims
  • 1. An insertion instrument configured to implant an expandable intervertebral implant in an intervertebral space, the insertion instrument comprising: a biasing member;a drive shaft elongate along a longitudinal direction;a drive member disposed at a distal end of the drive shaft and configured to: 1) couple to a complementary driven member of the implant, and 2) iterate the intervertebral implant from a collapsed configuration to an expanded configuration;a securement member arranged relative to the drive shaft such that the securement member is spaced from the drive member along a lateral direction that is perpendicular to the longitudinal direction and such that the drive member is rotatable relative to the securement member to iterate the intervertebral implant from the collapsed configuration to the expanded configuration, the securement member having: at least one guide rail that has a height along a transverse direction sufficient to 1) reside in a corresponding at least one guide channel of both an inferior endplate and a superior endplate of the implant when the implant is in the collapsed configuration, 2) ride along the implant in the at least one guide channel as the implant expands to the expanded configuration, and 3) remain in the corresponding at least one guide channel of both the inferior endplate and the superior endplate when the implant is in the expanded configuration; anda collar that is configured to be inserted in a corresponding groove of a coupler of the implant that is supported by the driven member while the drive member is engaged with the driven member; andan engagement member that is received in the biasing member and threadedly mated with the securement member such that relative rotation between the engagement member and the biasing member in a first direction causes the securement member to travel along the biasing member toward an engaged position in which the securement member is configured to secure to the implant, and relative rotation between the engagement member and the biasing member in a second direction opposite the first direction causes the securement member to travel along the biasing member toward a disengaged position in which the securement member is configured to receive the implant,wherein the transverse direction is perpendicular to each of the longitudinal direction and the lateral direction; andwherein the securement member defines a recess proximal to the collar such that the collar is between the recess and the at least one guide rail with respect to the longitudinal direction, the recess being configured to receive a portion of the coupler of the implant.
  • 2. The insertion instrument of claim 1, wherein at least a portion of the collar is aligned with a portion of the drive member along the lateral direction.
  • 3. The insertion instrument of claim 2, wherein the drive member is configured to be disposed between the at least one guide rail and the collar with respect to the longitudinal direction.
  • 4. The insertion instrument of claim 1, wherein the securement member comprises first and second securement plates, and the at least one guide rail comprises a first guide rail that projects from the first securement plate toward the second securement plate, and a second guide rail the projects from the second securement plate toward the first securement plate.
  • 5. The insertion instrument of claim 4, wherein the drive member extends between the first and second securement plates along the lateral direction.
  • 6. The insertion instrument of claim 4, wherein the first and second securement plates have respective heights along the transverse direction, and the first and second guide rails extend along respective entireties of the heights of the first and second securement plates, respectively.
  • 7. The insertion instrument of claim 4, wherein, in the engaged position, the biasing member applies a biasing force to the first and second securement plates that urge the first and second securement plates toward each other along the lateral direction, and in the disengaged position, the biasing force is removed from the first and second securement plates.
  • 8. The insertion instrument of claim 7, wherein the biasing force is sufficient to retain the first and second guide rails in respective first and second guide channels of the implant both when the implant is in the collapsed configuration and when the implant is in the expanded configuration.
  • 9. The insertion instrument of claim 8, wherein the securement member comprises opposed first and second bearing members that are spaced from each other along the lateral direction and extend from the first and second securement plates, respectively, and the biasing member is configured to bear against the bearing members as it travels toward the engaged position, such that the biasing force is applied to the bearing members.
  • 10. The insertion instrument of claim 9, wherein the first and second bearing members define respective first and second bearing surfaces that flare away from each other as they extend toward the first and second securement plates, respectively, and the biasing member is configured to bear against the bearing surfaces as it travels toward the engaged position, such that the biasing force is applied to the bearing surfaces.
  • 11. The insertion instrument of claim 1, wherein the drive shaft extends into both the engagement member and the securement member.
  • 12. The insertion instrument of claim 11, wherein the engagement member extends into the biasing member.
  • 13. The insertion instrument of claim 8, wherein the securement member comprises a securement shaft, such that the first and second securement plates extend from the securement shaft, wherein the first and second securement plates are resiliently forked so as to be naturally spaced apart a first distance when the biasing member is in the disengaged position, and the first and second securement plates are spaced apart a second distance less than the first distance when the biasing member is in the engaged position.
  • 14. The insertion instrument of claim 8, wherein the securement member further comprises at least one collar that extends from at least one of the first and second securement plates toward the other of the first and second securement plates, wherein the collar is configured to seat in a groove of the driven member.
  • 15. The insertion instrument of claim 14, wherein the collar includes a first collar that extends from the first securement plate toward the second securement plate, and a second collar that extends from the second securement plate toward the first securement plate.
  • 16. The insertion instrument of claim 15, wherein the biasing force is further configured to urge the first and second collars into the groove of the driven member.
  • 17. The insertion instrument of claim 1, wherein: the drive shaft has a proximal end, and the distal end offset from the proximal end of the drive shaft along a distal direction that is oriented along the longitudinal direction; andthe drive shaft is configured such that, when an impaction force is applied by an impaction instrument to the proximal end of the drive shaft, the impaction force causes the drive shaft to move in the distal direction from an extended configuration, wherein the proximal end of the drive shaft extends out of the engagement member in a proximal direction that is oriented along the longitudinal direction, opposite the distal direction, to a retracted configuration, wherein the proximal end of the drive shaft is at least partially retracted into the engagement member, so that the impaction force is applied to the engagement member.
  • 18. An intervertebral implant system comprising: the insertion instrument of claim 1; andthe intervertebral implant of claim 1.
  • 19. The intervertebral implant system as recited in claim 18, wherein the securement member comprises first and second securement plates, and the at least one guide rail comprises a first guide rail that projects from the first securement plate toward the second securement plate, and a second guide rail the projects from the second securement plate toward the first securement plate, andwherein the securement plates are no wider or taller than the intervertebral implant when the implant is in the collapsed configuration.
  • 20. An insertion instrument configured to implant an expandable intervertebral implant in an intervertebral space, the insertion instrument comprising: a biasing member,a securement member configured to couple to both an inferior endplate and a superior endplate of the intervertebral implant;an engagement member coupled to the securement member such that rotation of the engagement member in a first direction causes the securement member to move along the biasing member towards an engaged position in which the securement member is configured to secure to the implant, and rotation of the engagement member in a second direction causes the securement member to move along the biasing member towards a disengaged position in which the securement member is configured to receive the implant; anda driver having: a drive shaft having a proximal drive shaft portion, and a distal drive shaft portion that is offset from the proximal drive portion along distal direction, the distal drive shaft portion being translatably fixed along the distal direction relative to the securement member, anda drive member disposed at the distal end of the distal drive shaft portion, the drive member arranged relative to the securement member such that the drive member is configured to 1) couple to a complementary driven member of the intervertebral implant when the securement member couples to the intervertebral implant, and 2) rotate relative to the securement member so as to iterate the intervertebral implant from a collapsed configuration to an expanded configuration,wherein the drive shaft is configured such that, when an impaction force is applied by an impaction instrument to the proximal drive shaft portion, the impaction force causes the proximal drive shaft portion to translate in the distal direction relative to the distal drive shaft portion and the engagement member from an extended configuration, wherein a proximal end of the drive shaft extends out of the engagement member in a proximal direction, opposite the distal direction, to a retracted configuration, wherein the proximal end of the drive shaft is at least partially retracted into the engagement member, so that the impaction force is applied to the engagement member and not to the distal drive shaft portion.
  • 21. The insertion instrument of claim 20, wherein the proximal and distal drive shaft portions are rotatably coupled to one another.
  • 22. The insertion instrument of claim 20, wherein the distal drive shaft portion is configured to couple to the securement member such that the distal drive shaft portion rotates relative to the securement member and is translatably fixed relative to the securement member with respect to the proximal and distal directions.
  • 23. The insertion instrument of claim 20, wherein the driver includes a biasing element that biases the proximal drive shaft portion to the extended configuration.
CROSS-REFERENCE TO RELATED CASES

This application is a continuation-in-part of U.S. patent application Ser. No. 15/378,724, filed on Dec. 14, 2016, the teachings of all of which are hereby incorporated by reference as if set forth in their entirety herein.

US Referenced Citations (2366)
Number Name Date Kind
1802560 Kerwin Apr 1931 A
1924695 Olson Aug 1933 A
1965653 Kennedy Jul 1934 A
2077804 Morrison Apr 1937 A
2115250 Bruson Apr 1938 A
2121193 Hanicke Jun 1938 A
2170111 Bruson Aug 1939 A
2173655 Neracher et al. Sep 1939 A
2229024 Bruson Jan 1941 A
2243717 Godoy Moreira May 1941 A
2381050 Hardinge Aug 1945 A
2388056 Hendricks Oct 1945 A
2485531 William et al. Oct 1949 A
2489870 Dzus Nov 1949 A
2570465 Lundholm Oct 1951 A
2677369 Knowles May 1954 A
2706701 Hans et al. Apr 1955 A
2710277 Shelanski et al. Jun 1955 A
2826532 Hosmer Mar 1958 A
2900305 Siggia Aug 1959 A
2977315 Scheib et al. Mar 1961 A
3091237 Skinner May 1963 A
3112743 Cochran et al. Dec 1963 A
3115804 Johnson Dec 1963 A
3228828 Romano Jan 1966 A
3312139 Di Cristina Apr 1967 A
3486505 Morrison Dec 1969 A
3489143 Halloran Jan 1970 A
3648294 Shahrestani Mar 1972 A
3698391 Mahony Oct 1972 A
3717655 Godefroi et al. Feb 1973 A
3760802 Fischer et al. Sep 1973 A
3800788 White Apr 1974 A
3805775 Fischer et al. Apr 1974 A
3811449 Gravlee et al. May 1974 A
3842825 Wagner Oct 1974 A
3848601 Ma et al. Nov 1974 A
3855638 Pilliar Dec 1974 A
3867728 Stubstad et al. Feb 1975 A
3875595 Froning Apr 1975 A
3889665 Ling et al. Jun 1975 A
3964480 Froning Jun 1976 A
3986504 Avila Oct 1976 A
4013071 Rosenberg Mar 1977 A
4052988 Doddi et al. Oct 1977 A
4091806 Aginsky May 1978 A
4175555 Herbert Nov 1979 A
4236512 Aginsky Dec 1980 A
4249435 Villeneuve Feb 1981 A
4262665 Roalstad et al. Apr 1981 A
4262676 Jamshidi Apr 1981 A
4274163 Malcom et al. Jun 1981 A
4275717 Bolesky Jun 1981 A
4312337 Donohue Jan 1982 A
4312353 Shahbabian Jan 1982 A
4313434 Segal Feb 1982 A
4341206 Perrett et al. Jul 1982 A
4349921 Kuntz Sep 1982 A
4350151 Scott Sep 1982 A
4351069 Ballintyn et al. Sep 1982 A
4352883 Lim Oct 1982 A
4369790 McCarthy Jan 1983 A
4399814 Pratt et al. Aug 1983 A
4401112 Rezaian Aug 1983 A
4401433 Luther Aug 1983 A
4409974 Freedland Oct 1983 A
4440921 Allcock et al. Apr 1984 A
4449532 Storz May 1984 A
4451256 Weikl et al. May 1984 A
4456005 Lichty Jun 1984 A
4462394 Jacobs Jul 1984 A
4463753 Gustilo Aug 1984 A
4466435 Murray Aug 1984 A
4467479 Brody Aug 1984 A
4488543 Tornier Dec 1984 A
4488549 Lee et al. Dec 1984 A
4494535 Haig Jan 1985 A
4495174 Allcock et al. Jan 1985 A
4532660 Field Aug 1985 A
4537185 Stednitz Aug 1985 A
4542539 Rowe et al. Sep 1985 A
4545374 Jacobson Oct 1985 A
4562598 Kranz Jan 1986 A
4573448 Kambin Mar 1986 A
4595006 Burke et al. Jun 1986 A
4601710 Moll Jul 1986 A
4625722 Murray Dec 1986 A
4625725 Davison et al. Dec 1986 A
4627434 Murray Dec 1986 A
4628945 Johnson, Jr. Dec 1986 A
4629450 Suzuki et al. Dec 1986 A
4630616 Tretinyak Dec 1986 A
4632101 Freedland Dec 1986 A
4640271 Lower Feb 1987 A
4641640 Griggs Feb 1987 A
4645503 Lin et al. Feb 1987 A
4651717 Jakubczak Mar 1987 A
4653489 Tronzo Mar 1987 A
4665906 Jervis May 1987 A
4667663 Miyata May 1987 A
4686973 Frisch Aug 1987 A
4686984 Bonnet Aug 1987 A
4688561 Reese Aug 1987 A
4697584 Haynes Oct 1987 A
4706670 Andersen et al. Nov 1987 A
4714469 Kenna Dec 1987 A
4714478 Fischer Dec 1987 A
4721103 Freedland Jan 1988 A
4723544 Moore et al. Feb 1988 A
4743256 Brantigan May 1988 A
4743257 Toermaelae et al. May 1988 A
4759766 Buettner-Janz et al. Jul 1988 A
4760843 Fischer et al. Aug 1988 A
4772287 Ray et al. Sep 1988 A
4790304 Rosenberg Dec 1988 A
4790817 Luther Dec 1988 A
4796612 Reese Jan 1989 A
4802479 Haber et al. Feb 1989 A
4815909 Simons Mar 1989 A
4827917 Brumfield May 1989 A
4834069 Umeda May 1989 A
4838282 Strasser et al. Jun 1989 A
4858601 Glisson Aug 1989 A
4862891 Smith Sep 1989 A
4863476 Shepperd Sep 1989 A
4870153 Matzner et al. Sep 1989 A
4871366 Von et al. Oct 1989 A
4873976 Schreiber Oct 1989 A
4878915 Brantigan Nov 1989 A
4880622 Allcock et al. Nov 1989 A
4888022 Huebsch Dec 1989 A
4888024 Powlan Dec 1989 A
4892550 Huebsch Jan 1990 A
4896662 Noble Jan 1990 A
4898186 Ikada et al. Feb 1990 A
4898577 Badger et al. Feb 1990 A
4903692 Reese Feb 1990 A
4904261 Dove et al. Feb 1990 A
4911718 Lee et al. Mar 1990 A
4917554 Bronn Apr 1990 A
4932969 Frey et al. Jun 1990 A
4940467 Tronzo Jul 1990 A
4941466 Romano Jul 1990 A
4946378 Hirayama et al. Aug 1990 A
4959064 Engelhardt Sep 1990 A
4961740 Ray et al. Oct 1990 A
4963144 Huene Oct 1990 A
4966587 Baumgart Oct 1990 A
4968317 Toermaelae et al. Nov 1990 A
4969888 Scholten et al. Nov 1990 A
4978334 Toye et al. Dec 1990 A
4978349 Frigg Dec 1990 A
4981482 Ichikawa Jan 1991 A
4988351 Paulos et al. Jan 1991 A
4994027 Farrell Feb 1991 A
5002557 Hasson Mar 1991 A
5011484 Breard Apr 1991 A
5013315 Barrows May 1991 A
5013316 Goble et al. May 1991 A
5015247 Michelson May 1991 A
5015255 Kuslich May 1991 A
5030233 Ducheyne Jul 1991 A
5051189 Farrah Sep 1991 A
5053035 McLaren Oct 1991 A
5055104 Ray Oct 1991 A
5059193 Kuslich Oct 1991 A
5062849 Schelhas Nov 1991 A
5071435 Fuchs et al. Dec 1991 A
5071437 Steffee Dec 1991 A
5080662 Paul Jan 1992 A
5084043 Hertzmann et al. Jan 1992 A
5092891 Kummer et al. Mar 1992 A
5098241 Aldridge et al. Mar 1992 A
5098433 Freedland Mar 1992 A
5098435 Stednitz et al. Mar 1992 A
5102413 Poddar Apr 1992 A
5108404 Scholten et al. Apr 1992 A
5114407 Burbank May 1992 A
5116336 Frigg May 1992 A
5120171 Lasner Jun 1992 A
5122130 Keller Jun 1992 A
5122133 Evans Jun 1992 A
5122141 Simpson et al. Jun 1992 A
5123926 Pisharodi Jun 1992 A
5133755 Brekke Jul 1992 A
5134477 Knauer et al. Jul 1992 A
5139486 Moss Aug 1992 A
5147366 Arroyo et al. Sep 1992 A
5158543 Lazarus Oct 1992 A
5163989 Campbell et al. Nov 1992 A
5167663 Brumfield Dec 1992 A
5167664 Hodorek Dec 1992 A
5167665 McKinney Dec 1992 A
5169400 Muehling et al. Dec 1992 A
5171278 Pisharodi Dec 1992 A
5171279 Mathews Dec 1992 A
5171280 Baumgartner Dec 1992 A
5176651 Allgood et al. Jan 1993 A
5176683 Kimsey et al. Jan 1993 A
5176692 Wilk et al. Jan 1993 A
5176697 Hasson et al. Jan 1993 A
5178501 Carstairs Jan 1993 A
5183052 Terwilliger Feb 1993 A
5183464 Dubrul et al. Feb 1993 A
5188118 Terwilliger Feb 1993 A
5192327 Brantigan Mar 1993 A
5195506 Hulfish Mar 1993 A
5201742 Hasson Apr 1993 A
5217462 Asnis et al. Jun 1993 A
5217486 Rice et al. Jun 1993 A
5224952 Deniega et al. Jul 1993 A
5228441 Lundquist Jul 1993 A
5234431 Keller Aug 1993 A
5241972 Bonati Sep 1993 A
5242410 Melker Sep 1993 A
5242447 Borzone Sep 1993 A
5242448 Pettine et al. Sep 1993 A
5242879 Abe et al. Sep 1993 A
5246441 Ross et al. Sep 1993 A
5250049 Michael Oct 1993 A
5257632 Turkel et al. Nov 1993 A
5263953 Bagby Nov 1993 A
5269797 Bonati et al. Dec 1993 A
5280782 Wilk Jan 1994 A
5285795 Ryan et al. Feb 1994 A
5286001 Rafeld Feb 1994 A
5290243 Chodorow et al. Mar 1994 A
5290312 Kojimoto et al. Mar 1994 A
5300074 Frigg Apr 1994 A
5303718 Krajicek Apr 1994 A
5304142 Liebl et al. Apr 1994 A
5306307 Senter et al. Apr 1994 A
5306308 Gross et al. Apr 1994 A
5306309 Wagner et al. Apr 1994 A
5306310 Siebels Apr 1994 A
5308327 Heaven et al. May 1994 A
5308352 Koutrouvelis May 1994 A
5312410 Miller et al. May 1994 A
5312417 Wilk May 1994 A
5314477 Marnay May 1994 A
5322505 Krause et al. Jun 1994 A
5324261 Amundson et al. Jun 1994 A
5330429 Noguchi et al. Jul 1994 A
5331975 Bonutti Jul 1994 A
5334184 Bimman Aug 1994 A
5334204 Clewett et al. Aug 1994 A
5342365 Waldman Aug 1994 A
5342382 Brinkerhoff et al. Aug 1994 A
5344252 Kakimoto Sep 1994 A
5354298 Lee et al. Oct 1994 A
5361752 Moll et al. Nov 1994 A
5364398 Chapman et al. Nov 1994 A
5370646 Reese et al. Dec 1994 A
5370647 Graber et al. Dec 1994 A
5370661 Branch Dec 1994 A
5370697 Baumgartner Dec 1994 A
5372660 Davidson et al. Dec 1994 A
5374267 Siegal Dec 1994 A
5382248 Jacobson et al. Jan 1995 A
5383932 Wilson et al. Jan 1995 A
5385151 Scarfone et al. Jan 1995 A
5387213 Breard et al. Feb 1995 A
5387215 Fisher Feb 1995 A
5390683 Pisharodi Feb 1995 A
5395317 Kambin Mar 1995 A
5395371 Miller et al. Mar 1995 A
5397364 Kozak et al. Mar 1995 A
5401269 Buettner-Janz et al. Mar 1995 A
5407430 Peters Apr 1995 A
5410016 Hubbell et al. Apr 1995 A
5415661 Holmes May 1995 A
5423816 Lin Jun 1995 A
5423817 Lin Jun 1995 A
5423850 Berger Jun 1995 A
5424773 Saito Jun 1995 A
5425773 Boyd et al. Jun 1995 A
5431658 Moskovich Jul 1995 A
5441538 Bonutti Aug 1995 A
5443514 Steffee Aug 1995 A
5449359 Groiso Sep 1995 A
5449361 Preissman Sep 1995 A
5452748 Simmons et al. Sep 1995 A
5454365 Bonutti Oct 1995 A
5454790 Dubrul Oct 1995 A
5454827 Aust et al. Oct 1995 A
5456686 Klapper et al. Oct 1995 A
5458641 Ramirez Jimenez Oct 1995 A
5458643 Oka et al. Oct 1995 A
5462563 Shearer et al. Oct 1995 A
5464427 Curtis et al. Nov 1995 A
5468245 Vargas, III Nov 1995 A
5470333 Ray Nov 1995 A
5472426 Bonati et al. Dec 1995 A
5474539 Costa et al. Dec 1995 A
5480400 Berger Jan 1996 A
5484437 Michelson Jan 1996 A
5486190 Green Jan 1996 A
5496318 Howland et al. Mar 1996 A
5498265 Asnis et al. Mar 1996 A
5501695 Anspach et al. Mar 1996 A
5505710 Dorsey, III Apr 1996 A
5507816 Bullivant Apr 1996 A
5509923 Middleman et al. Apr 1996 A
5512037 Russell et al. Apr 1996 A
5514143 Bonutti et al. May 1996 A
5514153 Bonutti May 1996 A
5514180 Heggeness et al. May 1996 A
5520690 Errico et al. May 1996 A
5520896 De et al. May 1996 A
5522398 Goldenberg et al. Jun 1996 A
5522790 Moll et al. Jun 1996 A
5522846 Bonutti Jun 1996 A
5522895 Mikos Jun 1996 A
5522899 Michelson Jun 1996 A
5527312 Ray Jun 1996 A
5527343 Bonutti Jun 1996 A
5527624 Higgins et al. Jun 1996 A
5531856 Moll et al. Jul 1996 A
5534023 Henley Jul 1996 A
5534029 Shima Jul 1996 A
5534030 Navarro et al. Jul 1996 A
5536127 Pennig Jul 1996 A
5538009 Byrne et al. Jul 1996 A
5540688 Navas Jul 1996 A
5540693 Fisher Jul 1996 A
5540711 Kieturakis et al. Jul 1996 A
5545164 Howland Aug 1996 A
5545222 Bonutti Aug 1996 A
5549610 Russell et al. Aug 1996 A
5549679 Kuslich Aug 1996 A
5554191 Lahille et al. Sep 1996 A
5556431 Buettner-Janz Sep 1996 A
5558674 Heggeness et al. Sep 1996 A
D374287 Goble et al. Oct 1996 S
5562736 Ray et al. Oct 1996 A
5562738 Boyd et al. Oct 1996 A
5564926 Braanemark Oct 1996 A
5569248 Mathews Oct 1996 A
5569251 Baker et al. Oct 1996 A
5569290 McAfee Oct 1996 A
5569548 Koike et al. Oct 1996 A
5571109 Bertagnoli Nov 1996 A
5571189 Kuslich Nov 1996 A
5571190 Ulrich et al. Nov 1996 A
5575790 Chen et al. Nov 1996 A
5591168 Judet et al. Jan 1997 A
5593409 Michelson Jan 1997 A
5601556 Pisharodi Feb 1997 A
5601572 Middleman et al. Feb 1997 A
5609634 Voydeville Mar 1997 A
5609635 Michelson Mar 1997 A
5613950 Yoon Mar 1997 A
5618142 Sonden et al. Apr 1997 A
5618314 Harwin et al. Apr 1997 A
5624447 Myers Apr 1997 A
5626613 Schmieding May 1997 A
5628751 Sander et al. May 1997 A
5628752 Asnis et al. May 1997 A
5632746 Middleman et al. May 1997 A
5639276 Weinstock et al. Jun 1997 A
5643320 Lower et al. Jul 1997 A
5645589 Li Jul 1997 A
5645596 Kim et al. Jul 1997 A
5645597 Krapiva Jul 1997 A
5645599 Samani Jul 1997 A
5647857 Anderson et al. Jul 1997 A
5649931 Bryant et al. Jul 1997 A
5653763 Errico et al. Aug 1997 A
5658335 Allen Aug 1997 A
5662683 Kay Sep 1997 A
5665095 Jacobson et al. Sep 1997 A
5665122 Kambin Sep 1997 A
5667508 Errico et al. Sep 1997 A
5669915 Caspar et al. Sep 1997 A
5669926 Aust et al. Sep 1997 A
5674294 Bainville et al. Oct 1997 A
5674295 Ray et al. Oct 1997 A
5674296 Bryan et al. Oct 1997 A
5676701 Yuan et al. Oct 1997 A
5679723 Cooper et al. Oct 1997 A
5681263 Flesch Oct 1997 A
5683465 Shinn et al. Nov 1997 A
5693100 Pisharodi Dec 1997 A
5695513 Johnson et al. Dec 1997 A
5697977 Pisharodi Dec 1997 A
5700239 Yoon Dec 1997 A
5702391 Lin Dec 1997 A
5702449 McKay Dec 1997 A
5702450 Bisserie Dec 1997 A
5702453 Rabbe et al. Dec 1997 A
5702454 Baumgartner Dec 1997 A
5707359 Bufalini Jan 1998 A
5713870 Yoon Feb 1998 A
5713903 Sander et al. Feb 1998 A
5716415 Steffee Feb 1998 A
5716416 Lin Feb 1998 A
5720753 Sander et al. Feb 1998 A
5725541 Anspach et al. Mar 1998 A
5725588 Errico et al. Mar 1998 A
5728097 Mathews Mar 1998 A
5728116 Rosenman Mar 1998 A
5735853 Olerud Apr 1998 A
5741253 Michelson Apr 1998 A
5741282 Anspach et al. Apr 1998 A
5743881 Demco Apr 1998 A
5743912 Lahille et al. Apr 1998 A
5743914 Skiba Apr 1998 A
5749879 Middleman et al. May 1998 A
5749889 Bacich et al. May 1998 A
5752969 Cunci et al. May 1998 A
5755797 Baumgartner May 1998 A
5755798 Papavero et al. May 1998 A
5756127 Grisoni et al. May 1998 A
5762500 Lazarof Jun 1998 A
5762629 Kambin Jun 1998 A
5766252 Henry et al. Jun 1998 A
5772661 Michelson Jun 1998 A
5772662 Chapman et al. Jun 1998 A
5772678 Thomason et al. Jun 1998 A
5776156 Shikhman Jul 1998 A
5782800 Yoon Jul 1998 A
5782832 Larsen et al. Jul 1998 A
5782865 Grotz Jul 1998 A
5788703 Mittelmeier et al. Aug 1998 A
5792044 Foley et al. Aug 1998 A
5797909 Michelson Aug 1998 A
5800549 Bao et al. Sep 1998 A
5807275 Jamshidi Sep 1998 A
5807327 Green et al. Sep 1998 A
5810721 Mueller et al. Sep 1998 A
5810821 Vandewalle Sep 1998 A
5810866 Yoon Sep 1998 A
5814084 Grivas et al. Sep 1998 A
5820628 Middleman et al. Oct 1998 A
5823979 Mezo Oct 1998 A
5824084 Muschler Oct 1998 A
5824093 Ray et al. Oct 1998 A
5824094 Serhan et al. Oct 1998 A
5827289 Reiley et al. Oct 1998 A
5833657 Reinhardt et al. Nov 1998 A
5836948 Zucherman et al. Nov 1998 A
5837752 Shastri et al. Nov 1998 A
5846259 Berthiaume Dec 1998 A
5848986 Lundquist et al. Dec 1998 A
5849004 Bramlet Dec 1998 A
5851212 Zirps et al. Dec 1998 A
5851216 Allen Dec 1998 A
5860973 Michelson Jan 1999 A
5860977 Zucherman et al. Jan 1999 A
5865846 Bryan et al. Feb 1999 A
5865848 Baker Feb 1999 A
5871485 Rao et al. Feb 1999 A
5873854 Wolvek Feb 1999 A
5876404 Zucherman et al. Mar 1999 A
5888220 Felt et al. Mar 1999 A
5888223 Bray, Jr. Mar 1999 A
5888224 Beckers et al. Mar 1999 A
5888226 Rogozinski Mar 1999 A
5888227 Cottle Mar 1999 A
5888228 Knothe et al. Mar 1999 A
5893850 Cachia Apr 1999 A
5893889 Harrington Apr 1999 A
5893890 Pisharodi Apr 1999 A
5895428 Berry Apr 1999 A
5902231 Foley et al. May 1999 A
5904690 Middleman et al. May 1999 A
5904696 Rosenman May 1999 A
5908422 Bresina Jun 1999 A
5919235 Husson et al. Jul 1999 A
5925074 Gingras et al. Jul 1999 A
5928235 Friedl Jul 1999 A
5928244 Tovey et al. Jul 1999 A
5928422 Uchiyama et al. Jul 1999 A
5931870 Cuckler et al. Aug 1999 A
5935129 McDevitt et al. Aug 1999 A
5947999 Groiso Sep 1999 A
5948000 Larsen et al. Sep 1999 A
5954722 Bono Sep 1999 A
5954747 Clark Sep 1999 A
5957902 Teves Sep 1999 A
5957924 Toermaelae et al. Sep 1999 A
5961554 Janson et al. Oct 1999 A
5964730 Williams et al. Oct 1999 A
5964761 Kambin Oct 1999 A
5967783 Ura Oct 1999 A
5967970 Cowan et al. Oct 1999 A
5968044 Nicholson et al. Oct 1999 A
5968098 Winslow Oct 1999 A
5972015 Scribner et al. Oct 1999 A
5972385 Liu et al. Oct 1999 A
5976139 Bramlet Nov 1999 A
5976146 Ogawa et al. Nov 1999 A
5976186 Bao et al. Nov 1999 A
5980522 Koros et al. Nov 1999 A
5984927 Wenstrom et al. Nov 1999 A
5984966 Kiema et al. Nov 1999 A
5985307 Hanson et al. Nov 1999 A
5989255 Pepper et al. Nov 1999 A
5989291 Ralph et al. Nov 1999 A
5993459 Larsen et al. Nov 1999 A
5997510 Schwemberger Dec 1999 A
5997538 Asnis et al. Dec 1999 A
5997541 Schenk Dec 1999 A
6001100 Sherman et al. Dec 1999 A
6001101 Augagneur et al. Dec 1999 A
6004327 Asnis et al. Dec 1999 A
6005161 Brekke Dec 1999 A
6007519 Rosselli Dec 1999 A
6007566 Wenstrom, Jr. Dec 1999 A
6007580 Lehto et al. Dec 1999 A
6010508 Bradley Jan 2000 A
6010513 Toermaelae et al. Jan 2000 A
6012494 Balazs Jan 2000 A
6015410 Toermaelae et al. Jan 2000 A
6015436 Schoenhoeffer Jan 2000 A
6019762 Cole Feb 2000 A
6019792 Cauthen Feb 2000 A
6019793 Perren et al. Feb 2000 A
6022350 Ganem Feb 2000 A
6022352 Vandewalle Feb 2000 A
6030162 Huebner Feb 2000 A
6030364 Durgin et al. Feb 2000 A
6030401 Marino Feb 2000 A
6033406 Mathews Mar 2000 A
6033412 Losken et al. Mar 2000 A
6036701 Rosenman Mar 2000 A
6039740 Olerud Mar 2000 A
6039761 Li et al. Mar 2000 A
6039763 Shelokov Mar 2000 A
6045552 Zucherman et al. Apr 2000 A
6045579 Hochschuler et al. Apr 2000 A
6048309 Flom et al. Apr 2000 A
6048342 Zucherman et al. Apr 2000 A
6048346 Reiley et al. Apr 2000 A
6048360 Khosravi et al. Apr 2000 A
6053935 Brenneman et al. Apr 2000 A
6063121 Xavier et al. May 2000 A
6066142 Serbousek et al. May 2000 A
6066154 Reiley et al. May 2000 A
6068630 Zucherman et al. May 2000 A
6068648 Cole et al. May 2000 A
6071982 Wise et al. Jun 2000 A
6073051 Sharkey et al. Jun 2000 A
6074390 Zucherman et al. Jun 2000 A
6080155 Michelson Jun 2000 A
6080193 Hochschuler et al. Jun 2000 A
6083225 Winslow et al. Jul 2000 A
6083244 Lubbers et al. Jul 2000 A
6090112 Zucherman et al. Jul 2000 A
6090143 Meriwether et al. Jul 2000 A
6096038 Michelson Aug 2000 A
6096080 Nicholson et al. Aug 2000 A
6099531 Bonutti Aug 2000 A
6102914 Bulstra et al. Aug 2000 A
6102950 Vaccaro Aug 2000 A
6106557 Robioneck et al. Aug 2000 A
6110210 Norton et al. Aug 2000 A
6113624 Bezwada et al. Sep 2000 A
6113636 Ogle Sep 2000 A
6113637 Gill et al. Sep 2000 A
6113638 Williams et al. Sep 2000 A
6113640 Toermaelae et al. Sep 2000 A
6117174 Nolan Sep 2000 A
6119044 Kuzma Sep 2000 A
6123705 Michelson Sep 2000 A
6123711 Winters Sep 2000 A
6126660 Dietz Oct 2000 A
6126661 Faccioli et al. Oct 2000 A
6126663 Hair Oct 2000 A
6126686 Badylak et al. Oct 2000 A
6126689 Brett Oct 2000 A
6127597 Beyar et al. Oct 2000 A
6129762 Li Oct 2000 A
6129763 Chauvin et al. Oct 2000 A
6132435 Young Oct 2000 A
6136031 Middleton Oct 2000 A
6139579 Steffee et al. Oct 2000 A
6146384 Lee et al. Nov 2000 A
6146387 Trott et al. Nov 2000 A
6146420 McKay Nov 2000 A
6146421 Gordon et al. Nov 2000 A
6147135 Yuan et al. Nov 2000 A
6149652 Zucherman et al. Nov 2000 A
6152926 Zucherman et al. Nov 2000 A
6156038 Zucherman et al. Dec 2000 A
6159179 Simonson Dec 2000 A
6159211 Boriani et al. Dec 2000 A
6159244 Suddaby Dec 2000 A
6161350 Espinosa Dec 2000 A
6162234 Freedland et al. Dec 2000 A
6162236 Osada Dec 2000 A
6162252 Kuras et al. Dec 2000 A
6165218 Husson et al. Dec 2000 A
6165486 Marra et al. Dec 2000 A
6168595 Durham et al. Jan 2001 B1
6168597 Biedermann et al. Jan 2001 B1
6171610 Vacanti et al. Jan 2001 B1
6174337 Keenan Jan 2001 B1
6175758 Kambin Jan 2001 B1
6176882 Biedermann et al. Jan 2001 B1
6179794 Burras Jan 2001 B1
6179873 Zientek Jan 2001 B1
6183471 Zucherman et al. Feb 2001 B1
6183472 Lutz Feb 2001 B1
6183474 Bramlet et al. Feb 2001 B1
6183517 Suddaby Feb 2001 B1
6187043 Ledergerber Feb 2001 B1
6187048 Milner et al. Feb 2001 B1
6190387 Zucherman et al. Feb 2001 B1
6190414 Young et al. Feb 2001 B1
6193757 Foley et al. Feb 2001 B1
6197033 Haid et al. Mar 2001 B1
6197041 Shichman et al. Mar 2001 B1
6197065 Martin et al. Mar 2001 B1
6197325 MacPhee et al. Mar 2001 B1
6200322 Branch et al. Mar 2001 B1
6203565 Bonutti et al. Mar 2001 B1
6206826 Mathews et al. Mar 2001 B1
6206922 Zdeblick et al. Mar 2001 B1
D439980 Reiley et al. Apr 2001 S
6213957 Milliman et al. Apr 2001 B1
6214368 Lee et al. Apr 2001 B1
6217509 Foley et al. Apr 2001 B1
6217579 Koros Apr 2001 B1
6221082 Marino et al. Apr 2001 B1
6224603 Marino May 2001 B1
6224631 Kohrs May 2001 B1
6224894 Jamiolkowski et al. May 2001 B1
6228058 Dennis et al. May 2001 B1
6231606 Graf et al. May 2001 B1
6235030 Zucherman et al. May 2001 B1
6235043 Reiley et al. May 2001 B1
6238397 Zucherman et al. May 2001 B1
6238491 Davidson et al. May 2001 B1
6241734 Scribner et al. Jun 2001 B1
6241769 Nicholson et al. Jun 2001 B1
6245107 Ferree Jun 2001 B1
6248108 Toermaelae et al. Jun 2001 B1
6248110 Reiley et al. Jun 2001 B1
6248131 Felt et al. Jun 2001 B1
6251111 Barker et al. Jun 2001 B1
6251140 Marino et al. Jun 2001 B1
6261289 Levy Jul 2001 B1
6264676 Gellman et al. Jul 2001 B1
6264695 Stoy Jul 2001 B1
6267763 Castro Jul 2001 B1
6267765 Taylor et al. Jul 2001 B1
6267767 Strobel et al. Jul 2001 B1
6277149 Boyle et al. Aug 2001 B1
6280444 Zucherman et al. Aug 2001 B1
6280456 Scribner et al. Aug 2001 B1
6280474 Cassidy et al. Aug 2001 B1
6280475 Bao et al. Aug 2001 B1
6287313 Sasso Sep 2001 B1
6290724 Marino Sep 2001 B1
6293909 Chu et al. Sep 2001 B1
6293952 Brosens et al. Sep 2001 B1
D449691 Reiley et al. Oct 2001 S
6296647 Robioneck et al. Oct 2001 B1
6302914 Michelson Oct 2001 B1
6306136 Baccelli Oct 2001 B1
6306177 Felt et al. Oct 2001 B1
6312443 Stone Nov 2001 B1
6319254 Giet et al. Nov 2001 B1
6319272 Brenneman et al. Nov 2001 B1
6331312 Lee et al. Dec 2001 B1
6332882 Zucherman et al. Dec 2001 B1
6332883 Zucherman et al. Dec 2001 B1
6332894 Stalcup et al. Dec 2001 B1
6332895 Suddaby Dec 2001 B1
6346092 Leschinsky Feb 2002 B1
6348053 Cachia Feb 2002 B1
6355043 Adam Mar 2002 B1
6361537 Anderson Mar 2002 B1
6361538 Fenaroli et al. Mar 2002 B1
6361557 Gittings et al. Mar 2002 B1
6364828 Yeung et al. Apr 2002 B1
6364897 Bonutti Apr 2002 B1
6368325 McKinley et al. Apr 2002 B1
6368350 Erickson et al. Apr 2002 B1
6368351 Glenn et al. Apr 2002 B1
6371971 Tsugita et al. Apr 2002 B1
6371989 Chauvin et al. Apr 2002 B1
6375681 Truscott Apr 2002 B1
6375682 Fleischmann et al. Apr 2002 B1
6379355 Zucherman et al. Apr 2002 B1
6379363 Herrington et al. Apr 2002 B1
6387130 Stone et al. May 2002 B1
6402750 Atkinson et al. Jun 2002 B1
6409766 Brett Jun 2002 B1
6409767 Perice et al. Jun 2002 B1
6413278 Marchosky Jul 2002 B1
6416551 Keller Jul 2002 B1
6419641 Mark et al. Jul 2002 B1
6419676 Zucherman et al. Jul 2002 B1
6419677 Zucherman et al. Jul 2002 B2
6419704 Ferree Jul 2002 B1
6419705 Erickson Jul 2002 B1
6419706 Graf Jul 2002 B1
6423061 Bryant Jul 2002 B1
6423067 Eisermann Jul 2002 B1
6423071 Lawson Jul 2002 B1
6423083 Reiley et al. Jul 2002 B2
6423089 Gingras et al. Jul 2002 B1
6425887 McGuckin et al. Jul 2002 B1
6425919 Lambrecht Jul 2002 B1
6425920 Hamada Jul 2002 B1
6428541 Boyd et al. Aug 2002 B1
6428556 Chin Aug 2002 B1
6436140 Liu et al. Aug 2002 B1
6436143 Ross et al. Aug 2002 B1
6440138 Reiley et al. Aug 2002 B1
6440154 Gellman et al. Aug 2002 B2
6440169 Elberg et al. Aug 2002 B1
6443989 Jackson Sep 2002 B1
6447527 Thompson et al. Sep 2002 B1
6447540 Fontaine et al. Sep 2002 B1
6450989 Dubrul et al. Sep 2002 B2
6451019 Zucherman et al. Sep 2002 B1
6451020 Zucherman et al. Sep 2002 B1
6454806 Cohen et al. Sep 2002 B1
6454807 Jackson Sep 2002 B1
6458134 Songer et al. Oct 2002 B1
6468277 Justin et al. Oct 2002 B1
6468279 Reo Oct 2002 B1
6468309 Lieberman Oct 2002 B1
6468310 Ralph et al. Oct 2002 B1
6471724 Zdeblick et al. Oct 2002 B2
6475226 Belef et al. Nov 2002 B1
6478029 Boyd et al. Nov 2002 B1
6478796 Zucherman et al. Nov 2002 B2
6478805 Marino et al. Nov 2002 B1
6482235 Lambrecht et al. Nov 2002 B1
6485491 Farris et al. Nov 2002 B1
6485518 Cornwall et al. Nov 2002 B1
D467657 Scribner Dec 2002 S
6488693 Gannoe et al. Dec 2002 B2
6488710 Besselink Dec 2002 B2
6489309 Singh et al. Dec 2002 B1
6491626 Stone et al. Dec 2002 B1
6491695 Roggenbuck Dec 2002 B1
6491714 Bennett Dec 2002 B1
6491724 Ferree Dec 2002 B1
6494860 Rocamora et al. Dec 2002 B2
6494883 Ferree Dec 2002 B1
6494893 Dubrul et al. Dec 2002 B2
6498421 Oh et al. Dec 2002 B1
6500178 Zucherman et al. Dec 2002 B2
6500205 Michelson Dec 2002 B1
6506192 Gertzman et al. Jan 2003 B1
6508839 Lambrecht et al. Jan 2003 B1
6511471 Rosenman et al. Jan 2003 B2
6511481 Von et al. Jan 2003 B2
6512958 Swoyer et al. Jan 2003 B1
D469871 Sand Feb 2003 S
6514256 Zucherman et al. Feb 2003 B2
6517543 Berrevoets et al. Feb 2003 B1
6517580 Ramadan et al. Feb 2003 B1
6520907 Foley et al. Feb 2003 B1
6520991 Huene Feb 2003 B2
D472323 Sand Mar 2003 S
6527772 Enayati Mar 2003 B2
6527774 Lieberman Mar 2003 B2
6527803 Crozet et al. Mar 2003 B1
6527804 Gauchet et al. Mar 2003 B1
6530930 Marino et al. Mar 2003 B1
6533791 Betz et al. Mar 2003 B1
6533797 Stone et al. Mar 2003 B1
6533818 Weber et al. Mar 2003 B1
6540747 Marino Apr 2003 B1
6544265 Lieberman Apr 2003 B2
6547793 McGuire Apr 2003 B1
6547795 Schneiderman Apr 2003 B2
6547823 Scarborough et al. Apr 2003 B2
6551319 Lieberman Apr 2003 B2
6551322 Lieberman Apr 2003 B1
6554831 Rivard et al. Apr 2003 B1
6554833 Levy et al. Apr 2003 B2
6554852 Oberlander Apr 2003 B1
6558389 Clark et al. May 2003 B2
6558390 Cragg May 2003 B2
6558424 Thalgott May 2003 B2
6562046 Sasso May 2003 B2
6562049 Norlander et al. May 2003 B1
6562072 Fuss et al. May 2003 B1
6562074 Gerbec et al. May 2003 B2
6575919 Reiley et al. Jun 2003 B1
6575979 Cragg Jun 2003 B1
6576016 Hochshuler et al. Jun 2003 B1
6579291 Keith et al. Jun 2003 B1
6579293 Chandran Jun 2003 B1
6579320 Gauchet et al. Jun 2003 B1
6582390 Sanderson Jun 2003 B1
6582431 Ray Jun 2003 B1
6582433 Yun Jun 2003 B2
6582437 Dorchak et al. Jun 2003 B2
6582441 He et al. Jun 2003 B1
6582453 Tran et al. Jun 2003 B1
6582466 Gauchet Jun 2003 B1
6582467 Teitelbaum et al. Jun 2003 B1
6582468 Gauchet Jun 2003 B1
6585730 Foerster Jul 2003 B1
6585740 Schlapfer et al. Jul 2003 B2
6589240 Hinchliffe Jul 2003 B2
6589244 Sevrain et al. Jul 2003 B1
6589249 Sater et al. Jul 2003 B2
6592553 Zhang et al. Jul 2003 B2
6592624 Fraser et al. Jul 2003 B1
6592625 Cauthen Jul 2003 B2
6595998 Johnson et al. Jul 2003 B2
6596008 Kambin Jul 2003 B1
6599294 Fuss et al. Jul 2003 B2
6599297 Carlsson et al. Jul 2003 B1
6602293 Biermann et al. Aug 2003 B1
6607530 Carl et al. Aug 2003 B1
6607544 Boucher et al. Aug 2003 B1
6607558 Kuras Aug 2003 B2
6610091 Reiley Aug 2003 B1
6610094 Husson Aug 2003 B2
6613050 Wagner et al. Sep 2003 B1
6613054 Scribner et al. Sep 2003 B2
6616678 Nishtala et al. Sep 2003 B2
6620196 Trieu Sep 2003 B1
6623505 Scribner et al. Sep 2003 B2
6626943 Eberlein et al. Sep 2003 B2
6626944 Taylor Sep 2003 B1
6632224 Cachia et al. Oct 2003 B2
6632235 Weikel et al. Oct 2003 B2
6635059 Randall et al. Oct 2003 B2
6635362 Zheng Oct 2003 B2
D482787 Reiss Nov 2003 S
6641564 Kraus Nov 2003 B1
6641587 Scribner et al. Nov 2003 B2
6641614 Wagner et al. Nov 2003 B1
6645213 Sand et al. Nov 2003 B2
6645248 Casutt Nov 2003 B2
6648890 Culbert et al. Nov 2003 B2
6648893 Dudasik Nov 2003 B2
6648917 Gerbec et al. Nov 2003 B2
6652527 Zucherman et al. Nov 2003 B2
6652592 Grooms et al. Nov 2003 B1
D483495 Sand Dec 2003 S
6655962 Kennard Dec 2003 B1
6656178 Veldhuizen et al. Dec 2003 B1
6656180 Stahurski Dec 2003 B2
6660037 Husson et al. Dec 2003 B1
6663647 Reiley et al. Dec 2003 B2
6666890 Michelson Dec 2003 B2
6666891 Boehm et al. Dec 2003 B2
6669698 Tromanhauser et al. Dec 2003 B1
6669729 Chin Dec 2003 B2
6669732 Serhan et al. Dec 2003 B2
6673074 Shluzas Jan 2004 B2
6676663 Higueras et al. Jan 2004 B2
6676664 Al-Assir Jan 2004 B1
6676665 Foley et al. Jan 2004 B2
6679833 Smith et al. Jan 2004 B2
6682535 Hoogland Jan 2004 B2
6682561 Songer et al. Jan 2004 B2
6682562 Viart et al. Jan 2004 B2
6685706 Padget et al. Feb 2004 B2
6685742 Jackson Feb 2004 B1
6689125 Keith et al. Feb 2004 B1
6689152 Balceta et al. Feb 2004 B2
6689168 Lieberman Feb 2004 B2
6692499 Toermaelae et al. Feb 2004 B2
6692563 Zimmermann Feb 2004 B2
6695842 Zucherman et al. Feb 2004 B2
6695851 Zdeblick et al. Feb 2004 B2
6699246 Zucherman et al. Mar 2004 B2
6699247 Zucherman et al. Mar 2004 B2
6706070 Wagner et al. Mar 2004 B1
6709458 Michelson Mar 2004 B2
6712819 Zucherman et al. Mar 2004 B2
6716216 Boucher et al. Apr 2004 B1
6716247 Michelson Apr 2004 B2
6716957 Tunc Apr 2004 B2
6719760 Dorchak et al. Apr 2004 B2
6719761 Reiley et al. Apr 2004 B1
6719773 Boucher et al. Apr 2004 B1
6719796 Cohen et al. Apr 2004 B2
6723096 Dorchak et al. Apr 2004 B1
6723126 Berry Apr 2004 B1
6723127 Ralph et al. Apr 2004 B2
6723128 Uk Apr 2004 B2
6726691 Osorio et al. Apr 2004 B2
D490159 Sand May 2004 S
6730126 Boehm et al. May 2004 B2
6733093 Deland et al. May 2004 B2
6733460 Ogura May 2004 B2
6733532 Gauchet et al. May 2004 B1
6733534 Sherman May 2004 B2
6733535 Michelson May 2004 B2
6733635 Ozawa et al. May 2004 B1
6740090 Cragg et al. May 2004 B1
6740093 Hochschuler et al. May 2004 B2
6740117 Ralph et al. May 2004 B2
D492032 Muller et al. Jun 2004 S
6743166 Berci et al. Jun 2004 B2
6743255 Ferree Jun 2004 B2
6746451 Middleton et al. Jun 2004 B2
6749560 Konstorum et al. Jun 2004 B1
6752831 Sybert et al. Jun 2004 B2
6755841 Fraser et al. Jun 2004 B2
D492775 Doelling et al. Jul 2004 S
D493533 Blain Jul 2004 S
6758673 Fromovich et al. Jul 2004 B2
6758861 Ralph et al. Jul 2004 B2
6758862 Berry et al. Jul 2004 B2
6761720 Senegas Jul 2004 B1
6764514 Li et al. Jul 2004 B1
D495417 Doelling et al. Aug 2004 S
6770075 Howland Aug 2004 B2
6773460 Jackson Aug 2004 B2
6780151 Grabover et al. Aug 2004 B2
6783530 Levy Aug 2004 B1
6790210 Cragg et al. Sep 2004 B1
6793656 Mathews Sep 2004 B1
6793678 Hawkins Sep 2004 B2
6793679 Michelson Sep 2004 B2
6796983 Zucherman et al. Sep 2004 B1
6805685 Taylor Oct 2004 B2
6805695 Keith et al. Oct 2004 B2
6805697 Helm et al. Oct 2004 B1
6805714 Sutcliffe Oct 2004 B2
6808526 Magerl et al. Oct 2004 B1
6808537 Michelson Oct 2004 B2
6814736 Reiley et al. Nov 2004 B2
6814756 Michelson Nov 2004 B1
6821298 Jackson Nov 2004 B1
6830589 Erickson Dec 2004 B2
6835205 Atkinson et al. Dec 2004 B2
6835206 Jackson Dec 2004 B2
6835208 Marchosky Dec 2004 B2
6840944 Suddaby Jan 2005 B2
6852126 Ahlgren Feb 2005 B2
6852129 Gerbec et al. Feb 2005 B2
6855167 Shimp et al. Feb 2005 B2
6863668 Gillespie et al. Mar 2005 B2
6863672 Reiley et al. Mar 2005 B2
6863673 Gerbec et al. Mar 2005 B2
6866682 An et al. Mar 2005 B1
6875215 Taras et al. Apr 2005 B2
6881228 Zdeblick et al. Apr 2005 B2
6881229 Khandkar et al. Apr 2005 B2
6883520 Lambrecht et al. Apr 2005 B2
6887243 Culbert May 2005 B2
6887248 McKinley et al. May 2005 B2
6890333 Von et al. May 2005 B2
6893464 Kiester May 2005 B2
6893466 Trieu May 2005 B2
6899716 Cragg May 2005 B2
6899719 Reiley et al. May 2005 B2
6899735 Coates et al. May 2005 B2
D506828 Layne et al. Jun 2005 S
6902566 Zucherman et al. Jun 2005 B2
6905512 Paes et al. Jun 2005 B2
6908465 Von et al. Jun 2005 B2
6908506 Zimmermann Jun 2005 B2
6916323 Kitchens Jul 2005 B2
6921403 Cragg et al. Jul 2005 B2
6923810 Michelson Aug 2005 B1
6923811 Carl et al. Aug 2005 B1
6923813 Phillips et al. Aug 2005 B2
6923814 Hildebrand et al. Aug 2005 B1
6929606 Ritland Aug 2005 B2
6929647 Cohen Aug 2005 B2
6936071 Marnay et al. Aug 2005 B1
6936072 Lambrecht et al. Aug 2005 B2
6942668 Padget et al. Sep 2005 B2
6945973 Bray Sep 2005 B2
6945975 Dalton Sep 2005 B2
6946000 Senegas et al. Sep 2005 B2
6949100 Venturini Sep 2005 B1
6951561 Warren et al. Oct 2005 B2
6952129 Lin et al. Oct 2005 B2
6953477 Berry Oct 2005 B2
6955691 Chae et al. Oct 2005 B2
6962606 Michelson Nov 2005 B2
6964674 Matsuura et al. Nov 2005 B1
6964686 Gordon Nov 2005 B2
6966910 Ritland Nov 2005 B2
6969404 Ferree Nov 2005 B2
6969405 Suddaby Nov 2005 B2
D512506 Layne et al. Dec 2005 S
6972035 Michelson Dec 2005 B2
6974479 Trieu Dec 2005 B2
6979341 Scribner et al. Dec 2005 B2
6979352 Reynolds Dec 2005 B2
6979353 Bresina Dec 2005 B2
6981981 Reiley et al. Jan 2006 B2
6997929 Manzi et al. Feb 2006 B2
7004945 Boyd et al. Feb 2006 B2
7004971 Serhan et al. Feb 2006 B2
7008431 Simonson Mar 2006 B2
7008453 Michelson Mar 2006 B1
7014633 Cragg Mar 2006 B2
7018089 Wenz et al. Mar 2006 B2
7018412 Ferreira et al. Mar 2006 B2
7018415 McKay Mar 2006 B1
7018416 Hanson et al. Mar 2006 B2
7018453 Klein et al. Mar 2006 B2
7022138 Mashburn Apr 2006 B2
7025746 Tal Apr 2006 B2
7025787 Bryan et al. Apr 2006 B2
7029473 Zucherman et al. Apr 2006 B2
7029498 Boehm et al. Apr 2006 B2
7037339 Houfburg May 2006 B2
7041107 Pohjonen et al. May 2006 B2
7044954 Reiley et al. May 2006 B2
7048694 Mark et al. May 2006 B2
7048736 Robinson et al. May 2006 B2
7060068 Tromanhauser et al. Jun 2006 B2
7063701 Michelson Jun 2006 B2
7063702 Michelson Jun 2006 B2
7063703 Reo Jun 2006 B2
7066960 Dickman Jun 2006 B1
7066961 Michelson Jun 2006 B2
7069087 Sharkey et al. Jun 2006 B2
7070598 Lim et al. Jul 2006 B2
7070601 Culbert et al. Jul 2006 B2
7074203 Johanson et al. Jul 2006 B1
7074226 Roehm et al. Jul 2006 B2
7081120 Li et al. Jul 2006 B2
7081122 Reiley et al. Jul 2006 B1
7083650 Moskowitz et al. Aug 2006 B2
7087055 Lim et al. Aug 2006 B2
7087083 Pasquet et al. Aug 2006 B2
7094239 Michelson Aug 2006 B1
7094257 Mujwid et al. Aug 2006 B2
7094258 Lambrecht et al. Aug 2006 B2
7101375 Zucherman et al. Sep 2006 B2
7114501 Johnson et al. Oct 2006 B2
7115128 Michelson Oct 2006 B2
7115163 Zimmermann Oct 2006 B2
7118572 Bramlet et al. Oct 2006 B2
7118579 Michelson Oct 2006 B2
7118580 Beyersdorff et al. Oct 2006 B1
7118598 Michelson Oct 2006 B2
7124761 Lambrecht et al. Oct 2006 B2
7128760 Michelson Oct 2006 B2
7135424 Worley et al. Nov 2006 B2
7153304 Robie et al. Dec 2006 B2
7153305 Johnson et al. Dec 2006 B2
7153306 Ralph et al. Dec 2006 B2
7153307 Scribner et al. Dec 2006 B2
D536096 Hoogland et al. Jan 2007 S
7156874 Paponneau et al. Jan 2007 B2
7156875 Michelson Jan 2007 B2
7156876 Moumene et al. Jan 2007 B2
7163558 Senegas et al. Jan 2007 B2
7166107 Anderson Jan 2007 B2
7172612 Ishikawa Feb 2007 B2
7179293 McKay Feb 2007 B2
7179294 Eisermann et al. Feb 2007 B2
7189242 Boyd et al. Mar 2007 B2
7201751 Zucherman et al. Apr 2007 B2
7204851 Trieu et al. Apr 2007 B2
7207991 Michelson Apr 2007 B2
7211112 Baynham et al. May 2007 B2
7214227 Colleran et al. May 2007 B2
7217293 Branch, Jr. May 2007 B2
7220280 Kast et al. May 2007 B2
7220281 Lambrecht et al. May 2007 B2
7223227 Pflueger May 2007 B2
7223292 Messerli et al. May 2007 B2
7226481 Kuslich Jun 2007 B2
7226483 Gerber et al. Jun 2007 B2
7235101 Berry et al. Jun 2007 B2
7238204 Le et al. Jul 2007 B2
7241297 Shaolian et al. Jul 2007 B2
7244273 Pedersen et al. Jul 2007 B2
7250060 Trieu Jul 2007 B2
7252671 Scribner et al. Aug 2007 B2
7267683 Sharkey et al. Sep 2007 B2
7267687 McGuckin, Jr. Sep 2007 B2
7270679 Istephanous et al. Sep 2007 B2
7276062 McDaniel et al. Oct 2007 B2
7282061 Sharkey et al. Oct 2007 B2
7291173 Richelsoph et al. Nov 2007 B2
7300440 Zdeblick et al. Nov 2007 B2
7306628 Zucherman et al. Dec 2007 B2
7309357 Kim Dec 2007 B2
7311713 Johnson et al. Dec 2007 B2
7316714 Gordon et al. Jan 2008 B2
7318840 McKay Jan 2008 B2
7320689 Keller Jan 2008 B2
7320708 Bernstein Jan 2008 B1
7322962 Forrest Jan 2008 B2
7326211 Padget et al. Feb 2008 B2
7326248 Michelson Feb 2008 B2
7335203 Winslow et al. Feb 2008 B2
7361140 Ries et al. Apr 2008 B2
7371238 Soboleski et al. May 2008 B2
7377942 Berry May 2008 B2
7383639 Malandain Jun 2008 B2
7400930 Sharkey et al. Jul 2008 B2
7410501 Michelson Aug 2008 B2
7413576 Sybert et al. Aug 2008 B2
7422594 Zander Sep 2008 B2
7434325 Foley et al. Oct 2008 B2
7442211 De et al. Oct 2008 B2
7445636 Michelson Nov 2008 B2
7445637 Taylor Nov 2008 B2
D584812 Ries Jan 2009 S
7473256 Assell et al. Jan 2009 B2
7473268 Zucherman et al. Jan 2009 B2
7476251 Zucherman et al. Jan 2009 B2
7485134 Simonson Feb 2009 B2
7488326 Elliott Feb 2009 B2
7500991 Bartish et al. Mar 2009 B2
7503920 Siegal Mar 2009 B2
7503933 Michelson Mar 2009 B2
7507241 Levy et al. Mar 2009 B2
7517363 Rogers et al. Apr 2009 B2
7520888 Trieu Apr 2009 B2
7547317 Cragg Jun 2009 B2
7556629 Von et al. Jul 2009 B2
7556651 Humphreys et al. Jul 2009 B2
7569054 Michelson Aug 2009 B2
7569074 Eisermann et al. Aug 2009 B2
7575599 Villiers et al. Aug 2009 B2
7588574 Assell et al. Sep 2009 B2
7608083 Lee et al. Oct 2009 B2
7618458 Biedermann et al. Nov 2009 B2
7621950 Globerman et al. Nov 2009 B1
7621960 Boyd et al. Nov 2009 B2
7625378 Foley Dec 2009 B2
7637905 Saadat et al. Dec 2009 B2
7641657 Cragg Jan 2010 B2
7641670 Davison et al. Jan 2010 B2
7641692 Bryan et al. Jan 2010 B2
7647123 Sharkey et al. Jan 2010 B2
7648523 Mirkovic et al. Jan 2010 B2
7655010 Serhan et al. Feb 2010 B2
7666266 Izawa et al. Feb 2010 B2
7670354 Davison et al. Mar 2010 B2
7670374 Schaller Mar 2010 B2
7674273 Davison et al. Mar 2010 B2
7682370 Pagliuca et al. Mar 2010 B2
7691120 Shluzas et al. Apr 2010 B2
7691147 Guetlin et al. Apr 2010 B2
7699878 Pavlov et al. Apr 2010 B2
7703727 Selness Apr 2010 B2
7717944 Foley et al. May 2010 B2
7722530 Davison May 2010 B2
7722612 Sala et al. May 2010 B2
7722674 Grotz May 2010 B1
7727263 Cragg Jun 2010 B2
7740633 Assell et al. Jun 2010 B2
7744599 Cragg Jun 2010 B2
7744650 Lindner et al. Jun 2010 B2
7749270 Peterman Jul 2010 B2
7762995 Eversull et al. Jul 2010 B2
7763025 Ainsworth et al. Jul 2010 B2
7763055 Foley Jul 2010 B2
7766930 Dipoto et al. Aug 2010 B2
7771473 Thramann Aug 2010 B2
7771479 Humphreys et al. Aug 2010 B2
7785368 Schaller Aug 2010 B2
7789914 Michelson Sep 2010 B2
7794463 Cragg Sep 2010 B2
7799032 Assell et al. Sep 2010 B2
7799033 Assell et al. Sep 2010 B2
7799036 Davison et al. Sep 2010 B2
7799080 Doty Sep 2010 B2
7799081 McKinley Sep 2010 B2
7799083 Smith et al. Sep 2010 B2
D626233 Cipoletti et al. Oct 2010 S
7814429 Buffet et al. Oct 2010 B2
7819921 Grotz Oct 2010 B2
7824410 Simonson et al. Nov 2010 B2
7824429 Culbert et al. Nov 2010 B2
7824445 Biro et al. Nov 2010 B2
7828807 Lehuec et al. Nov 2010 B2
7837734 Zucherman et al. Nov 2010 B2
7846183 Blain Dec 2010 B2
7846206 Oglaza et al. Dec 2010 B2
7850695 Pagliuca et al. Dec 2010 B2
7850733 Baynham et al. Dec 2010 B2
7854766 Moskowitz et al. Dec 2010 B2
7857832 Culbert et al. Dec 2010 B2
7857840 Krebs et al. Dec 2010 B2
7862590 Lim et al. Jan 2011 B2
7862595 Foley et al. Jan 2011 B2
7867259 Foley et al. Jan 2011 B2
7874980 Sonnenschein et al. Jan 2011 B2
7875077 Humphreys et al. Jan 2011 B2
7879098 Simmons, Jr. Feb 2011 B1
7887589 Glenn et al. Feb 2011 B2
7892171 Davison et al. Feb 2011 B2
7892249 Davison et al. Feb 2011 B2
7901438 Culbert et al. Mar 2011 B2
7901459 Hodges et al. Mar 2011 B2
7909870 Kraus Mar 2011 B2
7918874 Siegal Apr 2011 B2
7922729 Michelson Apr 2011 B2
7931689 Hochschuler et al. Apr 2011 B2
7935051 Miles et al. May 2011 B2
7938832 Culbert et al. May 2011 B2
7942903 Moskowitz et al. May 2011 B2
7947078 Siegal May 2011 B2
7951199 Miller May 2011 B2
7955391 Schaller Jun 2011 B2
7959675 Gately Jun 2011 B2
7963993 Schaller Jun 2011 B2
7967864 Schaller Jun 2011 B2
7967865 Schaller Jun 2011 B2
7985231 Sankaran Jul 2011 B2
7993403 Foley et al. Aug 2011 B2
7998176 Culbert Aug 2011 B2
8007535 Hudgins et al. Aug 2011 B2
8021424 Beger et al. Sep 2011 B2
8021426 Segal et al. Sep 2011 B2
8025697 McClellan et al. Sep 2011 B2
8034109 Zwirkoski Oct 2011 B2
8043381 Hestad et al. Oct 2011 B2
8052754 Froehlich Nov 2011 B2
8057544 Schaller Nov 2011 B2
8057545 Hughes et al. Nov 2011 B2
8062375 Glerum et al. Nov 2011 B2
8075621 Michelson Dec 2011 B2
8097036 Cordaro et al. Jan 2012 B2
8105382 Olmos et al. Jan 2012 B2
8109977 Culbert et al. Feb 2012 B2
8114088 Miller Feb 2012 B2
8118871 Gordon Feb 2012 B2
8128700 Delurio et al. Mar 2012 B2
8133232 Levy et al. Mar 2012 B2
8177812 Sankaran May 2012 B2
8187327 Edidin et al. May 2012 B2
8192495 Simpson et al. Jun 2012 B2
8202322 Doty Jun 2012 B2
8206423 Siegal Jun 2012 B2
8216312 Gray Jul 2012 B2
8216314 Richelsoph Jul 2012 B2
8221501 Eisermann et al. Jul 2012 B2
8221502 Branch, Jr. Jul 2012 B2
8221503 Garcia et al. Jul 2012 B2
8231681 Castleman et al. Jul 2012 B2
8236029 Siegal Aug 2012 B2
8236058 Fabian et al. Aug 2012 B2
8241328 Siegal Aug 2012 B2
8241358 Butler et al. Aug 2012 B2
8241361 Link Aug 2012 B2
8246622 Siegal et al. Aug 2012 B2
8257440 Gordon Sep 2012 B2
8257442 Edie et al. Sep 2012 B2
8262666 Baynham et al. Sep 2012 B2
8262736 Michelson Sep 2012 B2
8267939 Cipoletti et al. Sep 2012 B2
8267965 Gimbel et al. Sep 2012 B2
8273128 Oh et al. Sep 2012 B2
8273129 Baynham et al. Sep 2012 B2
8287599 McGuckin, Jr. Oct 2012 B2
8292959 Webb et al. Oct 2012 B2
8303663 Jimenez et al. Nov 2012 B2
8317866 Palmatier et al. Nov 2012 B2
8323345 Sledge Dec 2012 B2
8328812 Siegal et al. Dec 2012 B2
8328852 Zehavi et al. Dec 2012 B2
8337559 Hansell et al. Dec 2012 B2
8343193 Johnson et al. Jan 2013 B2
8353961 McClintock et al. Jan 2013 B2
8361154 Reo Jan 2013 B2
8366777 Matthis et al. Feb 2013 B2
8377098 Landry et al. Feb 2013 B2
8382842 Greenhalgh et al. Feb 2013 B2
8394129 Morgenstern et al. Mar 2013 B2
8398712 De et al. Mar 2013 B2
8398713 Weiman Mar 2013 B2
8403990 Dryer et al. Mar 2013 B2
8409290 Zamani et al. Apr 2013 B2
8409291 Blackwell et al. Apr 2013 B2
8414650 Bertele et al. Apr 2013 B2
8435298 Weiman May 2013 B2
8454617 Schaller et al. Jun 2013 B2
8454698 De et al. Jun 2013 B2
8465524 Siegal Jun 2013 B2
8480715 Gray Jul 2013 B2
8480742 Pisharodi Jul 2013 B2
8486109 Siegal Jul 2013 B2
8486148 Butler et al. Jul 2013 B2
8491591 Fuerderer Jul 2013 B2
8491657 Attia et al. Jul 2013 B2
8491659 Weiman Jul 2013 B2
8506635 Palmatier et al. Aug 2013 B2
8518087 Lopez et al. Aug 2013 B2
8518120 Glerum et al. Aug 2013 B2
8535380 Greenhalgh et al. Sep 2013 B2
8545567 Krueger Oct 2013 B1
8551173 Lechmann et al. Oct 2013 B2
8556978 Schaller Oct 2013 B2
8556979 Glerum et al. Oct 2013 B2
8568481 Olmos et al. Oct 2013 B2
8579977 Fabian Nov 2013 B2
8579981 Lim et al. Nov 2013 B2
8591583 Schaller et al. Nov 2013 B2
8591585 McLaughlin et al. Nov 2013 B2
8597330 Siegal Dec 2013 B2
8597333 Morgenstern et al. Dec 2013 B2
8597360 McLuen et al. Dec 2013 B2
8603168 Gordon et al. Dec 2013 B2
8603170 Cipoletti et al. Dec 2013 B2
8603177 Gray Dec 2013 B2
8623091 Suedkamp et al. Jan 2014 B2
8628576 Triplett et al. Jan 2014 B2
8628578 Miller et al. Jan 2014 B2
8632595 Weiman Jan 2014 B2
8641764 Gately Feb 2014 B2
8663329 Ernst Mar 2014 B2
8668740 Rhoda et al. Mar 2014 B2
8672977 Siegal et al. Mar 2014 B2
8679183 Glerum et al. Mar 2014 B2
8685095 Miller et al. Apr 2014 B2
8685098 Glerum et al. Apr 2014 B2
8696751 Ashley et al. Apr 2014 B2
8709086 Glerum Apr 2014 B2
8715351 Pinto May 2014 B1
8721723 Hansell et al. May 2014 B2
8728160 Globerman et al. May 2014 B2
8728166 Schwab May 2014 B2
8753398 Gordon et al. Jun 2014 B2
8758441 Hovda et al. Jun 2014 B2
8764806 Abdou Jul 2014 B2
8771360 Jimenez et al. Jul 2014 B2
8777993 Siegal et al. Jul 2014 B2
8778025 Ragab et al. Jul 2014 B2
8795366 Varela Aug 2014 B2
8795374 Chee Aug 2014 B2
8801787 Schaller Aug 2014 B2
8801792 De et al. Aug 2014 B2
8808376 Schaller Aug 2014 B2
8828085 Jensen Sep 2014 B1
8845638 Siegal et al. Sep 2014 B2
8845728 Abdou Sep 2014 B1
8845731 Weiman Sep 2014 B2
8845732 Weiman Sep 2014 B2
8845734 Weiman Sep 2014 B2
8852242 Morgenstern et al. Oct 2014 B2
8852243 Morgenstern et al. Oct 2014 B2
8852279 Weiman Oct 2014 B2
8864833 Glerum et al. Oct 2014 B2
8888853 Glerum et al. Nov 2014 B2
8888854 Glerum et al. Nov 2014 B2
8900235 Siegal Dec 2014 B2
8900307 Hawkins et al. Dec 2014 B2
8906098 Siegal Dec 2014 B2
8926704 Glerum et al. Jan 2015 B2
8936641 Cain Jan 2015 B2
8940052 Lechmann et al. Jan 2015 B2
8961609 Schaller Feb 2015 B2
8979929 Schaller Mar 2015 B2
8986387 To et al. Mar 2015 B1
8986388 Siegal et al. Mar 2015 B2
9005291 Loebl et al. Apr 2015 B2
9017408 Siegal et al. Apr 2015 B2
9017413 Siegal et al. Apr 2015 B2
9039767 Raymond et al. May 2015 B2
9039771 Glerum et al. May 2015 B2
9044334 Siegal et al. Jun 2015 B2
9044338 Schaller Jun 2015 B2
9060876 To et al. Jun 2015 B1
9066808 Schaller Jun 2015 B2
9078767 McLean Jul 2015 B1
9089428 Bertele et al. Jul 2015 B2
9095446 Landry et al. Aug 2015 B2
9095447 Barreiro et al. Aug 2015 B2
9101488 Malandain Aug 2015 B2
9101489 Protopsaltis et al. Aug 2015 B2
9107766 McLean et al. Aug 2015 B1
9254138 Siegal et al. Feb 2016 B2
9259326 Schaller Feb 2016 B2
9277928 Morgenstern Lopez Mar 2016 B2
9283092 Siegal et al. Mar 2016 B2
9295562 Lechmann et al. Mar 2016 B2
9326866 Schaller et al. May 2016 B2
9333091 Dimauro May 2016 B2
9387087 Tyber Jul 2016 B2
9402739 Weiman et al. Aug 2016 B2
9408712 Siegal et al. Aug 2016 B2
9414923 Studer et al. Aug 2016 B2
9414934 Cain Aug 2016 B2
9433510 Lechmann et al. Sep 2016 B2
9439776 Dimauro et al. Sep 2016 B2
9439777 Dimauro Sep 2016 B2
9463099 Levy et al. Oct 2016 B2
9510954 Glerum et al. Dec 2016 B2
9592129 Slivka et al. Mar 2017 B2
9597197 Lechmann et al. Mar 2017 B2
9724207 Dimauro et al. Aug 2017 B2
9730803 Dimauro et al. Aug 2017 B2
9788963 Aquino et al. Oct 2017 B2
9801729 Dimauro et al. Oct 2017 B2
9808351 Kelly et al. Nov 2017 B2
9814589 Dimauro Nov 2017 B2
9814590 Serhan et al. Nov 2017 B2
9833334 Voellmicke et al. Dec 2017 B2
9925060 Dimauro et al. Mar 2018 B2
9949769 Serhan et al. Apr 2018 B2
10085843 Dimauro Oct 2018 B2
10238500 Rogers et al. Mar 2019 B2
10307254 Levy et al. Jun 2019 B2
10376372 Serhan et al. Aug 2019 B2
10398563 Engstrom Sep 2019 B2
10405986 Kelly et al. Sep 2019 B2
10420651 Serhan et al. Sep 2019 B2
10433971 Dimauro et al. Oct 2019 B2
10433974 O'Neil Oct 2019 B2
10492918 Dimauro Dec 2019 B2
10512489 Serhan et al. Dec 2019 B2
10555817 Dimauro et al. Feb 2020 B2
10575959 Dimauro et al. Mar 2020 B2
10583013 Dimauro et al. Mar 2020 B2
10639164 Dimauro et al. May 2020 B2
20010011174 Reiley et al. Aug 2001 A1
20010012950 Nishtala et al. Aug 2001 A1
20010016741 Burkus et al. Aug 2001 A1
20010027320 Sasso Oct 2001 A1
20010037126 Stack et al. Nov 2001 A1
20010039452 Zucherman et al. Nov 2001 A1
20010039453 Gresser et al. Nov 2001 A1
20010049529 Cachia et al. Dec 2001 A1
20010049530 Culbert et al. Dec 2001 A1
20010049531 Reiley et al. Dec 2001 A1
20010056302 Boyer et al. Dec 2001 A1
20020001476 Nagamine et al. Jan 2002 A1
20020010070 Cales et al. Jan 2002 A1
20020016583 Cragg Feb 2002 A1
20020026195 Layne et al. Feb 2002 A1
20020026244 Trieu Feb 2002 A1
20020029084 Paul et al. Mar 2002 A1
20020032462 Houser et al. Mar 2002 A1
20020032483 Nicholson et al. Mar 2002 A1
20020035400 Bryan et al. Mar 2002 A1
20020037799 Li et al. Mar 2002 A1
20020045904 Fuss et al. Apr 2002 A1
20020045942 Ham Apr 2002 A1
20020055740 Lieberman May 2002 A1
20020055781 Sazy May 2002 A1
20020058947 Hochschuler et al. May 2002 A1
20020068974 Kuslich et al. Jun 2002 A1
20020068976 Jackson Jun 2002 A1
20020068977 Jackson Jun 2002 A1
20020077700 Varga et al. Jun 2002 A1
20020077701 Kuslich Jun 2002 A1
20020082584 Rosenman et al. Jun 2002 A1
20020082608 Reiley et al. Jun 2002 A1
20020087152 Mikus et al. Jul 2002 A1
20020087163 Dixon et al. Jul 2002 A1
20020091387 Hoogland Jul 2002 A1
20020091390 Michelson Jul 2002 A1
20020099385 Ralph et al. Jul 2002 A1
20020107519 Dixon et al. Aug 2002 A1
20020107573 Steinberg Aug 2002 A1
20020120335 Angelucci et al. Aug 2002 A1
20020128713 Ferree Sep 2002 A1
20020128715 Bryan et al. Sep 2002 A1
20020128716 Cohen et al. Sep 2002 A1
20020138146 Jackson Sep 2002 A1
20020143331 Zucherman et al. Oct 2002 A1
20020143334 Hoffmann et al. Oct 2002 A1
20020143335 Von et al. Oct 2002 A1
20020151895 Soboleski et al. Oct 2002 A1
20020151976 Foley et al. Oct 2002 A1
20020156482 Scribner et al. Oct 2002 A1
20020161444 Choi Oct 2002 A1
20020165612 Gerber et al. Nov 2002 A1
20020169471 Ferdinand Nov 2002 A1
20020172851 Corey et al. Nov 2002 A1
20020173796 Cragg Nov 2002 A1
20020173841 Ortiz et al. Nov 2002 A1
20020173851 McKay Nov 2002 A1
20020183761 Johnson et al. Dec 2002 A1
20020183778 Reiley et al. Dec 2002 A1
20020183848 Ray et al. Dec 2002 A1
20020191487 Sand Dec 2002 A1
20020193883 Wironen Dec 2002 A1
20020198526 Shaolian et al. Dec 2002 A1
20030004575 Erickson Jan 2003 A1
20030004576 Thalgott Jan 2003 A1
20030006942 Searls et al. Jan 2003 A1
20030014112 Ralph et al. Jan 2003 A1
20030014116 Ralph et al. Jan 2003 A1
20030018390 Husson Jan 2003 A1
20030023305 McKay Jan 2003 A1
20030028250 Reiley et al. Feb 2003 A1
20030028251 Mathews Feb 2003 A1
20030032963 Reiss et al. Feb 2003 A1
20030040796 Ferree Feb 2003 A1
20030040799 Boyd et al. Feb 2003 A1
20030045937 Ginn Mar 2003 A1
20030045939 Casutt Mar 2003 A1
20030050644 Boucher et al. Mar 2003 A1
20030063582 Mizell et al. Apr 2003 A1
20030065330 Zucherman et al. Apr 2003 A1
20030065396 Michelson Apr 2003 A1
20030069582 Culbert Apr 2003 A1
20030069593 Tremulis et al. Apr 2003 A1
20030069642 Ralph et al. Apr 2003 A1
20030073998 Pagliuca et al. Apr 2003 A1
20030074075 Thomas et al. Apr 2003 A1
20030078667 Manasas et al. Apr 2003 A1
20030083642 Boyd et al. May 2003 A1
20030083688 Simonson May 2003 A1
20030108588 Chen et al. Jun 2003 A1
20030130664 Boucher et al. Jul 2003 A1
20030130739 Gerbec et al. Jul 2003 A1
20030135275 Garcia et al. Jul 2003 A1
20030139648 Foley et al. Jul 2003 A1
20030139812 Garcia et al. Jul 2003 A1
20030139813 Messerli et al. Jul 2003 A1
20030153874 Tal Aug 2003 A1
20030171812 Grunberg et al. Sep 2003 A1
20030187431 Simonson Oct 2003 A1
20030187445 Keith et al. Oct 2003 A1
20030187506 Ross et al. Oct 2003 A1
20030191414 Reiley et al. Oct 2003 A1
20030191489 Reiley et al. Oct 2003 A1
20030195518 Cragg Oct 2003 A1
20030195547 Scribner et al. Oct 2003 A1
20030195630 Ferree Oct 2003 A1
20030199979 McGuckin Oct 2003 A1
20030204261 Eisermann et al. Oct 2003 A1
20030208122 Melkent et al. Nov 2003 A1
20030208136 Mark et al. Nov 2003 A1
20030208220 Worley et al. Nov 2003 A1
20030215344 Condon et al. Nov 2003 A1
20030220643 Ferree Nov 2003 A1
20030220648 Osorio et al. Nov 2003 A1
20030220695 Sevrain Nov 2003 A1
20030229350 Kay Dec 2003 A1
20030229372 Reiley et al. Dec 2003 A1
20030233096 Osorio et al. Dec 2003 A1
20030233102 Nakamura et al. Dec 2003 A1
20030233145 Landry et al. Dec 2003 A1
20030233146 Grinberg et al. Dec 2003 A1
20040002761 Rogers et al. Jan 2004 A1
20040006391 Reiley Jan 2004 A1
20040008949 Liu et al. Jan 2004 A1
20040010251 Pitaru et al. Jan 2004 A1
20040010260 Scribner et al. Jan 2004 A1
20040010263 Boucher et al. Jan 2004 A1
20040010318 Ferree Jan 2004 A1
20040019354 Johnson et al. Jan 2004 A1
20040019359 Worley et al. Jan 2004 A1
20040024408 Burkus et al. Feb 2004 A1
20040024409 Sand et al. Feb 2004 A1
20040024410 Olson et al. Feb 2004 A1
20040024463 Thomas et al. Feb 2004 A1
20040024465 Lambrecht et al. Feb 2004 A1
20040030387 Landry et al. Feb 2004 A1
20040034343 Gillespie et al. Feb 2004 A1
20040034429 Lambrecht et al. Feb 2004 A1
20040049190 Biedermann et al. Mar 2004 A1
20040049203 Scribner et al. Mar 2004 A1
20040049223 Nishtala et al. Mar 2004 A1
20040049270 Gewirtz Mar 2004 A1
20040054412 Gerbec et al. Mar 2004 A1
20040059333 Carl et al. Mar 2004 A1
20040059339 Roehm et al. Mar 2004 A1
20040059350 Gordon et al. Mar 2004 A1
20040059418 McKay et al. Mar 2004 A1
20040064144 Johnson et al. Apr 2004 A1
20040073308 Kuslich et al. Apr 2004 A1
20040073310 Moumene et al. Apr 2004 A1
20040082953 Petit Apr 2004 A1
20040087947 Lim et al. May 2004 A1
20040088055 Hanson et al. May 2004 A1
20040092933 Shaolian et al. May 2004 A1
20040092948 Stevens et al. May 2004 A1
20040092988 Shaolian et al. May 2004 A1
20040093083 Branch May 2004 A1
20040097924 Lambrecht et al. May 2004 A1
20040097930 Justis et al. May 2004 A1
20040097932 Ray et al. May 2004 A1
20040097941 Weiner et al. May 2004 A1
20040097973 Loshakove et al. May 2004 A1
20040098131 Bryan et al. May 2004 A1
20040102774 Trieu May 2004 A1
20040106925 Culbert Jun 2004 A1
20040106940 Shaolian et al. Jun 2004 A1
20040111161 Trieu Jun 2004 A1
20040116997 Taylor et al. Jun 2004 A1
20040117019 Trieu et al. Jun 2004 A1
20040117022 Marnay et al. Jun 2004 A1
20040127906 Culbert et al. Jul 2004 A1
20040127990 Bartish et al. Jul 2004 A1
20040127991 Ferree Jul 2004 A1
20040133124 Bates et al. Jul 2004 A1
20040133229 Lambrecht et al. Jul 2004 A1
20040133279 Krueger et al. Jul 2004 A1
20040133280 Trieu Jul 2004 A1
20040138748 Boyer et al. Jul 2004 A1
20040143284 Chin Jul 2004 A1
20040143332 Krueger et al. Jul 2004 A1
20040143734 Buer et al. Jul 2004 A1
20040147877 Heuser Jul 2004 A1
20040147950 Mueller et al. Jul 2004 A1
20040148027 Errico et al. Jul 2004 A1
20040153064 Foley et al. Aug 2004 A1
20040153065 Lim Aug 2004 A1
20040153115 Reiley et al. Aug 2004 A1
20040153156 Cohen et al. Aug 2004 A1
20040153160 Carrasco Aug 2004 A1
20040158206 Aboul-Hosn et al. Aug 2004 A1
20040158258 Bonati et al. Aug 2004 A1
20040162617 Zucherman et al. Aug 2004 A1
20040162618 Mujwid et al. Aug 2004 A1
20040167561 Boucher et al. Aug 2004 A1
20040167562 Osorio et al. Aug 2004 A1
20040167625 Beyar et al. Aug 2004 A1
20040172133 Gerber et al. Sep 2004 A1
20040172134 Berry Sep 2004 A1
20040176775 Burkus et al. Sep 2004 A1
20040186052 Iyer et al. Sep 2004 A1
20040186471 Trieu Sep 2004 A1
20040186482 Kolb et al. Sep 2004 A1
20040186528 Ries et al. Sep 2004 A1
20040186570 Rapp Sep 2004 A1
20040186573 Ferree Sep 2004 A1
20040186577 Ferree Sep 2004 A1
20040193277 Long et al. Sep 2004 A1
20040199162 Von et al. Oct 2004 A1
20040210231 Boucher et al. Oct 2004 A1
20040210310 Trieu Oct 2004 A1
20040215343 Hochschuler et al. Oct 2004 A1
20040215344 Hochschuler et al. Oct 2004 A1
20040220580 Johnson et al. Nov 2004 A1
20040220669 Studer Nov 2004 A1
20040220672 Shadduck Nov 2004 A1
20040225292 Sasso et al. Nov 2004 A1
20040225296 Reiss et al. Nov 2004 A1
20040225361 Glenn et al. Nov 2004 A1
20040230191 Frey et al. Nov 2004 A1
20040230309 Dimauro et al. Nov 2004 A1
20040243229 Vidlund et al. Dec 2004 A1
20040243239 Taylor Dec 2004 A1
20040243241 Istephanous et al. Dec 2004 A1
20040249377 Kaes et al. Dec 2004 A1
20040249466 Liu et al. Dec 2004 A1
20040254520 Porteous et al. Dec 2004 A1
20040254575 Obenchain et al. Dec 2004 A1
20040254644 Taylor Dec 2004 A1
20040260297 Padget et al. Dec 2004 A1
20040260300 Gorensek et al. Dec 2004 A1
20040260397 Lambrecht et al. Dec 2004 A1
20040266257 Ries et al. Dec 2004 A1
20040267271 Scribner et al. Dec 2004 A9
20040267367 O'Neil Dec 2004 A1
20050004578 Lambrecht et al. Jan 2005 A1
20050010293 Zucherman et al. Jan 2005 A1
20050010298 Zucherman et al. Jan 2005 A1
20050015148 Jansen et al. Jan 2005 A1
20050015152 Sweeney Jan 2005 A1
20050019365 Frauchiger et al. Jan 2005 A1
20050021041 Michelson Jan 2005 A1
20050033289 Warren et al. Feb 2005 A1
20050033295 Wisnewski Feb 2005 A1
20050033434 Berry Feb 2005 A1
20050033440 Lambrecht et al. Feb 2005 A1
20050038515 Kunzler Feb 2005 A1
20050038517 Carrison et al. Feb 2005 A1
20050043737 Reiley et al. Feb 2005 A1
20050043796 Grant et al. Feb 2005 A1
20050054948 Goldenberg Mar 2005 A1
20050055097 Grunberg et al. Mar 2005 A1
20050060036 Schultz et al. Mar 2005 A1
20050060038 Lambrecht et al. Mar 2005 A1
20050065519 Michelson Mar 2005 A1
20050065609 Wardlaw Mar 2005 A1
20050065610 Pisharodi Mar 2005 A1
20050069571 Slivka et al. Mar 2005 A1
20050070908 Cragg Mar 2005 A1
20050070911 Carrison et al. Mar 2005 A1
20050070913 Milbocker et al. Mar 2005 A1
20050071011 Ralph et al. Mar 2005 A1
20050080488 Schultz Apr 2005 A1
20050085912 Arnin et al. Apr 2005 A1
20050090443 Michael John Apr 2005 A1
20050090833 Dipoto Apr 2005 A1
20050090852 Layne et al. Apr 2005 A1
20050090899 Dipoto Apr 2005 A1
20050102202 Linden et al. May 2005 A1
20050107880 Shimp et al. May 2005 A1
20050113916 Branch, Jr. May 2005 A1
20050113917 Chae et al. May 2005 A1
20050113918 Messerli et al. May 2005 A1
20050113919 Cragg et al. May 2005 A1
20050113927 Malek May 2005 A1
20050113928 Cragg et al. May 2005 A1
20050118228 Trieu Jun 2005 A1
20050118550 Turri Jun 2005 A1
20050119657 Goldsmith Jun 2005 A1
20050119662 Reiley et al. Jun 2005 A1
20050119750 Studer Jun 2005 A1
20050119751 Lawson Jun 2005 A1
20050119752 Williams et al. Jun 2005 A1
20050119754 Trieu et al. Jun 2005 A1
20050124989 Suddaby Jun 2005 A1
20050124992 Ferree Jun 2005 A1
20050124999 Teitelbaum et al. Jun 2005 A1
20050125062 Biedermann et al. Jun 2005 A1
20050125066 McAfee Jun 2005 A1
20050130929 Boyd Jun 2005 A1
20050131267 Talmadge Jun 2005 A1
20050131268 Talmadge Jun 2005 A1
20050131269 Talmadge Jun 2005 A1
20050131406 Reiley et al. Jun 2005 A1
20050131409 Chervitz et al. Jun 2005 A1
20050131411 Culbert Jun 2005 A1
20050131536 Eisermann et al. Jun 2005 A1
20050131538 Chervitz et al. Jun 2005 A1
20050131540 Trieu Jun 2005 A1
20050131541 Trieu Jun 2005 A1
20050137595 Hoffmann et al. Jun 2005 A1
20050137602 Assell et al. Jun 2005 A1
20050142211 Wenz Jun 2005 A1
20050143734 Cachia et al. Jun 2005 A1
20050143763 Ortiz et al. Jun 2005 A1
20050143827 Globerman et al. Jun 2005 A1
20050149022 Shaolian et al. Jul 2005 A1
20050149030 Serhan et al. Jul 2005 A1
20050149191 Cragg et al. Jul 2005 A1
20050149194 Ahlgren Jul 2005 A1
20050149197 Cauthen Jul 2005 A1
20050154396 Foley et al. Jul 2005 A1
20050154463 Trieu Jul 2005 A1
20050154467 Peterman et al. Jul 2005 A1
20050165398 Reiley Jul 2005 A1
20050165406 Assell et al. Jul 2005 A1
20050165485 Trieu Jul 2005 A1
20050171539 Braun et al. Aug 2005 A1
20050171552 Johnson et al. Aug 2005 A1
20050171608 Peterman et al. Aug 2005 A1
20050171610 Humphreys et al. Aug 2005 A1
20050177235 Baynham et al. Aug 2005 A1
20050177240 Blain Aug 2005 A1
20050182412 Johnson et al. Aug 2005 A1
20050182413 Johnson et al. Aug 2005 A1
20050182414 Manzi et al. Aug 2005 A1
20050182418 Boyd et al. Aug 2005 A1
20050187556 Stack et al. Aug 2005 A1
20050187558 Johnson et al. Aug 2005 A1
20050187559 Raymond et al. Aug 2005 A1
20050187564 Jayaraman Aug 2005 A1
20050197702 Coppes et al. Sep 2005 A1
20050197707 Trieu et al. Sep 2005 A1
20050203512 Hawkins et al. Sep 2005 A1
20050216018 Sennett Sep 2005 A1
20050216026 Culbert Sep 2005 A1
20050216087 Zucherman et al. Sep 2005 A1
20050222681 Richley et al. Oct 2005 A1
20050222684 Ferree Oct 2005 A1
20050228383 Zucherman et al. Oct 2005 A1
20050228391 Levy et al. Oct 2005 A1
20050228397 Malandain et al. Oct 2005 A1
20050234425 Miller et al. Oct 2005 A1
20050234451 Markworth Oct 2005 A1
20050234452 Malandain Oct 2005 A1
20050234456 Malandain Oct 2005 A1
20050240182 Zucherman et al. Oct 2005 A1
20050240189 Rousseau et al. Oct 2005 A1
20050240193 Layne et al. Oct 2005 A1
20050240269 Lambrecht et al. Oct 2005 A1
20050251142 Hoffmann et al. Nov 2005 A1
20050251149 Wenz Nov 2005 A1
20050251260 Gerber et al. Nov 2005 A1
20050256525 Culbert et al. Nov 2005 A1
20050256576 Moskowitz et al. Nov 2005 A1
20050261682 Ferree Nov 2005 A1
20050261684 Shaolian et al. Nov 2005 A1
20050261695 Cragg et al. Nov 2005 A1
20050261769 Moskowitz et al. Nov 2005 A1
20050261781 Sennett et al. Nov 2005 A1
20050267471 Biedermann et al. Dec 2005 A1
20050273166 Sweeney Dec 2005 A1
20050273173 Gordon et al. Dec 2005 A1
20050278023 Zwirkoski Dec 2005 A1
20050278026 Gordon et al. Dec 2005 A1
20050278027 Hyde, Jr. Dec 2005 A1
20050278029 Trieu Dec 2005 A1
20050283238 Reiley Dec 2005 A1
20050283244 Gordon et al. Dec 2005 A1
20050287071 Wenz Dec 2005 A1
20060004326 Collins et al. Jan 2006 A1
20060004456 McKay Jan 2006 A1
20060004457 Collins et al. Jan 2006 A1
20060004458 Collins et al. Jan 2006 A1
20060009778 Collins et al. Jan 2006 A1
20060009779 Collins et al. Jan 2006 A1
20060009851 Collins et al. Jan 2006 A1
20060015105 Warren et al. Jan 2006 A1
20060015119 Plassky et al. Jan 2006 A1
20060020284 Foley et al. Jan 2006 A1
20060030850 Keegan et al. Feb 2006 A1
20060030872 Culbert et al. Feb 2006 A1
20060030933 Delegge et al. Feb 2006 A1
20060030943 Peterman Feb 2006 A1
20060036241 Siegal Feb 2006 A1
20060036246 Carl et al. Feb 2006 A1
20060036256 Carl et al. Feb 2006 A1
20060036259 Carl et al. Feb 2006 A1
20060036261 McDonnell Feb 2006 A1
20060036273 Siegal Feb 2006 A1
20060036323 Carl et al. Feb 2006 A1
20060036324 Sachs et al. Feb 2006 A1
20060041258 Galea Feb 2006 A1
20060041314 Millard Feb 2006 A1
20060045904 Aronson Mar 2006 A1
20060058790 Carl et al. Mar 2006 A1
20060058807 Landry et al. Mar 2006 A1
20060058876 McKinley Mar 2006 A1
20060058880 Wysocki et al. Mar 2006 A1
20060064171 Trieu Mar 2006 A1
20060064172 Trieu Mar 2006 A1
20060069439 Zucherman et al. Mar 2006 A1
20060069440 Zucherman et al. Mar 2006 A1
20060079908 Lieberman Apr 2006 A1
20060084867 Tremblay et al. Apr 2006 A1
20060084977 Lieberman Apr 2006 A1
20060084988 Kim Apr 2006 A1
20060085002 Trieu et al. Apr 2006 A1
20060085009 Truckai et al. Apr 2006 A1
20060085010 Lieberman Apr 2006 A1
20060089642 Diaz et al. Apr 2006 A1
20060089646 Bonutti Apr 2006 A1
20060089654 Lins et al. Apr 2006 A1
20060089715 Truckai et al. Apr 2006 A1
20060089718 Zucherman et al. Apr 2006 A1
20060089719 Trieu Apr 2006 A1
20060095045 Trieu May 2006 A1
20060095046 Trieu et al. May 2006 A1
20060095134 Trieu et al. May 2006 A1
20060095138 Truckai et al. May 2006 A1
20060100706 Shadduck et al. May 2006 A1
20060100707 Stinson et al. May 2006 A1
20060106381 Ferree et al. May 2006 A1
20060106397 Lins May 2006 A1
20060106459 Truckai et al. May 2006 A1
20060111785 O'Neil May 2006 A1
20060119629 An et al. Jun 2006 A1
20060122609 Mirkovic et al. Jun 2006 A1
20060122610 Culbert et al. Jun 2006 A1
20060122701 Kiester Jun 2006 A1
20060122703 Aebi et al. Jun 2006 A1
20060122704 Vresilovic et al. Jun 2006 A1
20060129244 Ensign Jun 2006 A1
20060136062 Dinello et al. Jun 2006 A1
20060136064 Sherman Jun 2006 A1
20060142759 Arnin et al. Jun 2006 A1
20060142765 Dixon et al. Jun 2006 A9
20060142776 Iwanari Jun 2006 A1
20060142858 Colleran et al. Jun 2006 A1
20060142864 Cauthen Jun 2006 A1
20060149136 Seto et al. Jul 2006 A1
20060149237 Markworth et al. Jul 2006 A1
20060149252 Markworth et al. Jul 2006 A1
20060149379 Kuslich et al. Jul 2006 A1
20060149380 Lotz et al. Jul 2006 A1
20060155379 Heneveld et al. Jul 2006 A1
20060161162 Lambrecht et al. Jul 2006 A1
20060161166 Johnson et al. Jul 2006 A1
20060167553 Cauthen et al. Jul 2006 A1
20060173545 Cauthen et al. Aug 2006 A1
20060178743 Carter Aug 2006 A1
20060178746 Bartish et al. Aug 2006 A1
20060184192 Markworth et al. Aug 2006 A1
20060184247 Edidin et al. Aug 2006 A1
20060184248 Edidin et al. Aug 2006 A1
20060189999 Zwirkoski Aug 2006 A1
20060190083 Arnin et al. Aug 2006 A1
20060190085 Cauthen Aug 2006 A1
20060195102 Malandain Aug 2006 A1
20060195103 Padget et al. Aug 2006 A1
20060195191 Sweeney et al. Aug 2006 A1
20060200139 Michelson Sep 2006 A1
20060200164 Michelson Sep 2006 A1
20060200239 Rothman et al. Sep 2006 A1
20060200240 Rothman et al. Sep 2006 A1
20060200241 Rothman et al. Sep 2006 A1
20060200242 Rothman et al. Sep 2006 A1
20060200243 Rothman et al. Sep 2006 A1
20060206116 Yeung Sep 2006 A1
20060206207 Dryer et al. Sep 2006 A1
20060217711 Stevens et al. Sep 2006 A1
20060229629 Manzi et al. Oct 2006 A1
20060235403 Blain Oct 2006 A1
20060235412 Blain Oct 2006 A1
20060235423 Cantu Oct 2006 A1
20060235521 Zucherman et al. Oct 2006 A1
20060235531 Buettner-Janz Oct 2006 A1
20060241663 Rice et al. Oct 2006 A1
20060241770 Rhoda et al. Oct 2006 A1
20060247634 Warner et al. Nov 2006 A1
20060247770 Peterman Nov 2006 A1
20060247771 Peterman et al. Nov 2006 A1
20060247781 Francis Nov 2006 A1
20060253201 McLuen Nov 2006 A1
20060264896 Palmer Nov 2006 A1
20060264939 Zucherman et al. Nov 2006 A1
20060264945 Edidin et al. Nov 2006 A1
20060265067 Zucherman et al. Nov 2006 A1
20060265075 Baumgartner et al. Nov 2006 A1
20060265077 Zwirkoski Nov 2006 A1
20060271049 Zucherman et al. Nov 2006 A1
20060271061 Beyar et al. Nov 2006 A1
20060276897 Winslow et al. Dec 2006 A1
20060276899 Zipnick et al. Dec 2006 A1
20060276901 Zipnick et al. Dec 2006 A1
20060276902 Zipnick et al. Dec 2006 A1
20060282167 Lambrecht et al. Dec 2006 A1
20060287726 Segal et al. Dec 2006 A1
20060287727 Segal et al. Dec 2006 A1
20060293662 Boyer et al. Dec 2006 A1
20060293663 Walkenhorst et al. Dec 2006 A1
20060293753 Thramann Dec 2006 A1
20070006692 Phan Jan 2007 A1
20070010716 Malandain et al. Jan 2007 A1
20070010717 Cragg Jan 2007 A1
20070010824 Malandain et al. Jan 2007 A1
20070010826 Rhoda et al. Jan 2007 A1
20070010844 Gong et al. Jan 2007 A1
20070010845 Gong et al. Jan 2007 A1
20070010846 Leung et al. Jan 2007 A1
20070010848 Leung et al. Jan 2007 A1
20070010886 Banick et al. Jan 2007 A1
20070010889 Francis Jan 2007 A1
20070016191 Culbert et al. Jan 2007 A1
20070032703 Sankaran et al. Feb 2007 A1
20070032790 Aschmann et al. Feb 2007 A1
20070032791 Greenhalgh Feb 2007 A1
20070043361 Malandain et al. Feb 2007 A1
20070043362 Malandain et al. Feb 2007 A1
20070043363 Malandain et al. Feb 2007 A1
20070043440 William et al. Feb 2007 A1
20070048382 Meyer et al. Mar 2007 A1
20070049849 Schwardt et al. Mar 2007 A1
20070049934 Edidin et al. Mar 2007 A1
20070049935 Edidin et al. Mar 2007 A1
20070050034 Schwardt et al. Mar 2007 A1
20070050035 Schwardt et al. Mar 2007 A1
20070055201 Seto et al. Mar 2007 A1
20070055236 Hudgins et al. Mar 2007 A1
20070055237 Edidin et al. Mar 2007 A1
20070055246 Zucherman et al. Mar 2007 A1
20070055265 Schaller Mar 2007 A1
20070055266 Osorio et al. Mar 2007 A1
20070055267 Osorio et al. Mar 2007 A1
20070055271 Schaller Mar 2007 A1
20070055272 Schaller Mar 2007 A1
20070055273 Schaller Mar 2007 A1
20070055274 Appenzeller et al. Mar 2007 A1
20070055275 Schaller Mar 2007 A1
20070055276 Edidin Mar 2007 A1
20070055277 Osorio et al. Mar 2007 A1
20070055278 Osorio et al. Mar 2007 A1
20070055281 Osorio et al. Mar 2007 A1
20070055284 Osorio et al. Mar 2007 A1
20070055300 Osorio et al. Mar 2007 A1
20070055377 Hanson et al. Mar 2007 A1
20070060933 Sankaran et al. Mar 2007 A1
20070060935 Schwardt et al. Mar 2007 A1
20070067034 Chirico et al. Mar 2007 A1
20070067035 Falahee Mar 2007 A1
20070068329 Phan et al. Mar 2007 A1
20070073292 Kohm et al. Mar 2007 A1
20070073399 Zipnick et al. Mar 2007 A1
20070078436 Leung et al. Apr 2007 A1
20070078463 Malandain Apr 2007 A1
20070093689 Steinberg Apr 2007 A1
20070093899 Dutoit et al. Apr 2007 A1
20070093906 Hudgins et al. Apr 2007 A1
20070118132 Culbert et al. May 2007 A1
20070118222 Lang May 2007 A1
20070118223 Allard et al. May 2007 A1
20070123868 Culbert et al. May 2007 A1
20070123891 Ries et al. May 2007 A1
20070123892 Ries et al. May 2007 A1
20070123986 Schaller May 2007 A1
20070129730 Woods et al. Jun 2007 A1
20070135922 Trieu Jun 2007 A1
20070149978 Sheziti et al. Jun 2007 A1
20070150059 Ruberte et al. Jun 2007 A1
20070150060 Trieu Jun 2007 A1
20070150061 Trieu Jun 2007 A1
20070150063 Ruberte et al. Jun 2007 A1
20070150064 Ruberte et al. Jun 2007 A1
20070162005 Peterson et al. Jul 2007 A1
20070162127 Peterman et al. Jul 2007 A1
20070162138 Heinz Jul 2007 A1
20070167945 Lange et al. Jul 2007 A1
20070168036 Ainsworth et al. Jul 2007 A1
20070168038 Trieu Jul 2007 A1
20070173939 Kim et al. Jul 2007 A1
20070173940 Hestad et al. Jul 2007 A1
20070178222 Storey et al. Aug 2007 A1
20070179612 Johnson et al. Aug 2007 A1
20070179615 Heinz et al. Aug 2007 A1
20070179616 Braddock et al. Aug 2007 A1
20070179618 Trieu et al. Aug 2007 A1
20070185578 O'Neil et al. Aug 2007 A1
20070191953 Trieu Aug 2007 A1
20070191954 Hansell et al. Aug 2007 A1
20070191959 Hartmann et al. Aug 2007 A1
20070197935 Reiley et al. Aug 2007 A1
20070198023 Sand et al. Aug 2007 A1
20070198025 Trieu et al. Aug 2007 A1
20070198089 Moskowitz et al. Aug 2007 A1
20070203491 Pasquet et al. Aug 2007 A1
20070208423 Messerli et al. Sep 2007 A1
20070208426 Trieu Sep 2007 A1
20070213717 Trieu et al. Sep 2007 A1
20070219634 Greenhalgh et al. Sep 2007 A1
20070233074 Anderson et al. Oct 2007 A1
20070233083 Abdou Oct 2007 A1
20070233089 Dipoto et al. Oct 2007 A1
20070233244 Lopez et al. Oct 2007 A1
20070260255 Haddock et al. Nov 2007 A1
20070270954 Wu Nov 2007 A1
20070270957 Heinz Nov 2007 A1
20070270968 Baynham et al. Nov 2007 A1
20070276375 Rapp Nov 2007 A1
20070282443 Globerman et al. Dec 2007 A1
20070282449 De et al. Dec 2007 A1
20070299521 Glenn et al. Dec 2007 A1
20080009877 Sankaran et al. Jan 2008 A1
20080015701 Garcia et al. Jan 2008 A1
20080021556 Edie Jan 2008 A1
20080021557 Trieu Jan 2008 A1
20080021558 Thramann Jan 2008 A1
20080027437 Johnson et al. Jan 2008 A1
20080027453 Johnson et al. Jan 2008 A1
20080027454 Johnson et al. Jan 2008 A1
20080027550 Link et al. Jan 2008 A1
20080033440 Moskowitz et al. Feb 2008 A1
20080051897 Lopez et al. Feb 2008 A1
20080051902 Dwyer Feb 2008 A1
20080058598 Ries et al. Mar 2008 A1
20080058944 Duplessis et al. Mar 2008 A1
20080065219 Dye Mar 2008 A1
20080071356 Greenhalgh et al. Mar 2008 A1
20080077148 Ries et al. Mar 2008 A1
20080082172 Jackson Apr 2008 A1
20080082173 Delurio et al. Apr 2008 A1
20080097436 Culbert et al. Apr 2008 A1
20080097611 Mastrorio et al. Apr 2008 A1
20080103601 Biro et al. May 2008 A1
20080108996 Padget et al. May 2008 A1
20080125865 Abdelgany May 2008 A1
20080132934 Reiley et al. Jun 2008 A1
20080133017 Beyar et al. Jun 2008 A1
20080140085 Gately et al. Jun 2008 A1
20080140207 Olmos et al. Jun 2008 A1
20080147193 Matthis et al. Jun 2008 A1
20080161927 Savage et al. Jul 2008 A1
20080167657 Greenhalgh Jul 2008 A1
20080177306 Lamborne et al. Jul 2008 A1
20080177388 Patterson et al. Jul 2008 A1
20080183204 Greenhalgh et al. Jul 2008 A1
20080188945 Boyce et al. Aug 2008 A1
20080195096 Frei Aug 2008 A1
20080195209 Garcia et al. Aug 2008 A1
20080195210 Milijasevic et al. Aug 2008 A1
20080208255 Siegal Aug 2008 A1
20080221687 Viker Sep 2008 A1
20080228225 Trautwein et al. Sep 2008 A1
20080229597 Malandain Sep 2008 A1
20080243251 Stad et al. Oct 2008 A1
20080243254 Butler Oct 2008 A1
20080249622 Gray Oct 2008 A1
20080255618 Fisher et al. Oct 2008 A1
20080262619 Ray Oct 2008 A1
20080269904 Voorhies Oct 2008 A1
20080281346 Greenhalgh et al. Nov 2008 A1
20080281364 Chirico et al. Nov 2008 A1
20080281425 Thalgott et al. Nov 2008 A1
20080287981 Culbert et al. Nov 2008 A1
20080287997 Altarac et al. Nov 2008 A1
20080300685 Carls et al. Dec 2008 A1
20080306537 Culbert Dec 2008 A1
20080319477 Justis Dec 2008 A1
20090005870 Hawkins et al. Jan 2009 A1
20090005873 Slivka et al. Jan 2009 A1
20090018524 Greenhalgh et al. Jan 2009 A1
20090030423 Puno Jan 2009 A1
20090048631 Bhatnagar et al. Feb 2009 A1
20090048678 Saal et al. Feb 2009 A1
20090054991 Biyani et al. Feb 2009 A1
20090069813 Von et al. Mar 2009 A1
20090069895 Gittings et al. Mar 2009 A1
20090074538 Richie Mar 2009 A1
20090076610 Afzal Mar 2009 A1
20090099568 Lowry et al. Apr 2009 A1
20090105712 Dauster et al. Apr 2009 A1
20090105745 Culbert Apr 2009 A1
20090112320 Kraus Apr 2009 A1
20090112324 Refai et al. Apr 2009 A1
20090131986 Lee et al. May 2009 A1
20090149857 Culbert et al. Jun 2009 A1
20090164020 Janowski et al. Jun 2009 A1
20090177281 Swanson et al. Jul 2009 A1
20090177284 Rogers et al. Jul 2009 A1
20090182429 Humphreys et al. Jul 2009 A1
20090192614 Beger et al. Jul 2009 A1
20090222096 Trieu Sep 2009 A1
20090222099 Liu et al. Sep 2009 A1
20090222100 Cipoletti et al. Sep 2009 A1
20090234398 Chirico et al. Sep 2009 A1
20090240334 Richelsoph Sep 2009 A1
20090240335 Arcenio et al. Sep 2009 A1
20090248159 Aflatoon Oct 2009 A1
20090248163 King et al. Oct 2009 A1
20090275890 Leibowitz et al. Nov 2009 A1
20090276051 Arramon et al. Nov 2009 A1
20090281580 Emannuel Nov 2009 A1
20090292361 Lopez Nov 2009 A1
20100016905 Greenhalgh et al. Jan 2010 A1
20100040332 Van et al. Feb 2010 A1
20100042218 Nebosky et al. Feb 2010 A1
20100076492 Warner et al. Mar 2010 A1
20100076559 Bagga et al. Mar 2010 A1
20100082109 Greenhalgh et al. Apr 2010 A1
20100094424 Woodburn et al. Apr 2010 A1
20100094426 Grohowski et al. Apr 2010 A1
20100114105 Butters et al. May 2010 A1
20100114147 Biyani May 2010 A1
20100174314 Mirkovic et al. Jul 2010 A1
20100179594 Theofilos et al. Jul 2010 A1
20100191336 Greenhalgh Jul 2010 A1
20100204795 Greenhalgh Aug 2010 A1
20100211176 Greenhalgh Aug 2010 A1
20100211182 Zimmermann Aug 2010 A1
20100234956 Attia et al. Sep 2010 A1
20100262240 Chavatte et al. Oct 2010 A1
20100268231 Kuslich et al. Oct 2010 A1
20100268338 Melkent et al. Oct 2010 A1
20100286783 Lechmann et al. Nov 2010 A1
20100292700 Ries Nov 2010 A1
20100298938 Humphreys et al. Nov 2010 A1
20100324607 Davis Dec 2010 A1
20100331891 Culbert et al. Dec 2010 A1
20110004308 Marino et al. Jan 2011 A1
20110004310 Michelson Jan 2011 A1
20110015747 McManus et al. Jan 2011 A1
20110029082 Hall Feb 2011 A1
20110035011 Cain Feb 2011 A1
20110054538 Zehavi et al. Mar 2011 A1
20110071527 Nelson et al. Mar 2011 A1
20110082552 Wistrom et al. Apr 2011 A1
20110093074 Glerum et al. Apr 2011 A1
20110093076 Reo et al. Apr 2011 A1
20110098531 To Apr 2011 A1
20110098628 Yeung et al. Apr 2011 A1
20110098818 Brodke et al. Apr 2011 A1
20110130835 Ashley et al. Jun 2011 A1
20110130838 Morgenstern Lopez Jun 2011 A1
20110144692 Saladin et al. Jun 2011 A1
20110144753 Marchek et al. Jun 2011 A1
20110153020 Abdelgany et al. Jun 2011 A1
20110159070 Jin et al. Jun 2011 A1
20110160866 Laurence et al. Jun 2011 A1
20110172716 Glerum Jul 2011 A1
20110172774 Varela Jul 2011 A1
20110238072 Tyndall Sep 2011 A1
20110270261 Mast et al. Nov 2011 A1
20110270401 McKay Nov 2011 A1
20110282453 Greenhalgh et al. Nov 2011 A1
20110301711 Palmatier et al. Dec 2011 A1
20110301712 Palmatier et al. Dec 2011 A1
20110307010 Pradhan Dec 2011 A1
20110313465 Warren et al. Dec 2011 A1
20110320000 O'Neil Dec 2011 A1
20120004726 Greenhalgh et al. Jan 2012 A1
20120004732 Goel et al. Jan 2012 A1
20120022654 Farris et al. Jan 2012 A1
20120023994 Powell Feb 2012 A1
20120029636 Ragab et al. Feb 2012 A1
20120059474 Weiman Mar 2012 A1
20120059475 Weiman Mar 2012 A1
20120071977 Oglaza et al. Mar 2012 A1
20120071980 Purcell et al. Mar 2012 A1
20120083887 Purcell et al. Apr 2012 A1
20120083889 Purcell et al. Apr 2012 A1
20120123546 Medina May 2012 A1
20120136443 Wenzel May 2012 A1
20120150304 Glerum et al. Jun 2012 A1
20120150305 Glerum et al. Jun 2012 A1
20120158146 Glerum et al. Jun 2012 A1
20120158147 Glerum et al. Jun 2012 A1
20120158148 Glerum et al. Jun 2012 A1
20120185049 Varela Jul 2012 A1
20120197299 Fabian, Jr. Aug 2012 A1
20120197403 Merves Aug 2012 A1
20120197405 Cuevas et al. Aug 2012 A1
20120203290 Warren et al. Aug 2012 A1
20120203347 Glerum et al. Aug 2012 A1
20120215262 Culbert et al. Aug 2012 A1
20120215316 Mohr et al. Aug 2012 A1
20120226357 Varela Sep 2012 A1
20120232552 Morgenstern et al. Sep 2012 A1
20120232658 Morgenstern et al. Sep 2012 A1
20120265309 Glerum et al. Oct 2012 A1
20120277795 Von et al. Nov 2012 A1
20120277869 Siccardi et al. Nov 2012 A1
20120290090 Glerum et al. Nov 2012 A1
20120290097 Cipoletti et al. Nov 2012 A1
20120310350 Farris et al. Dec 2012 A1
20120310352 Dimauro et al. Dec 2012 A1
20120323327 McAfee Dec 2012 A1
20120323328 Weiman Dec 2012 A1
20120330421 Weiman Dec 2012 A1
20120330422 Weiman Dec 2012 A1
20130006361 Glerum et al. Jan 2013 A1
20130023993 Weiman Jan 2013 A1
20130023994 Glerum Jan 2013 A1
20130030536 Rhoda et al. Jan 2013 A1
20130030544 Studer Jan 2013 A1
20130060337 Petersheim et al. Mar 2013 A1
20130073044 Gamache Mar 2013 A1
20130085572 Glerum et al. Apr 2013 A1
20130085574 Sledge Apr 2013 A1
20130110240 Hansell et al. May 2013 A1
20130116791 Theofilos May 2013 A1
20130123924 Butler et al. May 2013 A1
20130123927 Malandain May 2013 A1
20130138214 Greenhalgh et al. May 2013 A1
20130144387 Walker et al. Jun 2013 A1
20130144388 Emery et al. Jun 2013 A1
20130144391 Siegal et al. Jun 2013 A1
20130158663 Miller et al. Jun 2013 A1
20130158664 Palmatier et al. Jun 2013 A1
20130158667 Tabor et al. Jun 2013 A1
20130158668 Nichols et al. Jun 2013 A1
20130158669 Sungarian et al. Jun 2013 A1
20130173004 Greenhalgh et al. Jul 2013 A1
20130190875 Shulock et al. Jul 2013 A1
20130190876 Drochner et al. Jul 2013 A1
20130190877 Medina Jul 2013 A1
20130204371 McLuen et al. Aug 2013 A1
20130211525 McLuen et al. Aug 2013 A1
20130211526 Alheidt et al. Aug 2013 A1
20130218276 Fiechter et al. Aug 2013 A1
20130253585 Garcia et al. Sep 2013 A1
20130261746 Linares et al. Oct 2013 A1
20130310939 Fabian et al. Nov 2013 A1
20130325128 Perloff Dec 2013 A1
20140018816 Fenn Jan 2014 A1
20140025169 Lechmann et al. Jan 2014 A1
20140039622 Glerum et al. Feb 2014 A1
20140046333 Johnson et al. Feb 2014 A1
20140046446 Robinson Feb 2014 A1
20140058513 Gahman et al. Feb 2014 A1
20140067073 Hauck Mar 2014 A1
20140086962 Jin et al. Mar 2014 A1
20140094916 Glerum et al. Apr 2014 A1
20140100662 Patterson Apr 2014 A1
20140107790 Combrowski Apr 2014 A1
20140114414 Abdou et al. Apr 2014 A1
20140114423 Suedkamp et al. Apr 2014 A1
20140128977 Glerum et al. May 2014 A1
20140128980 Kirschman May 2014 A1
20140135934 Hansell et al. May 2014 A1
20140142706 Hansell et al. May 2014 A1
20140163682 Lott Jun 2014 A1
20140163683 Seifert et al. Jun 2014 A1
20140172106 To et al. Jun 2014 A1
20140180421 Glerum et al. Jun 2014 A1
20140188225 Dmuschewsky Jul 2014 A1
20140228959 Niemiec et al. Aug 2014 A1
20140236296 Wagner et al. Aug 2014 A1
20140243892 Choinski Aug 2014 A1
20140243981 Davenport et al. Aug 2014 A1
20140243982 Miller Aug 2014 A1
20140249629 Moskowitz et al. Sep 2014 A1
20140249630 Weiman Sep 2014 A1
20140257484 Flower et al. Sep 2014 A1
20140257486 Alheidt Sep 2014 A1
20140257494 Thorwarth et al. Sep 2014 A1
20140277139 Vrionis et al. Sep 2014 A1
20140277204 Sandhu Sep 2014 A1
20140277464 Richter et al. Sep 2014 A1
20140277474 Robinson et al. Sep 2014 A1
20140277476 McLean et al. Sep 2014 A1
20140277481 Lee et al. Sep 2014 A1
20140303731 Glerum Oct 2014 A1
20140303732 Rhoda et al. Oct 2014 A1
20140324171 Glerum et al. Oct 2014 A1
20150012097 Ibarra et al. Jan 2015 A1
20150012098 Eastlack et al. Jan 2015 A1
20150045894 Hawkins et al. Feb 2015 A1
20150066145 Rogers et al. Mar 2015 A1
20150088256 Ballard Mar 2015 A1
20150094610 Morgenstern et al. Apr 2015 A1
20150094812 Cain Apr 2015 A1
20150094813 Lechmann et al. Apr 2015 A1
20150100128 Glerum Apr 2015 A1
20150112398 Morgenstern et al. Apr 2015 A1
20150112437 Davis et al. Apr 2015 A1
20150112438 McLean Apr 2015 A1
20150157470 Voellmicke et al. Jun 2015 A1
20150164655 Dimauro Jun 2015 A1
20150173914 Dimauro et al. Jun 2015 A1
20150173916 Cain Jun 2015 A1
20150182347 Robinson Jul 2015 A1
20150190242 Blain Jul 2015 A1
20150196401 Dimauro et al. Jul 2015 A1
20150202052 Dimauro Jul 2015 A1
20150216671 Cain Aug 2015 A1
20150216672 Cain Aug 2015 A1
20150216673 Dimauro Aug 2015 A1
20150230929 Lorio Aug 2015 A1
20150230932 Schaller Aug 2015 A1
20150238324 Nebosky et al. Aug 2015 A1
20150250606 McLean Sep 2015 A1
20150320571 Lechmann et al. Nov 2015 A1
20160000577 Dimauro Jan 2016 A1
20160016309 Swift et al. Jan 2016 A1
20160022437 Kelly et al. Jan 2016 A1
20160038301 Wickham Feb 2016 A1
20160038304 Aquino et al. Feb 2016 A1
20160045333 Baynham Feb 2016 A1
20160051376 Serhan et al. Feb 2016 A1
20160058573 Dimauro et al. Mar 2016 A1
20160067055 Hawkins et al. Mar 2016 A1
20160074170 Rogers et al. Mar 2016 A1
20160074175 O'Neil Mar 2016 A1
20160081814 Baynham Mar 2016 A1
20160089247 Nichols et al. Mar 2016 A1
20160100954 Rumi et al. Apr 2016 A1
20160106551 Grimberg et al. Apr 2016 A1
20160113776 Capote Apr 2016 A1
20160120662 Schaller May 2016 A1
20160128843 Tsau et al. May 2016 A1
20160199195 Hauck et al. Jul 2016 A1
20160199196 Serhan et al. Jul 2016 A1
20160228258 Schaller et al. Aug 2016 A1
20160235455 Wahl Aug 2016 A1
20160242929 Voellmicke et al. Aug 2016 A1
20160256291 Miller Sep 2016 A1
20160310296 Dimauro et al. Oct 2016 A1
20160317313 Dimauro Nov 2016 A1
20160317317 Marchek et al. Nov 2016 A1
20160317714 Dimauro et al. Nov 2016 A1
20160331541 Dimauro et al. Nov 2016 A1
20160331546 Lechmann et al. Nov 2016 A1
20160331548 Dimauro et al. Nov 2016 A1
20160338854 Serhan et al. Nov 2016 A1
20160367265 Morgenstern Lopez Dec 2016 A1
20160367380 Dimauro Dec 2016 A1
20160374821 Dimauro et al. Dec 2016 A1
20170000622 Thommen et al. Jan 2017 A1
20170035578 Dimauro et al. Feb 2017 A1
20170056179 Lorio Mar 2017 A1
20170100177 Kim Apr 2017 A1
20170100255 Hleihil et al. Apr 2017 A1
20170100260 Duffield et al. Apr 2017 A1
20170290674 Olmos et al. Oct 2017 A1
20170304074 Dimauro et al. Oct 2017 A1
20180055649 Kelly et al. Mar 2018 A1
20180078379 Serhan et al. Mar 2018 A1
20190083276 Dimauro Mar 2019 A1
20190105171 Rogers et al. Apr 2019 A1
20200008950 Serhan et al. Jan 2020 A1
20200015982 O'Neil Jan 2020 A1
20200060843 Evans et al. Feb 2020 A1
Foreign Referenced Citations (215)
Number Date Country
2005314079 Jun 2006 AU
2006279558 Feb 2007 AU
2617872 Feb 2007 CA
1177918 Apr 1998 CN
101087566 Dec 2007 CN
101631516 Jan 2010 CN
101909548 Dec 2010 CN
102164552 Aug 2011 CN
2804936 Aug 1979 DE
3023353 Apr 1981 DE
3911610 Oct 1990 DE
4012622 Jul 1991 DE
19710392 Jul 1999 DE
19832798 Nov 1999 DE
20101793 May 2001 DE
202006005868 Jun 2006 DE
202008001079 Mar 2008 DE
0077159 Apr 1983 EP
0260044 Mar 1988 EP
0270704 Jun 1988 EP
0282161 Sep 1988 EP
0433717 Jun 1991 EP
0525352 Feb 1993 EP
0529275 Mar 1993 EP
0611557 Aug 1994 EP
0621020 Oct 1994 EP
0625336 Nov 1994 EP
0678489 Oct 1995 EP
0743045 Nov 1996 EP
0853929 Jul 1998 EP
1046376 Oct 2000 EP
1157676 Nov 2001 EP
1290985 Mar 2003 EP
1374784 Jan 2004 EP
1378205 Jan 2004 EP
1532949 May 2005 EP
1541096 Jun 2005 EP
1385449 Jul 2006 EP
1683593 Jul 2006 EP
1698305 Sep 2006 EP
1843723 Oct 2007 EP
1845874 Oct 2007 EP
1924227 May 2008 EP
2331023 Jun 2011 EP
2368529 Sep 2011 EP
2237748 Sep 2012 EP
2641571 Sep 2013 EP
2705809 Mar 2014 EP
2764851 Aug 2014 EP
2649311 Jan 1991 FR
2699065 Jun 1994 FR
2712486 May 1995 FR
2718635 Oct 1995 FR
2728778 Jul 1996 FR
2730159 Aug 1996 FR
2745709 Sep 1997 FR
2800601 May 2001 FR
2801189 May 2001 FR
2808182 Nov 2001 FR
2874814 Mar 2006 FR
2913331 Sep 2008 FR
2157788 Oct 1985 GB
2173565 Oct 1986 GB
6452439 Feb 1989 JP
06-500039 Jan 1994 JP
06-319742 Nov 1994 JP
07-502419 Mar 1995 JP
07-184922 Jul 1995 JP
1085232 Apr 1998 JP
11-089854 Apr 1999 JP
2003-010197 Jan 2003 JP
2003-126266 May 2003 JP
2003-526457 Sep 2003 JP
2006-516456 Jul 2006 JP
2007-054666 Mar 2007 JP
2008-126085 Jun 2008 JP
2011-509766 Mar 2011 JP
2011-520580 Jul 2011 JP
2012-020153 Feb 2012 JP
4988203 Aug 2012 JP
5164571 Mar 2013 JP
9109572 Jul 1991 WO
9304634 Mar 1993 WO
9304652 Mar 1993 WO
9317669 Sep 1993 WO
9404100 Mar 1994 WO
9531158 Nov 1995 WO
9628100 Sep 1996 WO
9700054 Jan 1997 WO
9726847 Jul 1997 WO
9834552 Aug 1998 WO
9902214 Jan 1999 WO
9942062 Aug 1999 WO
9952478 Oct 1999 WO
9953871 Oct 1999 WO
9962417 Dec 1999 WO
0012033 Mar 2000 WO
0013620 Mar 2000 WO
0067652 May 2000 WO
0044288 Aug 2000 WO
0053127 Sep 2000 WO
0067650 Nov 2000 WO
0067651 Nov 2000 WO
0074605 Dec 2000 WO
0076409 Dec 2000 WO
0101893 Jan 2001 WO
0101895 Jan 2001 WO
0110316 Feb 2001 WO
0112054 Feb 2001 WO
0117464 Mar 2001 WO
0180751 Nov 2001 WO
0217824 Mar 2002 WO
0217825 Mar 2002 WO
0230338 Apr 2002 WO
0243601 Jun 2002 WO
0243628 Jun 2002 WO
0247563 Jun 2002 WO
0271921 Sep 2002 WO
0285250 Oct 2002 WO
0302021 Jan 2003 WO
0305937 Jan 2003 WO
0307854 Jan 2003 WO
0320169 Mar 2003 WO
0321308 Mar 2003 WO
0322165 Mar 2003 WO
0328587 Apr 2003 WO
0343488 May 2003 WO
2003051557 Jun 2003 WO
2003101308 Dec 2003 WO
2004008949 Jan 2004 WO
0359180 Mar 2004 WO
2004034924 Apr 2004 WO
2004062505 Jul 2004 WO
2004064603 Aug 2004 WO
2004073563 Sep 2004 WO
2004078220 Sep 2004 WO
2004078221 Sep 2004 WO
2004082526 Sep 2004 WO
2004098420 Nov 2004 WO
2004098453 Nov 2004 WO
2004108022 Dec 2004 WO
2005027734 Mar 2005 WO
2005032433 Apr 2005 WO
2005039455 May 2005 WO
2005051246 Jun 2005 WO
2005081877 Sep 2005 WO
2005112834 Dec 2005 WO
2005112835 Dec 2005 WO
2006017507 Feb 2006 WO
2006047587 May 2006 WO
2006047645 May 2006 WO
2006058281 Jun 2006 WO
2006060420 Jun 2006 WO
2006063083 Jun 2006 WO
2006065419 Jun 2006 WO
2006066228 Jun 2006 WO
2006072941 Jul 2006 WO
2006081843 Aug 2006 WO
2006108067 Oct 2006 WO
2007009107 Jan 2007 WO
2007022194 Feb 2007 WO
2007028098 Mar 2007 WO
2007048012 Apr 2007 WO
2007067726 Jun 2007 WO
2007084427 Jul 2007 WO
2007119212 Oct 2007 WO
2007124130 Nov 2007 WO
2008004057 Jan 2008 WO
2008044057 Apr 2008 WO
2008064842 Jun 2008 WO
2008070863 Jun 2008 WO
2008103781 Aug 2008 WO
2008103832 Aug 2008 WO
2009064787 May 2009 WO
2009092102 Jul 2009 WO
2009124269 Oct 2009 WO
2009143496 Nov 2009 WO
2009147527 Dec 2009 WO
2009152919 Dec 2009 WO
2010068725 Jun 2010 WO
2010088766 Aug 2010 WO
2010136170 Dec 2010 WO
2010148112 Dec 2010 WO
2011005788 Jan 2011 WO
2011046459 Apr 2011 WO
2011046460 Apr 2011 WO
2011079910 Jul 2011 WO
2011119617 Sep 2011 WO
2011142761 Nov 2011 WO
2011150350 Dec 2011 WO
2012009152 Jan 2012 WO
2012028182 Mar 2012 WO
2012030331 Mar 2012 WO
2012089317 Jul 2012 WO
2012122294 Sep 2012 WO
2012135764 Oct 2012 WO
2013006669 Jan 2013 WO
2013023096 Feb 2013 WO
2013025876 Feb 2013 WO
2013043850 Mar 2013 WO
2013062903 May 2013 WO
2013082184 Jun 2013 WO
2013158294 Oct 2013 WO
2013173767 Nov 2013 WO
2013184946 Dec 2013 WO
2014014610 Jan 2014 WO
2014018098 Jan 2014 WO
2014026007 Feb 2014 WO
2014035962 Mar 2014 WO
2014088521 Jun 2014 WO
2014116891 Jul 2014 WO
2014144696 Sep 2014 WO
2015048997 Apr 2015 WO
2016069796 May 2016 WO
2016127139 Aug 2016 WO
Non-Patent Literature Citations (77)
Entry
Zucherman, “A Multicenter, Prospective, Randomized Trial Evaluating the X STOP Interspinous Process Decompression System for the Treatment of Neurogenic Intermittent Claudication”, SPINE, vol. 30, No. 12, pp. 1351-1358, 2005.
Talwar “Insertion loads of the X STOP interspinous process distraction system designed to treat neurogenic intermittent claudication”, Eur Spine J. (2006) 15: pp. 908-912.
Spine Solutions Brochure—Prodisc 2001, 16 pages.
Siddiqui, “The Positional Magnetic Resonance Imaging Changes in the Lumbar Spine Following Insertion of a Novel Interspinous Process Distraction Device”, Spine, vol. 30, No. 23, pp. 2677-2682, 2005.
Shin, “Posterior Lumbar Interbody Fusion via a Unilateral Approach”, Yonsei Medical Journal, 2006, pp. 319-325, vol. 47(3).
ProMap Tm EMG Navigation Probe. Technical Brochure Spineology Inc, Dated May 2009.
Polikeit, “The Importance of the Endplate for Interbody Cages in the Lumbar Spine”, Eur. Spine J., 2003, pp. 556-561, vol. 12.
Niosi, Christina A., “Biomechanical Characterization of the three-dimentinoal kinematic behavior of the Dynesys dynamic stabilization system: an in vitro study”, Eur Spine J. (2006) 15: pp. 913-922.
Morgenstern R; “Transforaminal Endoscopic Stenosis Surgery—A Comparative Study of Laser and Reamed Foraminoplasty”, in European Musculoskeletal Review, Issue 1, 2009.
Method and Apparatus for Spinal Stabilization, U.S. Appl. No. 60/942,998.
Method and Apparatus for Spinal Fixation, U.S. Appl. No. 60/794,171.
Method and Apparatus for Spinal Fixation, U.S. Appl. No. 60/424,055.
Method and apparatus for spinal fixation, U.S. Appl. No. 60/397,588.
Medco Forum, “Percutaneous Lumbar Fixation via PERPOS System From Interventional Spine”, Oct. 2007, vol. 14, No. 49.
Medco Forum, “Percutaneous Lumbar Fixation Via PERPOS PLS System Interventional Spine”, Sep. 2008, vol. 15, No. 37.
Mahar et al., “Biomechanical Comparison of Novel Percutaneous Transfacet Device and a Traditional Posterior System for Single Level Fusion”, Joumal of Spinal Disorders & Techniques, Dec. 2006, vol. 19, No. 8, pp. 591-594.
Link SB Charite Brochure—Intervertebral Prosthesis 1988, 29 pages.
Krbec, “Replacement of the Vertebral Body with an Expansion Implant (Synex)”, Acta Chir Orthop Traumatol Cech, 2002, pp. 158-162, vol. 69(3).
King, M.D., Don, “Internal Fixation for Lumbosacral Fusion”, The Journal of Bone and Joint Surgery, J. Bone Joint Surg Am., 1948; 30: 560-578.
Kambin et al., “Percutaneous Lateral Discectomy of the Lumbar Spine: A Preliminary Report”, Clin. Orthop,: 1983, 174: 127-132.
Iprenburg et al., “Transforaminal Endoscopic Surgery in Lumbar Disc Herniation in an Economic Crisis—The TESSYS Method”, US Musculoskeletal, 2008, p. 47-49.
Hunt, “Expandable Cage Placement Via a Posterolateral Approach in Lumbar Spine Reconstructions”, Journal of Neurosurgery: Spine, Sep. 2006, pp. 271-274, vol. 5.
Hoogland et al., “Total Lumar Intervertebral Disc Replacement: Testing a New Articulating Space in Human Cadaver Spines-24 1”, Annual ORS, Dallas, TX, Feb. 21-23, 1978, 8 pages.
Gray's Anatomy, Crown Publishers, Inc., 1977, pp. 33-54.
Gore, “Technique of Cervical Interbody Fusion”, Clinical Orthopaedics and Related Research, Sep. 1984, pp. 191-195, No. 188.
Fuchs, “The use of an interspinous implant in conjuction with a graded facetectomy procedure”, Spine vol. 30, No. 11, pp. 1266-1272, 2005.
Folman, Posterior Lumbar Interbody Fusion for Degenerative Disc Disease Using a Minimally Invasive B-Twin Expandable Spinal Spacer, Journal of Spinal Disorders & Techniques, 2003, pp. 455-460, vol. 16(5).
Expandable Implant, U.S. Appl. No. 61/675,975.
Chin, “Early Results of the Triage Medical Percutaneous Transfacet Pedicular BONE-LOK Compression Device for Lumbar Fusion”, Accessed online Jul. 10, 2017, 10 pages.
Chiang, “Biomechanical Comparison of Instrumented Posterior Lumbar Interbody Fusion with One or Two Cages by Finite Element Analysis”, Spine, Sep. 2006, pp. E682-E689, vol. 31(19), Lippincott Williams & Wilkins, Inc.
Brooks et al., “Efficacy of Supplemental Posterior Transfacet Pedicle Device Fixation in the Setting of One- or Two-Level Anterior Lumbar Interbody Fusion”, Retrieved Jun. 19, 2017, 6 pages.
Brochure for PERPOS PLS System Surgical Technique by Interventional Spine, 2008, 8 pages.
Alfen et al., “Developments in the area of Endoscopic Spine Surgery”, European Musculoskeletal Review 2006, pp. 23-24, Thessys(Trademark), Transforaminal Endoscopic Spine Systems, joi max Medical Solutions.
U.S. Appl. No. 60/942,998, Method and Apparatus for Spinal Stabilization, filed Jun. 8, 2007.
U.S. Appl. No. 61/675,975, Expandable Implant, filed Jul. 26, 2012.
U.S. Appl. No. 60/397,588, Method and apparatus for spinal fixation, filed Jul. 19, 2002.
U.S. Appl. No. 60/794,171, Method and apparatus for spinal fixation, filed Apr. 21, 2006.
U.S. Appl. No. 60/424,055, filed Nov. 5, 2002, entitled Method and apparatus for spinal fixation.
Barakat et al., Macromolecular engineering of polylactone and polylactide. XXI. Controlled synthesis of low molecular weight polylactide macromonomers. J Polym Sci Polym Chem 34:497-502, 1996.
Bruder et al., Identification and characterization of a cell surface differentiation antigen on human osteoprogenitor cells. 42nd Annual Meeting of the Orthopaedic Research Society. p. 574, Feb. 19-22, 1996, Atlanta, Georgia.
Bruder et al., Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone. Sep. 1997;21 (3):225-235.
Burkoth et al., A review of photocrosslinked polyanhydrides: in situ forming degradable networks. Biomaterials. Dec. 2000; 21 (23): 2395-2404.
Cambridge Scientific News, FDA Approves Cambridge Scientific, Inc.'s Orthopedic WISORB (TM) Malleolar Screw [online], Jul. 30, 2002 [retrieved on Oct. 14, 2003]. Retrieved from the Internet <URL: http://www.cambridgescientificinc.com>.
Carrino, John A., Roxanne Chan and Alexander R. Vaccaro, “Vertebral Augmentation: Vertebroplasty and Kyphoplasty”, Seminars in Roentgenology, vol. 39, No. 1 Jan. 2004: pp. 68-84.
Cheng, B.C., Ph.D., Biomechanical pullout strength and histology of Plasmapore Registered XP coated implants: Ovine multi time point survival study. Aesculap Implant Systems, LLC, 2013, 12 pages.
Domb, Biodegradable bone cement compositions based on acrylate and epoxide terminated poly(propylene fumarate) oligomers and calcium salt compositions, Biomaterials 17, 1996, 411-417.
Edeland, H.G., “Some Additional Suggestions for an Intervertebral Disc Prosthesis”, J of Bio Medical Engr., vol. 7(1) pp. 57-62, Jan. 1985.
European Search Report EP03253921 dated Nov. 13, 2003, 4 pages.
Flemming et al., Monoclonal anitbody against adult marrow-derived mesenchymal stem cells recognizes developing vasculature in embryonic human skin. Developmental Dynamics. 1998;212:119-132.
Ha et al. (Topographical characterization and microstructural interface analysis of vacuum-plasma-sprayed titanium and hydroxyapatite coatings on carbon fiber-reinforced poly(etheretherketone), Journal of Materials Science: Materials in Science 9 (1997), pp. 891-896.
Haas, Norbert P., New Products from AO Development [online], May 2002 [retrieved on Oct. 14, 2003]. Retrieved from the Internet <URL: http://www.ao.asif.ch/development/pdf_tk_news_02.pdf>.
Hao et al., Investigation of nanocomposites based on semi-interpenetrating network of [L-poly (epsilon-caprolactone)]/[net-poly (epsilon-caprolactone)] and hydroxyapatite nanocrystals. Biomaterials. Apr. 2003;24(9): 1531-9.
Harsha et al., Tribo performance of polyaryletherketone composites, Polymer Testing (21) (2002) pp. 697-709.
Haynesworth et al., Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone. 1992;13(1):69-80.
Hitchon et al., Comparison of the biomechanics of hydroxyapatite and polymethylmethacrylate vertebroplasty in a cadaveric spinal compression fracture model. J Neurosurg. Oct. 2001;95(2 Suppl):215-20.
International Patent Application No. PCT /US2013/029014, International Search Report dated Jul. 1, 2013, 7 pages.
Joshi, Ajeya P., M.D. and Paul A. Glazer, M.D., “Vertebroplasty: Current Concepts and Outlook for the Future”, 2003, (5 pages), From: http://www.orthojournalhms.org/html/pdfs/manuscript-15.pdf.
Kandziora, Frank, et al., “Biomechanical Analysis of Biodegradable Interbody Fusion Cages Augmented with Poly (propylene Glycol-co-Fumaric Acid),” SPINE, 27(15): 1644-1651 (2002).
Kotsias, A., Clinical trial of titanium-coated PEEL cages anterior cervical discectomy and fusion. [Klinishe Untersuching zum Einsatz von titanbeschichteten Polyetheretherketon—Implantaten bei der cervikalen interkorporalen fusion]. Doctoral thesis. Department of Medicine, Charite, University of Medicine Berlin, 2014, 73 pages. (German language document/Engl. summary).
Kricheldorf et al., Polylactides—synthesis, characterization and medical applications. Macromol Symp 103:85-102, 1996.
Kroschwitz et al., eds., Hydrogels. Concise Encyclopedia of Polymer Science and Engineering. Wiley and Sons, pp. 458-459, 1990.
Lendlein et al., AB-polymer networks based on oligo(epsilon-caprolactone) segments showing shape-memory properties. Proc Natl Acad Sci US A. Jan. 30, 2001;98(3):842-7. Epub Jan. 23, 2001.
Malberg. M.I., MD; Pimenta, L., MD; Millan, M.M., Md, 9th International Meeting on Advanced Spine Techniques, May 23-25, 2002, Montreux, Switzerland. Paper #54, Paper #60, and E-Poster #54, 5 pages.
Massia et al, An RGD spacing of 440 nm is sufficient for integrin alpha V beta 3-mediated fibroblast spreading and 140 nm for focal contact and stress fiber formation. J Cell Biol 114:1089-1100, 1991.
McAfee et al., Minimally invasive anterior retroperitoneal approach to the lumbar spine: Emphasis on the lateral BAK. SPINE. 1998;23(13):1476-84.
Mendez et al., Self-curing acrylic formulations containing PMMA/PCL composites: properties and antibiotic release behavior. J Biomed Mater Res. Jul. 2002;61 (1 ):66-74.
Nguyen et al., Poly(Aryl-Ether-Ether-Ketone) and its Advanced Composites: A Review, Polymer Composites, Apr. 1987, vol. 8, No. 2, pp. 57-73.
Osteoset Registered DBM Pellets (Important Medical Information) [online], Nov. 2002 [retrieved on Oct. 14, 2003]. Retrieved from the Internet <URL: http://www.wmt.com/Literature>.
Porocoat(R) Porous Coating, 1 Page, https://emea.depuysynthese.com/hcp/hip/products/qs/porocoat-porous-coatingemea Accessed on Jul. 31, 2017.
Regan et al., Endoscopic thoracic fusion cage. Atlas of Endoscopic Spine Surgery. Quality Medical Publishing, Inc. 1995;350-354.
Slivka et al., In vitro compression testing of fiber-reinforced, bioabsorbable, porous implants. Synthetic Bioabsorbable Polymers for Implants. STP1396, pp. 124-135, ATSM International, Jul. 2000.
Sonic Accelerated Fracture Healing System/Exogen 3000. Premarket Approval. U.S. Food & Drug Administration. Date believed to be May 10, 2000. Retrieved Jul. 23, 2012 from <http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm?id=14736#>. 4 pages, 2012.
Stewart et al., Co-expression of the stro-1 anitgen and alkaline phosphatase in cultures of human bone and marrow cells. ASBMR 18th Annual Meeting. Bath Institute for Rheumatic Diseases, Bath, Avon, UK. Abstract No. P208, p. S142, 1996.
Timmer et al., In vitro degradation of polymeric networks of poly(propylene fumarate) and the crosslinking macromer poly(propylene fumarate)-diacrylate. Biomaterials. Feb. 2003;24(4 ):571-7.
United States Disctrict Court, Central District of California, Case No. 1 :10-CV-00849-LPS, Nuvasive, Inc., vs., Globus Medical, Inc., Videotaped Deposition of: Luiz Pimenta, M.D., May 9, 2012, 20 pages.
Walsh et al., Preparation of porous composite implant materials by in situ polymerization of porous apatite containing epsilon-caprolactone or methyl methacrylate. Biomaterials. Jun. 2001;22( 11):1205-12.
Zimmer.com, Longer BAK/L Sterile Interbody Fusion Devices. Date believed to be 1997. Product Data Sheet.Zimmer. Retrieved Jul. 23, 2012 from <http:/ catalog.zimmer.com/contenUzpc/products/600/600/620/S20/S045. html>, 2 pages.
Related Publications (1)
Number Date Country
20180161171 A1 Jun 2018 US
Continuation in Parts (1)
Number Date Country
Parent 15378724 Dec 2016 US
Child 15478305 US