Intervertebral implant

Abstract
An intervertebral implant includes a three-dimensional body and a securing plate. The three-dimensional body includes a front surface and a rear surface. The three-dimensional body further includes a plurality of boreholes for accommodating fixation elements. The intervertebral implant also includes a front plate disposed at the front surface of the three-dimensional body and has a plurality of boreholes. A securing plate can be fastened to the front plate.
Description
TECHNICAL FIELD

The present invention relates generally to intervertebral implants.


BACKGROUND OF THE INVENTION

GB-A-2 207 607 discloses an intervertebral implant, which has a horseshoe-shaped configuration with a plurality of cylindrical holes. The holes are smooth on the inside and only have a stop for the heads of the bone screws, which are to be introduced therein. A disadvantage of this arrangement is that the fastening screws, introduced therein, can be anchored only with their shaft in the bone. This does not result in a rigid connection with the horseshoe-shaped intervertebral implant. When the anchoring of the screw shaft in the bone is weakened, the intervertebral implant becomes movable with respect to the screw and the bone screws tend to migrate, endangering the blood vessels. Moreover, the loosening of the intervertebral implant can lead to a pseudoarthrosis.


U.S. Patent Publication US-A 2000/0010511 (Michelson) discloses an intervertebral implant, which, at its front surface, has two boreholes with an internal thread, into which bone screws with a threaded head can be introduced. A disadvantage of this implant is that the bone screws can become loose and are not secured against being screwed out or falling out. A further disadvantage is that the bone screws are fastened completely to the implant body itself and that therefore the latter experiences a relatively large stress.


Screws which emerge at the anterior or anterolateral edge of the vertebral body because of loosening run the risk of injuring main vessels such as the aorta and Vena cava, as well as supply vessels such as lumbar arteries and veins. Injury to these main vessels may result in internal bleeding possibly causing death within a very short time. Loosening of screws is more likely when they are not mounted angularly firmly.


SUMMARY OF THE INVENTION

The present invention is to provide a remedy for the above-discussed disadvantages. The present invention is directed to an intervertebral implant which can enter into a permanent, rigid connection with bone fixation means, so that, even if the bone structure is weakened, there is no loosening between the intervertebral implant and the bone fixation means. Moreover, over a separately constructed front plate, there is tension chording for the bone fixation elements, so that the implant body experiences less stress, that is, superimposed tensions. Moreover, a securing plate enables all bone fixation elements to be secured simultaneously.


The present invention accomplishes the objective set out above with an intervertebral implant, comprising a three-dimensional body having an upper side and an under side which are suitable for abutting the end plates of two adjacent vertebral bodies. The three-dimensional body further includes a left side surface and a right side surface, a front surface and a rear surface, a horizontal middle plane between the upper side and the under side, and a vertical middle plane extending from the front surface to the rear surface. The three-dimensional body further comprising a plurality of boreholes, having openings at least at or near the front surface, passing there through and being suitable for accommodating longitudinal fixation elements. The intervertebral implant further including a front plate displaceably disposed as an insert with the front side of the three-dimensional body, where the front plate includes a plurality of boreholes having openings and in which the longitudinal fixation elements can be anchored, and whose openings overlap with the openings of the boreholes of the three-dimensional body. The intervertebral implant has a securing plate fastened substantially parallel to the front plate in such a manner that the boreholes of the front plate are covered at least partly by the securing plate. An advantage achieved by the present invention, arises essentially from the solid connection between the intervertebral implant and the longitudinal fixation elements, used to fasten it.


Compared to the two-part implants of the state of the art, for which a front plate is implanted in a separate step, the present invention has the advantage that the implantation of the intervertebral implant may be carried out in one step and, with that, can be carried out more easily and more quickly. A further advantage is that the intervertebral implant is fixed as frontally as possible at the body of the vertebra. That is, at a place where good bone material usually is present. The result is an anterior movement limitation without a greater risk to the surrounding structures. The load is still absorbed under compression by the intervertebral implant and not by the front plate or the fixation screws (longitudinal fixation elements).


A method for implanting an intervertebral implant of the present invention between two adjacent vertebral bodies includes introducing the intervertebral implant, having a three-dimensional body, a front plate, and one or more boreholes, between two adjacent vertebral bodies, attaching longitudinal fixation elements with heads through the boreholes into the vertebral bodies, and attaching a securing plate by means of a fastening agent over the heads of the longitudinal fixation elements to the front plate, such that the heads of the longitudinal fixation elements are captured between the front plate and the securing plate wherein the longitudinal fixation elements are secured against being shifted relative to the intervertebral implant.


Other objectives and advantages in addition to those discussed above will become apparent to those skilled in the art during the course of the description of a preferred embodiment of the invention which follows. In the description, reference is made to accompanying drawings, which form a part thereof, and which illustrate an example of the invention. Such example, however, is not exhaustive of the various embodiments of the invention, and therefore, reference is made to the claims that follow the description for determining the scope of the invention.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows an exploded drawing of the intervertebral implant,



FIG. 2 shows a longitudinal fixation element in the form of a screw,



FIG. 3 shows an elevation of the intervertebral implant of FIG. 1,



FIG. 4 shows a side view of the intervertebral implant of FIG. 1,



FIG. 5 shows a three-dimensional detailed representation of the body of the intervertebral implant, which shows the connecting elements to the front plate of FIG. 6,



FIG. 6 shows a three-dimensional detailed representation of the front plate of the intervertebral implant and the connecting elements to the body of FIG. 5 and



FIG. 7 shows a completely installed intervertebral implant with front plate and securing plate.





DESCRIPTION OF PREFERRED EMBODIMENTS

The intervertebral implant, shown in FIG. 1-7, includes a three-dimensional body 10 in the form of a cage with an upper side 1 and an underside 2, which are suitable for abutting the end plates of two adjacent vertebral bodies, a left side surface 3 and a right side surface 4, a front surface 5 and a back surface 6, a horizontal middle plane 7 located between the upper side 1 and the underside 2, a vertical middle plane 12 extending from the front surface 5 to the rear surface 6 and four boreholes 9a, which pass through the body 10 and are suitable for accommodating longitudinal fixation elements 20. The body 10 may be constructed as a hollow body, the mantle surfaces of which are provided with perforations 19. The upper side 1 and/or under side 2 of the intervertebral implant may preferably be convex in shape, not planar. A convex shape to the upper side 1 and the underside 2 allows for an improved fit with the end plates of the adjacent vertebral bodies by the intervertebral implant. Further, the side surfaces 1-6 of the intervertebral implant may be essentially convex, as well.


As shown in FIG. 7, the upper side 1 and the underside 2 of the three-dimensional body 10 are provided with structuring in the form of teeth 30.


At the front surface of the three-dimensional body 10, a front plate 8 may be mounted, which is disposed perpendicular to the horizontal central plane of the intervertebral implant and through which four boreholes 9 pass and in which the longitudinal fixation elements 20 can be anchored. The front plate 8, as shown in FIGS. 5 and 6, is constructed as an insert for the three-dimensional body 10. The three-dimensional body 10 has a semicircular groove 27 extending parallel to the vertical middle plane 12 at the transitions of the left side surface 3 and the right side surface 4 (FIG. 5) to the front surface 5. Correspondingly, the front plate 8 has right and left (FIG. 6) similarly extending and similarly dimensioned, semicircular rail 28. As a result, the front plate can be pushed and positioned easily with its two lateral rails 28 into the corresponding grooves 27 of the body 10 during the production of the intervertebral implant.


In one embodiment, at least one of the boreholes 9 in the front plate is constructed so that a longitudinal fixation element 20, accommodated therein, can be connected rigidly with the front plate. A rigid connection may be accomplished, for example, owing to the fact that at least one of the boreholes 9 of the front plate 8 has an internal thread. A corresponding longitudinal fixation element 20, bone screw, with a threaded end can then be screwed together rigidly with the implant. In an alternative embodiment, the four boreholes 9 in the front plate may have an internal thread 11, so that longitudinal fixation elements 20 can be connected rigidly with the front plate 8.


As discussed, the front plate 8 may be disposed, preferably vertically to the horizontal central plane, so that it can be displaced vertically with respect to the three-dimensional body 10. By these means, “stress shielding” (protection and neutralization of mechanical stresses) is attained, which permits the end plates to be adapted to the intervertebral implant during the healing process.


The intervertebral implant may have a securing plate 18, which can be fastened by means of a screw connection parallel to the front plate 8 at the front plate 8 in such a manner that the boreholes 9 of the front plate 8 are partly covered by the securing plate 18. The securing plate 18 may have a central borehole 17 provided, preferably, with an internal thread. Corresponding thereto, the front plate 8 has a central borehole 15 for accommodating fastening means 16. Preferably, the central borehole 15 has an internal thread 14 for accommodating a fastening means 16 in the form of a screw. The securing plate 18 may also be fastened by a bayonet catch or a click catch. By fastening the securing plate 18 to the front plate 8, the heads 21 of the longitudinal fixation elements 20 (discussed later) are contacted by the securing plate 18, so that they are secured against being ejected or screwed out.


Preferably, the boreholes 9a of the three-dimensional body 10 do not pass either through the left side surface 3 or the right side surface 4 or completely through the front surface 5. The front surface 5, preferably, is also not crossed by the boreholes 9a. Further, the horizontal middle plane 7 is not pierced by the boreholes 9a. Only the axes 24 of the longitudinal fixation elements 20, introduced therein, intersect the horizontal middle plane 7 of the body 10. As seen from the front surface 5, the boreholes of the three-dimensional body 10 and the front plate diverge. The axes 24 of the boreholes of the three-dimensional plate 10 and the front plate 8 enclose an angle β ranging from 20° to 60°, specifically from 36° to 48°, and more preferably an angle β of 42° with the horizontal middle plane 7 (FIG. 4) and an angle α ranging from 10° to 45°, specifically from 27° to 33°, and more preferably an angle α of 30° with the vertical middle plane 12 (FIG. 3). Thus, better access for introducing the screws is achieved.


In one embodiment, at least one of the boreholes 9 of the front plate 8 may taper conically towards the underside 2, so that a bone screw, with a corresponding conical head, can be anchored rigidly therein. The conical borehole preferably has a conical angle, which is smaller than the resulting frictional angle. Advisably, the conicity of the conical borehole is 1:3.75 to 1:20.00 and preferably 1:5 to 1:15.


In another configuration, at least two of the boreholes 9 of the front plate 8 extend parallel to each other. This makes insertion of the intervertebral implant easier. In another embodiment, at least two of the boreholes 9 of the front plate 8 diverge when viewed from the front side. By these means, a region of the vertebral body, which has a better bone quality than does the center of the vertebral body, is reached by the bone screws.


To improve the anchoring of the bone screw in a plastic body of the intervertebral implant (discussed later), a metal sleeve with an internal thread (not shown) may be inserted in the boreholes of the front plate and three-dimensional body. The intervertebral implant may also consist only partially of an x-ray transparent plastic and, in the region of the boreholes consist of a metal, such as titanium or a titanium alloy. Improved guidance and anchoring of the bone screws in the intervertebral implant may be achieved. Further, the boreholes 9 may have a smooth internal wall, into which the threaded head of a metallic, longitudinal fixation element may cut or be molded.


Depending on circumstances, two, three, four or more longitudinal fixation elements may be connected rigidly with the intervertebral implant. Preferably, at least one fixation element should pierce the upper side and at least one fixation element the underside of the intervertebral implant. The longitudinal fixation elements 20 may have either a smooth head, so that there will not be a rigid connection with the implant or a threaded, conical or expendable end, so that there will be a rigid connection with the implant. In both cases, however, the longitudinal fixation elements 20 are secured by the securing plate against rotating out, being ejected out or falling out at a later time.


The longitudinal fixation elements 20 are preferably constructed as bone screws. As shown in FIG. 2, the longitudinal fixation elements 20, introduced into the boreholes 9, have a head 21, a tip 22, a shaft 23 and an axis 24. The head 21 may preferably be provided with an external thread 25, which corresponds to the internal thread 11 of the borehole 9, so that the heads 21 can be anchored in the boreholes 9 in a rigid manner. The shaft 23 may be provided with a thread 26, which is self-drilling and self-cutting. The load thread angle of the thread 26 has a range of between 11° to 14°, preferably between 12° and 13°, and more preferably a load thread angle of 115°. The pitch angle of the thread may have a range of between 6° and 10°, preferably between 7° and 9°, and more preferably have a pitch angle of 8°. The special pitch angle produces a self-retardation in the thread, thus ensuring that the bone screw will not automatically become loose.


In the case of a second, possibly rigid type of connection, a longitudinal fixation element 20, bone screw, may preferably be used, the head of which tapers conically towards the shaft, the conicity of the head corresponding to the conicity of the borehole of the intervertebral implant. The longitudinal fixation elements may also be constructed as threadless cylindrical pins, which are provided with a drilling tip, preferably in the form of a trocar. A further variation consist therein that the longitudinal fixation elements are constructed as spiral springs. Finally, the longitudinal fixation elements may also be constructed as single-vaned or multi-vaned spiral blades.


As shown in FIG. 7, two longitudinal fixation elements 20 pierce the upper side 1 and two longitudinal fixation elements 20 pierce the underside 2 of the body 10, thereby anchoring the intervertebral implant to the adjacent vertebral bodies.


The intervertebral implant may be produced from any material which is compatible with the body. Preferably, the three-dimensional body 10 may consist of a body-compatible plastic which has not been reinforced and which may be transparent to x-rays. The advantage over fiber-reinforced plastics, which are already known in implant technology, is that no reinforcing fibers are exposed. Such exposure may be disadvantageous clinically. In such a three-dimensional body 10 constructed of a plastic that has not been reinforced, the use bone screws may be preferable. As discussed previously, the external thread of the bone screw(s) may have a load thread angle range of 11° to 14°, and preferably between 12° to 13°. A comparatively slight inclination of the load flank brings about a high clamping force. As a result, radial expansion and the danger of forming cracks in the plastic are reduced. Furthermore, the external thread of the bone screw(s) may preferably have a pitch angle between 6° and 10° and preferably between 7° and 9°.


The front plate 8 may be made from materials different than the three-dimensional body 10. The front plate 8 is preferably made from a metallic material. Titanium or titanium alloys are particularly suitable as metallic materials. The complete tension chord arrangement (front plate and screws) may also be made from implant steel or highly alloyed metallic materials, such as CoCrMo or CoCrMoC. The advantage of titanium lies in that there is good tissue compatibility and the good ingrowing behavior of bones. The advantage of highly alloyed metallic materials lies in their high-strength values, which permit filigree constructions.


A brief description of a surgical procedure follows in order to explain the invention further.


The intervertebral implant, in the form of a three-dimensional body 10, is introduced between two adjacent vertebral bodies by means of a suitable instrument. Longitudinal fixation elements 20, in the form of bone screws, securing the three-dimensional body 10 are screwed/inserted by means of a suitable aiming device through the boreholes 9 of the front plate 8 into the vertebral bodies. The front plate 8 may be displaced vertically with respect to the three-dimensional body 10, such that the openings of the boreholes 9a of the three-dimensional plate 10 and the boreholes 9 of the front plate 8 overlap, to obtain stress shielding. The securing plate 18 is fastened by means of the fastening agent 16 in the form of a screw over the heads 21 of the longitudinal fixation elements 20 at the front plate 8, so that the heads 21 of the longitudinal fixation elements 20 and, with that, the screws themselves, are captured between the front plate 8 and the securing plate 18 and secured against being shifted relative to the three-dimensional body 10 (for example, by falling out or by turning out). The fastening agent 16, in the form of a screw, preferably is provided with a thread, which is distinguished by a large self-retardation.

Claims
  • 1. An intervertebral implant configured to be inserted in an intervertebral disc space that is between a first vertebral body and a second vertebral body, the intervertebral implant comprising: a spacer body including a body-compatible plastic, the spacer body defining a first recess and a second recess; and a plate configured to be coupled to the spacer body, the plate including a metallic material, the plate further including a front surface and a rear surface, the rear surface spaced from the front surface in a first direction, an upper surface, a lower surface spaced from the upper surface in a second direction that is perpendicular to the first direction, a first projection and a second projection offset from each other with respect to a third direction that is perpendicular to both the first direction and the second direction, the first projection including a first surface and a second surface, the second surface spaced from the first surface in the first direction, the first surface and the second surface each spaced from the front surface in the first direction, the first projection further including a third surface facing in the second direction, and a fourth surface facing in a direction opposite the second direction, the first surface defining a first dimension measured from the fourth surface to the third surface in the second direction, the first projection configured to engage the first recess and the second projection configured to engage the second recess such that both the first surface and the second surface face the spacer body, the plate defining a borehole that extends from a first opening in the front surface, along a central borehole axis, to a second opening, the borehole configured to receive a bone screw such that a portion of the bone screw is inserted in one of the first and second vertebral bodies to secure the intervertebral implant to the one of the first and second vertebral bodies within the intervertebral disc space, the borehole defining a second dimension measured through the central borehole axis in the second direction, and the second dimension is less than the first dimension, wherein the central borehole axis passes through the first opening at a location that is between the first projection and the second projection with respect to the third direction.
  • 2. The intervertebral implant of claim 1, wherein the location is both: 1) between the fourth surface and the third surface with respect to the second direction, and 2) offset from both the fourth surface and the third surface with respect to the third direction.
  • 3. The intervertebral implant of claim 1, wherein the first projection and the second projection are each positioned closer to the rear surface with respect to the first direction, than the first projection and the second projection are each positioned from the front surface with respect to the first direction.
  • 4. The intervertebral implant of claim 1, wherein the borehole is a first borehole, the bone screw is a first bone screw, the plate includes a second borehole configured to receive a second bone screw such that a portion of the second bone screw is inserted in the other of the first and second vertebral bodies to secure the intervertebral implant within the intervertebral disc space.
  • 5. The intervertebral implant of claim 4, wherein the central borehole axis is a first central borehole axis, the location is a first location, the second borehole extends from a third opening in the front surface, along a second central borehole axis, to a fourth opening, the second central borehole axis passes through the third opening at a second location, and both the first location and the second location are: 1) between the fourth surface and the third surface with respect to the second direction, and 2) offset from the fourth surface and the third surface with respect to the third direction.
  • 6. The intervertebral implant of claim 1, wherein the plate includes a plurality of boreholes that are each configured to receive a respective bone screw such that a portion of each of the respective bone screws is inserted in either the first vertebral body or the second vertebral body to secure the intervertebral implant to the first vertebral body or the second vertebral body within the intervertebral space, the plurality of boreholes includes all of the boreholes of the plate that are each configured to receive a respective bone screw such that a portion of each of the respective bone screws is inserted in either the first vertebral body or the second vertebral body to secure the intervertebral implant to the first vertebral body or the second vertebral body within the intervertebral space, each of the plurality of boreholes extends along a respective central borehole axis that passes through a respective opening in the front surface at a respective location, and the respective location of each of the plurality of boreholes is both: 1) positioned between the first projection and the second projection with respect to the third direction, and 2) offset from both the forth surface and the third surface with respect to the first direction.
  • 7. The intervertebral implant of claim 1, wherein the first projection and the second projection each include semicircular shaped rails configured to engage the spacer body of the intervertebral implant.
  • 8. The intervertebral implant of claim 1, wherein the spacer body is coupled to the plate such that: 1) the first projection is positioned in the first recess, 2) the second projection is positioned in the second recess, and 3) a portion of the spacer body is positioned between the first projection and the front surface with respect to the first direction.
  • 9. The intervertebral implant of claim 1, wherein the spacer body includes an upper body surface and a lower body surface offset from each other with respect to the second direction when the spacer body is coupled to the plate, and when the spacer body is coupled to the plate, the location is both: 1) between the upper body surface and the lower body surface with respect to the second direction, and 2) offset from both the upper body surface and the lower body surface with respect to the first direction.
  • 10. The intervertebral implant of claim 9, wherein the spacer body includes a body borehole, and the intervertebral implant is configured such that when the spacer body is coupled to the plate, the borehole is aligned with the body borehole.
  • 11. The intervertebral implant of claim 9, wherein when the spacer body is coupled to the plate: 1) the plate defines a maximum dimension measured along a straight line in the second direction that passes through both the upper surface and the lower surface, 2) the spacer body defines a maximum dimension measured along a straight line in the second direction that passes through both the upper body surface and the lower body surface, and 3) the maximum dimension of the plate is substantially equal to the maximum dimension of the spacer body.
  • 12. The intervertebral implant of claim 1, wherein the first projection includes a first portion that extends from the rear surface along the first direction, and the first projection further includes a second portion that extends from the first portion along the third direction such that the second portion is offset from the first portion with respect to the third direction.
  • 13. An intervertebral implant configured to be inserted in an intervertebral disc space that is between a first vertebral body and a second vertebral body, the intervertebral implant comprising: a plate including a rear surface, and a front surface spaced from the rear surface in a first direction, an upper surface, a lower surface spaced from the upper surface in a second direction that is perpendicular to the first direction, a first projection and a second projection offset from each other with respect to a third direction that is perpendicular to both the first direction and the second direction, the plate defining a borehole that extends from a first opening in the front surface, along a central borehole axis, to a second opening, the borehole configured to receive a bone screw such that a portion of the bone screw is inserted in one of the first and second vertebral bodies to secure the intervertebral implant to the one of the first and second vertebral bodies within the intervertebral disc space, the plate further including a metallic material; anda spacer body including an upper spacer surface and a lower spacer surface, the spacer body configured to be coupled to the plate such that the lower spacer surface is spaced from the upper spacer surface in the second direction, the spacer body defining a first recess configured to receive the first projection, and a second recess configured to receive the second projection, the first recess being elongate in the second direction, the spacer body further defining a through hole configured to extend along the second direction through both the upper spacer surface and the lower spacer surface when the spacer body is coupled to the plate, the spacer body further including a body-compatible plastic,wherein the spacer body is configured to be coupled to the plate such that at least a portion of the first projection is aligned with the spacer body along the first direction, and the spacer body is configured to be coupled to the plate such that the central borehole axis passes through the first opening at a location that is: 1) between the first recess and the second recess with respect to the third direction, 2) offset from both the first recess and the second recess with respect to the first direction and 3) between the upper spacer surface and the lower spacer surface with respect to the second direction.
  • 14. The intervertebral implant of claim 13, wherein the central borehole axis passes through the first opening at a location that is both: 1) between the first projection and the second projection with respect to the third direction, and 2) offset from both the first projection and the second projection with respect to the first direction.
  • 15. The intervertebral implant of claim 13, wherein the spacer body includes a body borehole, and the intervertebral implant is configured such that when the spacer body is coupled to the plate, the borehole is aligned with the body borehole.
  • 16. The intervertebral implant of claim 13, wherein the first projection and the second projection each include semicircular shaped rails.
  • 17. The intervertebral implant of claim 13, wherein the first projection includes an upper projection surface and a lower projection surface offset from each other with respect to the second direction, and the location is: 1) between the upper projection surface and the lower projection surface with respect to the second direction, and 2) offset from the upper projection surface and the lower projection surface with respect to the third direction.
  • 18. The intervertebral implant of claim 13, wherein the spacer body is coupled to the plate such that: 1) at least a portion of the first projection is aligned with the spacer body along the first direction, and 2) the central borehole axis passes through the first opening at a location that is both between the first recess and the second recess with respect to the third direction, and that is offset from both the first recess and the second recess with respect to the first direction.
  • 19. The intervertebral implant of claim 18, wherein the first projection includes a first surface that both faces the first direction and that is spaced from the front surface in a direction opposite the first direction, and the spacer body is configured to be coupled to the plate such that the first surface faces the spacer body.
  • 20. The intervertebral implant of claim 18, wherein the spacer body is a monolithic one-piece body, and the monolithic one-piece body defines both the first recess and the second recess.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 14/273,760 filed May 9, 2014, which is a continuation of U.S. application Ser. No. 12/969,330 filed Dec. 15, 2010, now U.S. Pat. No. 8,764,831 issued Jul. 1, 2014, which is a continuation of U.S. application Ser. No. 12/432,088 filed Apr. 29, 2009, now U.S. Pat. No. 7,862,616 issued Jan. 4, 2011, which is a continuation of U.S. application Ser. No. 11/199,599 filed Aug. 8, 2005, now U.S. Pat. No. 7,846,207 issued Dec. 7, 2010, which is a continuation of International Application No. PCT/CH2003/000089 filed Feb. 6, 2003, the disclosures of which are incorporated herein by reference in their entireties.

US Referenced Citations (854)
Number Name Date Kind
424836 Thompson Apr 1890 A
438892 Lippy Oct 1890 A
1105105 Sherman Jul 1914 A
1200797 Barbe Oct 1916 A
2151919 Jacobson Mar 1939 A
2372888 Edward Apr 1945 A
2621145 Sano Dec 1952 A
2782827 Joseph Feb 1957 A
2906311 Boyd Sep 1959 A
2972367 Wootton Feb 1961 A
3062253 Melvin Nov 1962 A
3272249 Houston Sep 1966 A
3350103 Ahlstone Oct 1967 A
3426364 Lumb et al. Feb 1969 A
3561075 Selinko Feb 1971 A
3579831 Stevens et al. May 1971 A
3707303 Petri Dec 1972 A
3810703 Pasbrig May 1974 A
3867728 Stubstad et al. Feb 1975 A
3899897 Boerger et al. Aug 1975 A
3945671 Gerlach Mar 1976 A
4017946 Soja Apr 1977 A
4056301 Norden Nov 1977 A
4123132 Hardy Oct 1978 A
4135506 Ulrich Jan 1979 A
4278120 Hart et al. Jul 1981 A
4280875 Werres Jul 1981 A
4285377 Hart Aug 1981 A
4288902 Franz Sep 1981 A
4297063 Hart Oct 1981 A
4298993 Kovaleva et al. Nov 1981 A
4299902 Soma et al. Nov 1981 A
4349921 Kuntz Sep 1982 A
4388921 Sutter et al. Jun 1983 A
4394370 Jefferies Jul 1983 A
4450591 Rappaport May 1984 A
4484570 Sutter et al. Nov 1984 A
4488543 Tornier Dec 1984 A
4501269 Bagby Feb 1985 A
4503848 Casper et al. Mar 1985 A
4512038 Alexander et al. Apr 1985 A
4545374 Jacobson Oct 1985 A
4553890 Gulistan Nov 1985 A
4599086 Doty Jul 1986 A
4627853 Campbell et al. Dec 1986 A
4640524 Sedlmair Feb 1987 A
4648768 Hambric Mar 1987 A
4678470 Nashef et al. Jul 1987 A
4708377 Hunting Nov 1987 A
4711760 Blaushild Dec 1987 A
4714469 Kenna Dec 1987 A
4717115 Schmitz et al. Jan 1988 A
4743256 Brantigan May 1988 A
4781721 Grundei Nov 1988 A
4793335 Frey et al. Dec 1988 A
4804290 Balsells Feb 1989 A
4812094 Grube Mar 1989 A
4829152 Rostoker et al. May 1989 A
4834757 Brantigan May 1989 A
4858603 Clemow et al. Aug 1989 A
4872452 Alexson Oct 1989 A
4878915 Brantigan Nov 1989 A
4904261 Dove Feb 1990 A
4917704 Frey et al. Apr 1990 A
4932973 Gendler Jun 1990 A
4936851 Fox et al. Jun 1990 A
4946378 Hirayama et al. Aug 1990 A
4950296 Mcintyre Aug 1990 A
4955908 Frey et al. Sep 1990 A
4961740 Ray et al. Oct 1990 A
4976576 Mahaney Dec 1990 A
4978350 Wagenknecht Dec 1990 A
4994084 Brennan Feb 1991 A
4997432 Keller Mar 1991 A
5006120 Carter Apr 1991 A
5010783 Sparks et al. Apr 1991 A
5017069 Stencel May 1991 A
5020949 Davidson et al. Jun 1991 A
5026373 Ray et al. Jun 1991 A
5030220 Howland Jul 1991 A
5047058 Roberts et al. Sep 1991 A
5053049 Campbell Oct 1991 A
5062850 MacMillan et al. Nov 1991 A
5071437 Steffee Dec 1991 A
5084051 Toermaelae et al. Jan 1992 A
5085660 Lin Feb 1992 A
5096150 Westwood Mar 1992 A
5108438 Stone et al. Apr 1992 A
5112354 Sires May 1992 A
5116374 Stone May 1992 A
5118235 Dill Jun 1992 A
5139424 Yli-Urpo Aug 1992 A
5147404 Downey Sep 1992 A
5163949 Bonutti Nov 1992 A
5163960 Bonutti Nov 1992 A
5180381 Aust et al. Jan 1993 A
5192327 Brantigan Mar 1993 A
5197971 Bonutti Mar 1993 A
5201736 Strauss Apr 1993 A
5207543 Kirma May 1993 A
5211664 Tepic et al. May 1993 A
5235034 Bobsein et al. Aug 1993 A
5238342 Stencel Aug 1993 A
5258031 Salib et al. Nov 1993 A
5269785 Bonutti Dec 1993 A
5275601 Gogolewski et al. Jan 1994 A
5281226 Davydov et al. Jan 1994 A
5282861 Kaplan Feb 1994 A
5284655 Bogdansky et al. Feb 1994 A
5290312 Kojimoto et al. Mar 1994 A
5295994 Bonutti Mar 1994 A
5298254 Prewett et al. Mar 1994 A
5304021 Oliver et al. Apr 1994 A
5306308 Gross et al. Apr 1994 A
5306309 Wagner et al. Apr 1994 A
5314476 Prewett et al. May 1994 A
5314477 Marnay May 1994 A
5329846 Bonutti Jul 1994 A
5330535 Moser et al. Jul 1994 A
5331975 Bonutti Jul 1994 A
5345927 Bonutti Sep 1994 A
5348788 White Sep 1994 A
5368593 Stark Nov 1994 A
5380323 Howland Jan 1995 A
5385583 Cotrel Jan 1995 A
5397364 Kozak Mar 1995 A
5403317 Bonutti Apr 1995 A
5403348 Bonutti Apr 1995 A
5405391 Hednerson et al. Apr 1995 A
5411348 Balsells May 1995 A
5423817 Lin Jun 1995 A
5425772 Brantigan Jun 1995 A
5431658 Moskovich Jul 1995 A
5439684 Prewett et al. Aug 1995 A
5441538 Bonutti Aug 1995 A
5443514 Steffee Aug 1995 A
5443515 Cohen et al. Aug 1995 A
5454365 Bonutti Oct 1995 A
5458638 Kuslich et al. Oct 1995 A
5458641 Ramirez Oct 1995 A
5458643 Oka et al. Oct 1995 A
5464426 Bonutti Nov 1995 A
5478342 Kohrs Dec 1995 A
5484437 Michelson Jan 1996 A
5487744 Howland Jan 1996 A
5489308 Kuslich et al. Feb 1996 A
5496348 Bonutti Mar 1996 A
5507818 McLaughlin Apr 1996 A
5514153 Bonutti May 1996 A
5514180 Heggeness et al. May 1996 A
5520690 Errico et al. May 1996 A
5522846 Bonutti Jun 1996 A
5522899 Michelson Jun 1996 A
5527343 Bonutti Jun 1996 A
5531746 Errico et al. Jul 1996 A
5534012 Bonutti Jul 1996 A
5534030 Navarro et al. Jul 1996 A
5534031 Matsuzaki et al. Jul 1996 A
5534032 Hodorek Jul 1996 A
5545222 Bonutti Aug 1996 A
5545842 Balsells Aug 1996 A
5549612 Yapp et al. Aug 1996 A
5549630 Bonutti Aug 1996 A
5549631 Bonutti Aug 1996 A
5549679 Kuslich Aug 1996 A
5550172 Regula et al. Aug 1996 A
5554191 Lahille et al. Sep 1996 A
5556430 Gendler Sep 1996 A
5556431 Buttner-Janz Sep 1996 A
5569305 Bonutti Oct 1996 A
5569308 Sottosanti Oct 1996 A
5570983 Hollander Nov 1996 A
5571109 Bertagnoli Nov 1996 A
5571190 Ulrich et al. Nov 1996 A
5571192 Schonhoffer Nov 1996 A
5577517 Bonutti Nov 1996 A
5578034 Estes Nov 1996 A
5584862 Bonutti Dec 1996 A
5593409 Michelson Jan 1997 A
5593425 Bonutti Jan 1997 A
5597278 Peterkort Jan 1997 A
5601553 Trebing et al. Feb 1997 A
5601554 Howland et al. Feb 1997 A
5607428 Lin Mar 1997 A
5607474 Athanasiou et al. Mar 1997 A
5609635 Michelson Mar 1997 A
5609636 Kohrs et al. Mar 1997 A
5609637 Biedermann et al. Mar 1997 A
5616144 Yapp et al. Apr 1997 A
5620448 Puddu Apr 1997 A
5624462 Bonutti Apr 1997 A
5642960 Salice Jul 1997 A
5645596 Kim et al. Jul 1997 A
5645606 Oehy et al. Jul 1997 A
5653708 Howland Aug 1997 A
5662710 Bonutti Sep 1997 A
5667520 Bonutti Sep 1997 A
5669909 Zdeblick et al. Sep 1997 A
5674296 Bryan et al. Oct 1997 A
5676666 Oxland Oct 1997 A
5676699 Gogolewski et al. Oct 1997 A
5681311 Foley et al. Oct 1997 A
5683216 Erbes Nov 1997 A
5683394 Rinner Nov 1997 A
5683463 Godefroy et al. Nov 1997 A
5685826 Bonutti Nov 1997 A
5694951 Bonutti Dec 1997 A
5702449 McKay Dec 1997 A
5702451 Biedermann et al. Dec 1997 A
5702453 Rabbe et al. Dec 1997 A
5702455 Saggar Dec 1997 A
5707390 Bonutti Jan 1998 A
5713899 Marnay et al. Feb 1998 A
5713900 Benzel et al. Feb 1998 A
5716325 Bonutti Feb 1998 A
5725531 Shapiro Mar 1998 A
5725588 Errico et al. Mar 1998 A
5728159 Stroever et al. Mar 1998 A
5733306 Bonutti Mar 1998 A
5735853 Olerud Apr 1998 A
5735875 Bonutti Apr 1998 A
5735905 Parr Apr 1998 A
5755796 Ibo et al. May 1998 A
5755798 Papavero et al. May 1998 A
5766251 Koshino Jun 1998 A
5766252 Henry et al. Jun 1998 A
5766253 Brosnahan Jun 1998 A
5772661 Michelson Jun 1998 A
5776194 Mikol et al. Jul 1998 A
5776196 Matsuzaki et al. Jul 1998 A
5776197 Rabbe et al. Jul 1998 A
5776198 Rabbe et al. Jul 1998 A
5776199 Michelson Jul 1998 A
5778804 Read Jul 1998 A
5782915 Stone Jul 1998 A
5782919 Zdeblick et al. Jul 1998 A
5785710 Michelson Jul 1998 A
5800433 Benzel et al. Sep 1998 A
5827318 Bonutti Oct 1998 A
5836948 Zucherman et al. Nov 1998 A
5845645 Bonutti Dec 1998 A
5860973 Michelson Jan 1999 A
5860997 Bonutti Jan 1999 A
5861041 Tienboon Jan 1999 A
5865845 Thalgott Feb 1999 A
5865849 Stone Feb 1999 A
5872915 Dykes et al. Feb 1999 A
5876402 Errico et al. Mar 1999 A
5876452 Athanasiou et al. Mar 1999 A
5879389 Koshino Mar 1999 A
5885299 Winslow et al. Mar 1999 A
5888196 Bonutti Mar 1999 A
5888219 Bonutti Mar 1999 A
5888222 Coates et al. Mar 1999 A
5888223 Bray, Jr. Mar 1999 A
5888224 Beckers et al. Mar 1999 A
5888227 Cottle Mar 1999 A
5895426 Scarborough et al. Apr 1999 A
5899939 Boyce et al. May 1999 A
5902303 Eckhof et al. May 1999 A
5902338 Stone May 1999 A
5904683 Pohndorf et al. May 1999 A
5904719 Errico et al. May 1999 A
5906616 Pavlov et al. May 1999 A
5910315 Stevenson et al. Jun 1999 A
5911758 Oehy et al. Jun 1999 A
5920312 Wagner et al. Jul 1999 A
5922027 Stone Jul 1999 A
5928267 Bonutti Jul 1999 A
5931838 Vito Aug 1999 A
5935131 Bonutti Aug 1999 A
5941900 Bonutti Aug 1999 A
5944755 Stone Aug 1999 A
5951558 Fiz Sep 1999 A
5954722 Bono Sep 1999 A
5954739 Bonutti Sep 1999 A
5958314 Draenet Sep 1999 A
5964807 Gan et al. Oct 1999 A
5968098 Winslow Oct 1999 A
5972031 Biedermann Oct 1999 A
5972368 McKay Oct 1999 A
5976141 Haag et al. Nov 1999 A
5976187 Richelsoph Nov 1999 A
5980522 Koros et al. Nov 1999 A
5981828 Nelson et al. Nov 1999 A
5984967 Zdeblick et al. Nov 1999 A
5989289 Coates et al. Nov 1999 A
6001099 Huebner Dec 1999 A
6008433 Stone Dec 1999 A
6010525 Bonutti Jan 2000 A
6013853 Athanasiou et al. Jan 2000 A
6017305 Bonutti Jan 2000 A
6017345 Richelsoph Jan 2000 A
6025538 Yaccarino et al. Feb 2000 A
6033405 Winslow et al. Mar 2000 A
6033438 Bianchi et al. Mar 2000 A
6039762 McKay Mar 2000 A
6042596 Bonutti Mar 2000 A
6045579 Hochshuler et al. Apr 2000 A
6045580 Scarborough et al. Apr 2000 A
6056749 Kuslich May 2000 A
6059817 Bonutti May 2000 A
6066175 Henderson et al. May 2000 A
6077292 Bonutti Jun 2000 A
6080158 Lin Jun 2000 A
6080193 Hochshuler et al. Jun 2000 A
6086593 Bonutti Jul 2000 A
6086614 Mumme Jul 2000 A
6090998 Grooms et al. Jul 2000 A
6096080 Nicholson et al. Aug 2000 A
6096081 Grivas et al. Aug 2000 A
6099531 Bonutti Aug 2000 A
6102928 Bonutti Aug 2000 A
6110482 Khouri et al. Aug 2000 A
6113637 Gill et al. Sep 2000 A
6113638 Williams et al. Sep 2000 A
6120503 Michelson Sep 2000 A
6123731 Boyce et al. Sep 2000 A
6129763 Chauvin et al. Oct 2000 A
6132472 Bonutti Oct 2000 A
6136001 Michelson Oct 2000 A
6139550 Michelson Oct 2000 A
RE36974 Bonutti Nov 2000 E
6143030 Schroder Nov 2000 A
6143033 Paul et al. Nov 2000 A
6146421 Gordon et al. Nov 2000 A
6156070 Incavo et al. Dec 2000 A
6159215 Urbahns Dec 2000 A
6159234 Bonutti Dec 2000 A
6171236 Bonutti Jan 2001 B1
6171299 Bonutti Jan 2001 B1
6174313 Bonutti Jan 2001 B1
6187023 Bonutti Feb 2001 B1
6193721 Michelson Feb 2001 B1
6193756 Studer et al. Feb 2001 B1
6193757 Foley et al. Feb 2001 B1
6200347 Anderson et al. Mar 2001 B1
6203565 Bonutti et al. Mar 2001 B1
6206922 Zdeblick Mar 2001 B1
6217617 Bonutti Apr 2001 B1
6224602 Hayes May 2001 B1
6231592 Bonutti et al. May 2001 B1
6231610 Geisler May 2001 B1
6235033 Brace et al. May 2001 B1
6235034 Bray May 2001 B1
6235059 Benezech May 2001 B1
6241731 Fiz Jun 2001 B1
6241769 Nicholson et al. Jun 2001 B1
6245108 Biscup Jun 2001 B1
6258089 Campbell et al. Jul 2001 B1
6258125 Paul et al. Jul 2001 B1
6261291 Talaber et al. Jul 2001 B1
6261586 McKay Jul 2001 B1
6264695 Stoy Jul 2001 B1
6270528 McKay Aug 2001 B1
6277136 Bonutti Aug 2001 B1
6287325 Bonutti Sep 2001 B1
6306139 Fuentes Oct 2001 B1
6322562 Wolter Nov 2001 B1
6331179 Freid et al. Dec 2001 B1
6342074 Simpson Jan 2002 B1
6358266 Bonutti Mar 2002 B1
6361565 Bonutti Mar 2002 B1
6364880 Michelson Apr 2002 B1
6368343 Bonutti Apr 2002 B1
6371986 Bagby Apr 2002 B1
6371988 Pafford et al. Apr 2002 B1
6371989 Chauvin et al. Apr 2002 B1
6375681 Truscott Apr 2002 B1
6383186 Michelson May 2002 B1
6387130 Stone et al. May 2002 B1
6395031 Foley et al. May 2002 B1
6398811 McKay Jun 2002 B1
6413259 Lyons et al. Jul 2002 B1
6423063 Bonutti Jul 2002 B1
6432106 Fraser Aug 2002 B1
6443987 Bryan Sep 2002 B1
6447512 Landry et al. Sep 2002 B1
6447516 Bonutti Sep 2002 B1
6447546 Bramlet et al. Sep 2002 B1
6451042 Bonutti Sep 2002 B1
6454771 Michelson Sep 2002 B1
6458158 Anderson et al. Oct 2002 B1
6461359 Tribus et al. Oct 2002 B1
6464713 Bonutti Oct 2002 B2
6468289 Bonutti Oct 2002 B1
6468293 Bonutti et al. Oct 2002 B2
6468311 Boyd et al. Oct 2002 B2
6471724 Zdeblick et al. Oct 2002 B2
6475230 Bonutti Nov 2002 B1
6482233 Aebi et al. Nov 2002 B1
6500195 Bonutti Dec 2002 B2
6503250 Paul Jan 2003 B2
6503267 Bonutti et al. Jan 2003 B2
6503277 Bonutti Jan 2003 B2
6511509 Ford et al. Jan 2003 B1
6524312 Landry et al. Feb 2003 B2
6543455 Bonutti Apr 2003 B2
6558387 Errico et al. May 2003 B2
6558423 Michelson May 2003 B1
6558424 Thalgott May 2003 B2
6562073 Foley May 2003 B2
6565605 Goble et al. May 2003 B2
6569187 Bonutti May 2003 B1
6569201 Moumene et al. May 2003 B2
6605090 Trieu et al. May 2003 B1
6575975 Brace et al. Jun 2003 B2
6575982 Bonutti Jun 2003 B1
6576017 Foley et al. Jun 2003 B2
6579290 Hardcastle Jun 2003 B1
6585750 Bonutti Jul 2003 B2
6592531 Bonutti Jul 2003 B2
6592609 Bonutti Jul 2003 B1
6592624 Fraser et al. Jul 2003 B1
6602291 Ray et al. Aug 2003 B1
6607534 Bonutti Aug 2003 B2
6616671 Landry et al. Sep 2003 B2
6620163 Michelson Sep 2003 B1
6620181 Bonutti Sep 2003 B1
6623486 Weaver et al. Sep 2003 B1
6629998 Lin Oct 2003 B1
6630000 Bonutti Oct 2003 B1
6635073 Bonutti Oct 2003 B2
6638309 Bonutti Oct 2003 B2
6638310 Lin et al. Oct 2003 B2
6645212 Goldhahn et al. Nov 2003 B2
6652525 Assaker et al. Nov 2003 B1
6652532 Bonutti Nov 2003 B2
6656181 Dixon et al. Dec 2003 B2
6679887 Nicholson et al. Jan 2004 B2
6682561 Songer et al. Jan 2004 B2
6682563 Scharf Jan 2004 B2
6695846 Richelsoph et al. Feb 2004 B2
6695851 Zbeblick et al. Feb 2004 B2
6702821 Bonutti Mar 2004 B2
6702856 Bonutti Mar 2004 B2
6706067 Shimp et al. Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6712818 Michelson Mar 2004 B1
6719803 Bonutti Apr 2004 B2
6730127 Michelson May 2004 B2
6736850 Davis May 2004 B2
6736853 Bonutti May 2004 B2
6761738 Boyd Jul 2004 B1
6761739 Shepard Jul 2004 B2
6770078 Bonutti Aug 2004 B2
6770096 Bolger et al. Aug 2004 B2
6776938 Bonutti Aug 2004 B2
6786909 Dransfeld Sep 2004 B1
6800092 Williams et al. Oct 2004 B1
6800093 Nicholson et al. Oct 2004 B2
6805714 Sutcliffe Oct 2004 B2
6808537 Michelson Oct 2004 B2
6824564 Crozet Nov 2004 B2
6833006 Foley et al. Dec 2004 B2
6835198 Bonutti Dec 2004 B2
6837905 Lieberman Jan 2005 B1
6849093 Michelson Feb 2005 B2
6855167 Shimp et al. Feb 2005 B2
6855168 Crozet Feb 2005 B2
6860885 Bonutti Mar 2005 B2
6860904 Bonutti Mar 2005 B2
6863673 Gerbec et al. Mar 2005 B2
6872915 Koga et al. Mar 2005 B2
6884242 LeHuec et al. Apr 2005 B2
6890334 Brace et al. May 2005 B2
6896701 Boyd et al. May 2005 B2
6899735 Coates et al. May 2005 B2
6902578 Anderson et al. Jun 2005 B1
6905517 Bonutti Jun 2005 B2
6908466 Bonutti Jun 2005 B1
6916320 Michelson Jul 2005 B2
6923756 Sudakov et al. Aug 2005 B2
6932835 Bonutti Aug 2005 B2
6953477 Berry Oct 2005 B2
6962606 Michelson Nov 2005 B2
6964664 Freid et al. Nov 2005 B2
6964687 Bernard et al. Nov 2005 B1
6972019 Michelson Dec 2005 B2
6972035 Michelson Dec 2005 B2
6974479 Trieu Dec 2005 B2
6984234 Bray Jan 2006 B2
6989029 Bonutti Jan 2006 B2
6990982 Bonutti Jan 2006 B1
7001385 Bonutti Feb 2006 B2
7001432 Keller et al. Feb 2006 B2
7018412 Ferreira et al. Mar 2006 B2
7018416 Hanson et al. Mar 2006 B2
7033394 Michelson Apr 2006 B2
7041135 Michelson May 2006 B2
7044968 Yaccarino et al. May 2006 B1
7044972 Mathys et al. May 2006 B2
7048755 Bonutti et al. May 2006 B2
7048765 Grooms et al. May 2006 B1
7060097 Fraser et al. Jun 2006 B2
7066961 Michelson Jun 2006 B2
7070557 Bonutti Jul 2006 B2
7077864 Byrd, III et al. Jul 2006 B2
7087073 Bonutti Aug 2006 B2
7094251 Bonutti et al. Aug 2006 B2
7104996 Bonutti Sep 2006 B2
7112222 Fraser et al. Sep 2006 B2
7112223 Davis Sep 2006 B2
7114500 Bonutti Oct 2006 B2
7128753 Bonutti et al. Oct 2006 B1
7134437 Bonutti Nov 2006 B2
7135024 Cook et al. Nov 2006 B2
7135043 Nakahara Nov 2006 B2
7137984 Michelson Nov 2006 B2
7147652 Bonutti Dec 2006 B2
7147665 Bryan et al. Dec 2006 B1
7163561 Michelson Jan 2007 B2
7172627 Fiere et al. Feb 2007 B2
7172672 Silverbrook Feb 2007 B2
7208013 Bonutti Apr 2007 B1
7217273 Bonutti May 2007 B2
7217290 Bonutti May 2007 B2
7226452 Zubok Jun 2007 B2
7226482 Messerli et al. Jun 2007 B2
7232463 Falahee Jun 2007 B2
7232464 Mathieu et al. Jun 2007 B2
7238203 Bagga et al. Jul 2007 B2
7255698 Michelson Aug 2007 B2
7276082 Zdeblick et al. Oct 2007 B2
7311719 Bonutti Dec 2007 B2
7320708 Bernstein Jan 2008 B1
7323011 Shepard Jan 2008 B2
7329263 Bonutti et al. Feb 2008 B2
7398623 Martel et al. Jul 2008 B2
7429266 Bonutti et al. Sep 2008 B2
7442209 Michelson Oct 2008 B2
7462200 Bonutti Dec 2008 B2
7481831 Bonutti Jan 2009 B2
7485145 Purcell Feb 2009 B2
7491237 Randall et al. Feb 2009 B2
7510557 Bonutti Mar 2009 B1
7534265 Boyd et al. May 2009 B1
7594932 Aferzon et al. Sep 2009 B2
7601173 Messerli et al. Oct 2009 B2
7608107 Michelson Oct 2009 B2
7615054 Bonutti Nov 2009 B1
7618456 Mathieu et al. Nov 2009 B2
7621960 Boyd et al. Nov 2009 B2
7625380 Drewry et al. Dec 2009 B2
7635390 Bonutti Dec 2009 B1
7637951 Michelson Dec 2009 B2
7655042 Foley et al. Feb 2010 B2
7704279 Moskowitz et al. Apr 2010 B2
7708740 Bonutti May 2010 B1
7708741 Bonutti May 2010 B1
7727283 Bonutti Jun 2010 B2
7749229 Bonutti Jul 2010 B1
7780670 Bonutti Aug 2010 B2
7806896 Bonutti Oct 2010 B1
7806897 Bonutti Oct 2010 B1
7828852 Bonutti Nov 2010 B2
7833271 Mitchell et al. Nov 2010 B2
7837736 Bonutti Nov 2010 B2
7846188 Moskowitz et al. Dec 2010 B2
7846207 Lechmann et al. Dec 2010 B2
7854750 Bonutti et al. Dec 2010 B2
7862616 Lechmann Jan 2011 B2
7875076 Mathieu et al. Jan 2011 B2
7879072 Bonutti et al. Feb 2011 B2
7892236 Bonutti Feb 2011 B1
7892261 Bonutti Feb 2011 B2
7896880 Bonutti Mar 2011 B2
7931690 Bonutti Apr 2011 B1
7942903 Moskowitz et al. May 2011 B2
7959635 Bonutti Jun 2011 B1
7985255 Bray et al. Jul 2011 B2
7993403 Foley et al. Aug 2011 B2
8062303 Berry et al. Nov 2011 B2
8100976 Bray et al. Jan 2012 B2
8105383 Michelson Jan 2012 B2
8128669 Bonutti Mar 2012 B2
8128700 Delurio et al. Mar 2012 B2
8133229 Bonutti Mar 2012 B1
8162977 Bonutti et al. Apr 2012 B2
8182532 Anderson et al. May 2012 B2
8211148 Zhang et al. Jul 2012 B2
8273127 Jones et al. Sep 2012 B2
8308804 Kureger Nov 2012 B2
8328872 Duffield et al. Dec 2012 B2
8343220 Michelson Jan 2013 B2
8343222 Cope Jan 2013 B2
8353913 Moskowitz et al. Jan 2013 B2
8382768 Berry et al. Feb 2013 B2
8425522 Bonutti Apr 2013 B2
8425607 Waugh et al. Apr 2013 B2
8444696 Michelson May 2013 B2
8465546 Jodaitis et al. Jun 2013 B2
8486066 Bonutti Jul 2013 B2
8540774 Kueenzi et al. Sep 2013 B2
8545567 Kreuger Oct 2013 B1
8613772 Bray et al. Dec 2013 B2
8623030 Bonutti Jan 2014 B2
8632552 Bonutti Jan 2014 B2
8641726 Bonutti Feb 2014 B2
8641743 Michelson Feb 2014 B2
8641768 Duffield et al. Feb 2014 B2
8690944 Bonutti Apr 2014 B2
8739797 Bonutti Jun 2014 B2
8747439 Bonutti Jun 2014 B2
8764831 Lechmann et al. Jul 2014 B2
8784495 Bonutti Jul 2014 B2
8795363 Bonutti Aug 2014 B2
8814902 Bonutti Aug 2014 B2
8834490 Bonutti Sep 2014 B2
8840629 Bonutti Sep 2014 B2
8845699 Bonutti Sep 2014 B2
8858557 Bonutti Oct 2014 B2
8956417 Bonutti Feb 2015 B2
9005295 Kueenzi et al. Apr 2015 B2
9044322 Bonutti Jun 2015 B2
9044341 Bonutti Jun 2015 B2
9050152 Bonutti Jun 2015 B2
9149365 Lawson et al. Oct 2015 B2
9241809 McDonough et al. Jan 2016 B2
9364340 Lawson et al. Jun 2016 B2
9414935 McDonough et al. Aug 2016 B2
9463097 Lechmann et al. Oct 2016 B2
20010001129 McKay et al. May 2001 A1
20010005796 Zdeblick et al. Jun 2001 A1
20010010021 Boyd et al. Jul 2001 A1
20010016777 Biscup Aug 2001 A1
20010020186 Boyee et al. Sep 2001 A1
20010023371 Bonutti Sep 2001 A1
20010031254 Bianchi et al. Oct 2001 A1
20010039456 Boyer et al. Nov 2001 A1
20010041941 Boyer et al. Nov 2001 A1
20010049560 Paul et al. Dec 2001 A1
20020004683 Michelson et al. Jan 2002 A1
20020010511 Michelson Jan 2002 A1
20020016595 Michelson Feb 2002 A1
20020022843 Michelson Feb 2002 A1
20020029055 Bonutti Mar 2002 A1
20020029084 Paul et al. Mar 2002 A1
20020040246 Bonutti Apr 2002 A1
20020049497 Mason Apr 2002 A1
20020065517 Paul May 2002 A1
20020082597 Fraser Jun 2002 A1
20020082603 Dixon et al. Jun 2002 A1
20020082803 Schiffbauer Jun 2002 A1
20020091447 Shimp et al. Jul 2002 A1
20020095155 Michelson Jul 2002 A1
20020095160 Bonutti Jul 2002 A1
20020099376 Michelson Jul 2002 A1
20020099378 Michelson Jul 2002 A1
20020099444 Boyd et al. Jul 2002 A1
20020995155 Michelson Jul 2002
20020106393 Bianchi et al. Aug 2002 A1
20020107571 Foley Aug 2002 A1
20020111680 Michelson Aug 2002 A1
20020128712 Michelson Sep 2002 A1
20020128717 Alfaro et al. Sep 2002 A1
20020147450 LeHuecetal Oct 2002 A1
20020169508 Songer et al. Nov 2002 A1
20020161444 Choi Dec 2002 A1
20020193880 Fraser Dec 2002 A1
20030004576 Thalgott Jan 2003 A1
20030009147 Bonutti Jan 2003 A1
20030023260 Bonutti Jan 2003 A1
20030045939 Casutt Mar 2003 A1
20030078666 Michelson Apr 2003 A1
20030078668 Michelson Apr 2003 A1
20030125739 Bagga et al. Jul 2003 A1
20030135277 Bryan et al. Jul 2003 A1
20030153975 Byrd Aug 2003 A1
20030167092 Foley Sep 2003 A1
20030181981 Lemaire Sep 2003 A1
20030195626 Huppert Oct 2003 A1
20030195632 Foley et al. Oct 2003 A1
20030199881 Bonutti Oct 2003 A1
20030199983 Michelson Oct 2003 A1
20040010287 Bonutti Jan 2004 A1
20040078078 Shepard Apr 2004 A1
20040078081 Ferree Apr 2004 A1
20040092929 Zindrick May 2004 A1
20040093084 Michelson May 2004 A1
20040097794 Bonutti May 2004 A1
20040098016 Bonutti May 2004 A1
20040102848 Michelson May 2004 A1
20040102850 Shepard May 2004 A1
20040126407 Falahee Jul 2004 A1
20040133278 Marino et al. Jul 2004 A1
20040138689 Bonutti Jul 2004 A1
20040138690 Bonutti Jul 2004 A1
20040143270 Zucherman et al. Jul 2004 A1
20040143285 Bonutti Jul 2004 A1
20040172033 Bonutti Sep 2004 A1
20040176853 Sennett et al. Sep 2004 A1
20040193181 Bonutti Sep 2004 A1
20040193269 Fraser et al. Sep 2004 A1
20040199254 Louis et al. Oct 2004 A1
20040210219 Bray Oct 2004 A1
20040210310 Louis et al. Oct 2004 A1
20040210314 Michelson Oct 2004 A1
20040220668 Eisermann et al. Nov 2004 A1
20040230223 Bonutti et al. Nov 2004 A1
20040249377 Kaes et al. Dec 2004 A1
20040254644 Taylor Dec 2004 A1
20050015149 Michelson Jan 2005 A1
20050021042 Marnay et al. Jan 2005 A1
20050021143 Keller Jan 2005 A1
20050033433 Michelson Feb 2005 A1
20050049593 Duong et al. Mar 2005 A1
20050049595 Suh et al. Mar 2005 A1
20050065605 Jackson Mar 2005 A1
20050065607 Gross Mar 2005 A1
20050065608 Michelson Mar 2005 A1
20050071008 Kirschman Mar 2005 A1
20050085913 Fraser et al. Apr 2005 A1
20050101960 Fiere et al. May 2005 A1
20050113918 Messerli et al. May 2005 A1
20050113920 Foley et al. May 2005 A1
20050125029 Bernard et al. Jun 2005 A1
20050149193 Zucherman et al. Jul 2005 A1
20050154391 Doherty et al. Jul 2005 A1
20050159813 Molz Jul 2005 A1
20050159818 Blain Jul 2005 A1
20050159819 McCormick et al. Jul 2005 A1
20050171606 Michelson Aug 2005 A1
20050171607 Michelson Aug 2005 A1
20050177236 Mathieu et al. Aug 2005 A1
20050216059 Bonutti et al. Sep 2005 A1
20050222683 Berry Oct 2005 A1
20050240267 Randall et al. Oct 2005 A1
20050240271 Zubock et al. Oct 2005 A1
20050261767 Anderson et al. Nov 2005 A1
20050267534 Bonutti et al. Dec 2005 A1
20060020342 Feree et al. Jan 2006 A1
20060030851 Bray et al. Feb 2006 A1
20060079901 Ryan et al. Apr 2006 A1
20060079961 Michelson Apr 2006 A1
20060085071 Lechmann et al. Apr 2006 A1
20060089717 Krishna Apr 2006 A1
20060129240 Lessar et al. Jun 2006 A1
20060136063 Zeegers Jun 2006 A1
20060142765 Dixon et al. Jun 2006 A9
20060167495 Bonutti et al. Jul 2006 A1
20060195189 Link et al. Aug 2006 A1
20060206208 Michelson Sep 2006 A1
20060229725 Lechmann et al. Oct 2006 A1
20060235470 Bonutti et al. Oct 2006 A1
20060265009 Bonutti Nov 2006 A1
20070088358 Yuan et al. Apr 2007 A1
20070088441 Duggal et al. Apr 2007 A1
20070093819 Albert Apr 2007 A1
20070106384 Bray et al. May 2007 A1
20070118125 Orbay et al. May 2007 A1
20070123987 Bernstein May 2007 A1
20070162130 Rashbaum et al. Jul 2007 A1
20070168032 Muhanna et al. Jul 2007 A1
20070177236 Kijima et al. Aug 2007 A1
20070208378 Bonutti et al. Sep 2007 A1
20070219365 Joyce et al. Sep 2007 A1
20070219635 Mathieu et al. Sep 2007 A1
20070225806 Squires et al. Sep 2007 A1
20070225812 Gill Sep 2007 A1
20070250167 Bray et al. Oct 2007 A1
20070270961 Ferguson Nov 2007 A1
20080033440 Moskowitz et al. Feb 2008 A1
20080039873 Bonutti et al. Feb 2008 A1
20080047567 Bonutti Feb 2008 A1
20080051890 Waugh et al. Feb 2008 A1
20080058822 Bonutti Mar 2008 A1
20080065140 Bonutti Mar 2008 A1
20080082169 Gittings Apr 2008 A1
20080103519 Bonutti May 2008 A1
20080108916 Bonutti et al. May 2008 A1
20080114399 Bonutti May 2008 A1
20080119933 Aebi et al. May 2008 A1
20080132949 Aferzon et al. Jun 2008 A1
20080133013 Duggal et al. Jun 2008 A1
20080140116 Bonutti Jun 2008 A1
20080140117 Bonutti et al. Jun 2008 A1
20080161925 Brittan et al. Jul 2008 A1
20080177307 Moskowitz et al. Aug 2008 A1
20080188940 Cohen et al. Aug 2008 A1
20080200984 Jodaitis et al. Aug 2008 A1
20080234822 Govil et al. Sep 2008 A1
20080249569 Waugh et al. Oct 2008 A1
20080249575 Waugh et al. Oct 2008 A1
20080249622 Gray Oct 2008 A1
20080249625 Waugh et al. Oct 2008 A1
20080269806 Zhang et al. Oct 2008 A1
20080275455 Berry et al. Nov 2008 A1
20080281425 Thalgott et al. Nov 2008 A1
20080306596 Jones et al. Dec 2008 A1
20080312742 Abernathie Dec 2008 A1
20090076608 Gordon et al. Mar 2009 A1
20090088849 Armstrong et al. Apr 2009 A1
20090099661 Bhattacharya et al. Apr 2009 A1
20090105830 Jones et al. Apr 2009 A1
20090132051 Moskowitz et al. May 2009 A1
20090192613 Wing et al. Jul 2009 A1
20090210062 Thalgott et al. Aug 2009 A1
20090210064 Lechmann et al. Aug 2009 A1
20090234455 Moskowitz et al. Sep 2009 A1
20090326580 Anderson et al. Dec 2009 A1
20100016901 Robinson Jan 2010 A1
20100125334 Krueger May 2010 A1
20100145459 McDonough et al. Jun 2010 A1
20100145460 McDonough et al. Jun 2010 A1
20100305704 Messerli et al. Dec 2010 A1
20100312346 Kueenzi et al. Dec 2010 A1
20110087327 Lechmann et al. Apr 2011 A1
20110118843 Mathieu et al. May 2011 A1
20110137417 Lee Jun 2011 A1
20110230971 Donner et al. Sep 2011 A1
20110238184 Zdeblick et al. Sep 2011 A1
20110295371 Moskowitz et al. Dec 2011 A1
20120010623 Bonutti Jan 2012 A1
20120101581 Mathieu et al. Apr 2012 A1
20120109309 Mathieu et al. May 2012 A1
20120109310 Mathieu et al. May 2012 A1
20120109311 Mathieu et al. May 2012 A1
20120109312 Mathieu et al. May 2012 A1
20120109313 Mathieu et al. May 2012 A1
20120179259 McDonough et al. Jul 2012 A1
20120197401 Duncan et al. Aug 2012 A1
20120215226 Bonutti Aug 2012 A1
20120215233 Cremens Aug 2012 A1
20120221017 Bonutti Aug 2012 A1
20120323330 Kueenzi et al. Dec 2012 A1
20130073046 Zaveloff et al. Mar 2013 A1
20130073047 Laskowitz et al. Mar 2013 A1
20130166032 McDonough et al. Jun 2013 A1
20130173013 Anderson et al. Jul 2013 A1
20130226185 Bonutti Aug 2013 A1
20130237989 Bonutti Sep 2013 A1
20130268008 McDonough et al. Oct 2013 A1
20130289729 Bonutti Oct 2013 A1
20140018854 Bonutti Jan 2014 A1
20140025110 Bonutti Jan 2014 A1
20140025111 Bonutti Jan 2014 A1
20140025112 Bonutti Jan 2014 A1
20140025168 Klimek et al. Jan 2014 A1
20140100663 Messerli et al. Apr 2014 A1
20140121777 Rosen et al. May 2014 A1
20140180422 Klimek et al. Jun 2014 A1
20140214166 Theofilos Jul 2014 A1
20140228963 Bonutti Aug 2014 A1
20140243985 Lechmann et al. Aug 2014 A1
20140257380 Bonutti Sep 2014 A1
20140257487 Lawson et al. Sep 2014 A1
20140277456 Kirschman Sep 2014 A1
20140309560 Bonutti Oct 2014 A1
20140336770 Petersheim et al. Nov 2014 A1
20140343573 Bonutti Nov 2014 A1
20140371859 Petersheim et al. Dec 2014 A1
20150257893 Gamache Sep 2015 A1
20160113774 Schmura et al. Apr 2016 A1
Foreign Referenced Citations (135)
Number Date Country
2004232317 Nov 2010 AU
2111598 Jun 1994 CA
2317791 Aug 1999 CA
1383790 Dec 2002 CN
1620271 May 2005 CN
1701772 Nov 2005 CN
1901853 Jan 2007 CN
2821678 Nov 1979 DE
3042003 Jul 1982 DE
3933459 Apr 1991 DE
4242889 Jun 1994 DE
4409392 Sep 1995 DE
4423257 Jan 1996 DE
I9504867 Feb 1996 DE
29913200 Sep 1999 DE
202004020209 May 2006 DE
0179695 Apr 1986 EP
0302719 Feb 1989 EP
0425542 May 1991 EP
0505634 Sep 1992 EP
0517030 Dec 1992 EP
0517030 Apr 1993 EP
0577178 Jan 1994 EP
0639351 Feb 1995 EP
0639351 Mar 1995 EP
0641547 Mar 1995 EP
504346 May 1995 EP
0517030 Sep 1996 EP
0505634 Aug 1997 EP
897697 Feb 1999 EP
0605799 Apr 1999 EP
0966930 Dec 1999 EP
0968692 Jan 2000 EP
0974319 Jan 2000 EP
0974319 Jan 2000 EP
1033941 Sep 2000 EP
1051133 Nov 2000 EP
1103236 May 2001 EP
1393689 Mar 2004 EP
1402836 Mar 2004 EP
0906065 Sep 2004 EP
1124512 Sep 2004 EP
1459711 Jul 2007 EP
1847240 Oct 2007 EP
1194087 Aug 2008 EP
2552659 Apr 1985 FR
2697996 May 1994 FR
2700947 Aug 1994 FR
2703580 Oct 1994 FR
2727003 May 1996 FR
2747034 Oct 1997 FR
2753368 Mar 1998 FR
157668 Jan 1921 GB
265592 Aug 1927 GB
2148122 May 1985 GB
2207607 Feb 1989 GB
2239482 Jul 1991 GB
2266246 Oct 1993 GB
03-505416 Nov 1991 JP
9-280219 Oct 1997 JP
2006-513752 Apr 2006 JP
2229271 May 2004 RU
2244527 Jan 2005 RU
2307625 Oct 2007 RU
1465040 Mar 1989 SU
WO 8803417 May 1988 WO
WO 8810100 Dec 1988 WO
WO 8909035 Oct 1989 WO
WO 9000037 Jan 1990 WO
WO 9201428 Feb 1992 WO
WO 9206005 Apr 1992 WO
WO 9301771 Feb 1993 WO
WO 9526164 May 1994 WO
WO 9508964 Apr 1995 WO
WO 9515133 Jun 1995 WO
WO 9520370 Aug 1995 WO
WO 9521053 Aug 1995 WO
WO 9639988 Dec 1996 WO
WO 9640015 Dec 1996 WO
WO 9720526 Jun 1997 WO
WO 9723175 Jul 1997 WO
WO 9725941 Jul 1997 WO
WO 9725945 Jul 1997 WO
WO 9737620 Oct 1997 WO
WO 9739693 Oct 1997 WO
WO 9817208 Apr 1998 WO
WO 9817209 Apr 1998 WO
WO 9855052 Dec 1998 WO
WO 9856319 Dec 1998 WO
WO 9856433 Dec 1998 WO
WO 9909896 Mar 1999 WO
WO 1999009903 Mar 1999 WO
WO 9929271 Jun 1999 WO
WO 199927864 Jun 1999 WO
WO 9932055 Jul 1999 WO
WO 9938461 Aug 1999 WO
WO 9938463 Aug 1999 WO
WO 9956675 Nov 1999 WO
WO 9963914 Dec 1999 WO
WO 0007527 Feb 2000 WO
WO 0007528 Feb 2000 WO
WO 2000025706 May 2000 WO
WO 0030568 Jun 2000 WO
WO 0040177 Jul 2000 WO
WO 0041654 Jul 2000 WO
WO 0059412 Oct 2000 WO
WO 0066044 Nov 2000 WO
WO 0066045 Nov 2000 WO
WO 0074607 Dec 2000 WO
0103615 Jan 2001 WO
WO 0108611 Feb 2001 WO
WO 0156497 Aug 2001 WO
WO 0162190 Aug 2001 WO
WO 0180785 Nov 2001 WO
WO 0156497 Dec 2001 WO
WO 0193742 Dec 2001 WO
WO 0195837 Dec 2001 WO
WO 0156497 Mar 2002 WO
WO 0193742 Sep 2002 WO
2004000177 Dec 2003 WO
WO 2004069106 Aug 2004 WO
WO 2005007040 Jan 2005 WO
WO 2005020861 Mar 2005 WO
WO 2006138500 Dec 2006 WO
WO 2007098288 Aug 2007 WO
WO 2008014258 Jan 2008 WO
WO 2008082473 Jul 2008 WO
2008102174 Aug 2008 WO
WO 2008124355 Oct 2008 WO
WO 2008154326 Dec 2008 WO
WO 2009064644 May 2009 WO
2009158319 Dec 2009 WO
WO 2010054181 May 2010 WO
WO 2010054208 May 2010 WO
WO 2012088238 Jun 2012 WO
Non-Patent Literature Citations (179)
Entry
U.S. Appl. No. 60/068,205, filed Dec. 19, 1997, Urbahns.
U.S. Appl. No. 60/071,527, filed Jan. 15, 1998, Urbahns.
Synthes History and Evolution of LBIF Brochure; Nov. 2015, 30 pages.
Synthes Spine Cervical Stand-Alone Devices Presentation Brochure; 2010, 40 pages.
DePuy Motech Surgical Titanium Mesh Brochure; 1998, 13 pages.
Banward, Iliac Crest Bone Graft Harvest Donor Site Morbidity, 20 (9) Spine 1055-1060, May 1995.
Benezech, L'arthrodese Cervicale Par Voie Anterieure a L'Aide de Plaque-Cage P.C.B., 9(1) Rachis 1, 47, 1997 (w/Translation).
Brantigan I/F Cage for PLIF Surgical Technique Guide; Apr. 1991, 22 pages.
Brantigan, Compression Strength of Donor Bone for Posterior Lumbar Interbody Fusion, 18(9) Spine 1213-1221, 1993.
Brantigan, Pseudarthrosis Rate After Allograft Posterior Lumbar Interbody Fusion with Pedicle Screw and Plate Fixation, 19(11) Spine 1271-1280, Jun. 1994.
Cloward, Gas-Sterilized Cadaver Bone Grafts for Spinal Fusion Operations, 5(1) Spine 4-10 Jan./Feb. 1980.
Cloward, The Anterior Approach for Removal of Ruptured Cervical Disks, vol. 15, J. Neuro. 602-617, 1958.
Delecrin, Morbidite du Prelevement de Greffons osseuz au Niveau des Cretes Iliaques dans la Chirurgie Du Rachis; Justification du recours aux substituts osseuz, 13(3) Rachis 167-174, 2001 (w/Translation).
Dereymaeker, Nouvelle Cure neuro-Chirurgicale de discopathies Cervicales, 2 Neurochirurgie 226-234; 1956 (w/Translation).
Fowler, Complications Associated with Harvesting Autogenous Iliac Bone Graft, 24(12) Am. J. Ortho. 895-904, Dec. 1995.
Fuentes, Les Complications de la Chirurgie Par Voie Anterieure du Rachis Cervical, 8(1) Rachis 3-14, 1996 (w/Translation).
Germay, Resultats Cliniques de Ceramiques D'hydroxyapatite dans les arthrodeses Inter-somatiques du Rachis Cervical Par Voie Anterieure. Etude Retrospective a Propose de 67 cas. 13(3), Rachis 189-195, 2001 (w/Translation).
Kastner, Advanced X-Ray Tomographic Methods for Quantitative Charecterisation of Carbon Fibre Reinforced Polymers, 4th Annual Intern. Symposium on NDT in Aerospace, 2012, 9 pages.
Khan, Chapter 2—Implantable Medical Devices, Focal Controlled Drug Delivery, Advances in Delivery Science and Technology, A.J. Domb and W. Khan (eds.) 2014.
Kozak, Anterior Lumbar Fusion Options, No. 300, Clin. Orth. Rel. Res., 45-51, 1994.
Kroppenstedt, Radiological Comparison of Instrumented Posterior Lumbar Interbody Fusion with One or Two Closed-Box Plasmapore Coated Titanium Cages, 33(19) Spine, 2083-2088, Sep. 2008.
Lund, Interbody Cage Stabilisation in the Lumbar Spine, 80-B(2) J Bone Joint Surg., 351-359, Mar. 1998.
Malca, Cervical Interbody Xenograft with Plate Fixation, 21(6) Spine, 685-690, Mar. 1996.
McAfee, Minimally Invasive Anterior Retroperitoneal Approach to the Lumbar Spine, 21(13) Spine, 1476-1484, 1998.
PCB Evolution Surgical Technique Guide 2010.
Samandouras, A New Anterior Cervical Instrumentation System Combining an Intradiscal Cage with an Integrated Plate, 26(10) Spine, 1188-1192, 2001.
Sonntag, Controversy in Spine Care, Is Fusion Necessary After Anterior Cervical Discectomy 21(9) Spine, 1111-1113, May 1996.
Tan, A Modified Technique of Anterior Lumbar Fusion with Femoral Cortical Allograft, 5(3) J. Ortho. Surg. Tech., 83-93, 1990.
Verbiest H., La Chirurgie Anterieure et Laterale du Rachis Cervical, 16(S2) Neurochirurgie 1-212; 1970 (w/Translation).
Dabrowski, Highly Porous Titanium Scaffolds for Orthopaedic Applications, J. Biomed Mater. Res. B. Appl. Biomat. Oct;95(1):53-61, 2010.
Takahama, A New Improved Biodegradable Tracheal Prosthesis Using Hydroxy Apatite and Carbon Fiber 35(3) ASAIO Trans, 291-293, Jul.-Sep. 1989.
Wang, Determination of Cortical Bone Porosity and Pore Size Distribution using a Low Field Pulsed NMR Approach, J. Orthop Res., Mar; 21(2):312-9 Mar. 2003.
U.S. Appl. No. 60/988,661, filed Nov. 16, 2007, Kueenzi et al.
U.S. Appl. No. 61/535,726, filed Sep. 16, 2011, Zaveloff.
Appendix 1 to Joint Claim Construction Brief; Synthes' Exhibits A-9, in the United States District Court for the District of Delaware Civil Action No. 1:11-cv-00652-LPS, Jun. 8, 2012, 192 pages.
Appendix 2 to Joint Claim Construction Brief; Globus' Exhibits A-F, in the United States District Court for the District of Delaware Civil Action No. 1:11-cv-00652-LPS, Jun. 8, 2012, 146 pages.
Appendix 3 to Joint Claim Construction Brief; Exhibits A-C, in the United States District Court for the District of Delaware Civil Action No. 1:11-cv-00652-LPS, Jun. 8, 2012, 38 pages.
Chadwick et al., “Radiolucent Structural Materials for Medical Applications,” www.mddionline.com/print/238, Jun. 1, 2001, accessed date Jul. 31, 2012, 9 pages.
Expert Report of Dr. Domagoj Carle Regarding the Invalidity of U.S. Pat. Nos. 7,846,207, 7,862,616 and 7,875,076, in the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Nov. 5, 2012, 149 pages.
Expert Report of John F. Hall, M.D., United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 14, 2012, 27 pages.
Expert Report of Paul Ducheyne, Ph.D. Concerning Patent Validity, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 13, 2012, 155 pages.
International Search Report, completed Aug. 16, 2007 for International Application No. PCT/US2007/005098, filed Feb. 27, 2007.
Jury Verdict Form, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 14, 2013, 20 pages.
Marcolongo et al., “Trends in Materials for Spine Surgery”, Biomaterials and Clinical Use, 6, 2011, 21 pages.
Order, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, May 15, 2013, 4 pages.
Order, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, May 7, 2013, 7 pages.
Parlov et al., “Anterior Lumbar Interbody Fusion with Threaded Fusion Cages and Autologous Grafts”, Eur. Spine J., 2000, 9, 224-229.
Plaintiffs' Responses and Objections to Defendant Globus Medical, Inc.'s First Set of Interrogatories (Nos. 1-11), United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Nov. 14, 2011, 18 pages.
Plaintiffs' Supplemental Responses and Objections to Defendant Globus Medical Inc.'s Interrogatories Nos. 6-10 and Second Supplemental Responses and Objections to Interrogatory No. 5, United States District Court for the District of Delaware, Civil Action No. 11-cv-652-LPS, Sep. 1, 2012, 12 pages.
Redacted version of “Defendant Globus Medical, Inc.'s Answering Brief in Opposition to Plaintiff's Motion for Summary Judgment of No Anticipation by the Kozak and Michelson References”, Mar. 12, 2013, 233 pages.
Reply Report of Dr. Domagoj Carle Regarding the Invalidity of U.S. Pat. Nos. 7,846,207, 7,862,616 and 7,875,076, in the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jan. 4, 2013, 81 pages.
Spruit et al., “The in Vitro Stabilizing Effect of Polyether-etherketone Cages Versus a Titanium Cage of similar design for anterior lumbar interbody fusion”, Eur. Spine J., Aug. 2005, 14 752-758.
U.S. Appl. No. 11/199,599: Amendment/Request for Reconsideration after Non-Final Rejection, dated Sep. 29, 2009, 30 pages.
U.S. Appl. No. 11/199,599: Appeal Brief, dated Apr. 15, 2010, 51 pages.
U.S. Appl. No. 11/199,599: Final Rejection, dated Dec. 24, 2009, 21 pages.
U.S. Appl. No. 11/199,599: Interview Summary included Draft Amendments, dated Sep. 24, 2009, 16 pages.
U.S. Appl. No. 11/199,599: Non-Final Rejection, dated Apr. 1, 2009, 20 pages.
U.S. Appl. No. 11/199,599: Preliminary Amendment, dated Jan. 9, 2008, 11 pages.
Japanese Patent Application No. 2011-534928: Office Action dated Sep. 30, 2013, 11 pages.
Russian Patent Application No. 2011-1122797: Decision to Grant dated Oct. 9, 2013, 20 pages.
Synthes Spine, “SynFix-LR System. Instruments and Implants for Stand-Alone Anterior Lumbar Interbody Fusion (ALIF)”, Technique Guide dated 2008, pp. 2-40, Published by Synthes Spine (USA).
Bray, “InterPlate Spine Fusion Device: Subsidence Control Without Stress Shielding”, Orthopaedic Product News, Sep./Oct. 2006, pp. 22-25.
International Search Report, dated Mar. 20, 2009, for PCT International Application No. PCT/US80/82473, filed Nov. 5, 2008.
Synthes Spine, “CorticoCancellous ACF Spacer. An allograft space or anterior fusion of the cervical spine,” brochure, Musculoskeletal Transplant Foundationm, 2003, 6 pages.
International Patent Application PCT/US2011/066421, International Search Report dated Jun. 14, 2012, 31 pages.
BRAY. R.S., M.D., “InterPlate Spine Fusion Device: Subsidence Control Without Stress Shielding”, Orthopaedic Product News, Sep./Oct. 2006, pp. 22-25.
Bray, InterPlate Vertebral Body Replacement; website accessed May 4, 2017; http://rsbspine.com/Products.aspx, 2 pages.
Brantigan, Pseudarthrosis Rate After Allograft Posterior Lumbar Interbody Fusion with Pedicle Screw and Plate Fixation , 19(11) Spine 1270-1280, Jun. 1994.
Brantigan, Intervertebral Fusion, Chapter 27, Posterior Lumbar Interbody Fusion Using the Lumbar Interbody Fusion Cage, 437-466, 2006.
Brantigan, Interbody Lumbar Fusion Using a Carbon Fiber Cage Implant Versus Allograft Bone, 19(13) Spine 1436-1444, 1994.
Brantigan, Compression Strength of Donor Bone for Posterior Lumbar Interbody Fusion, 18(9) Spine 1213-1221,1993.
Brantigan, A Carbon Fiber Implant to Aid Interbody Lumbar Fusion, 16(6S) Spine S277-S282, Jul. 1991.
Brantigan 1/F Cage for PLIF Surgical Technique Guide; Apr. 1991,22 pages.
Benezech, L'arthrodese Cervicale Par Voie Anterieure a L'Aide de Plaque-Cage P.C.B., 9(1) Rachis 1,47,1997 (w/Translation).
Banward, Iliac Crest Bone Graft Harvest Donor Site Morbidity, 20(9) Spine 1055-1060, May 1995.
Bailey, Stabilzation of the Cervical Spine by Anterior Fusion, 42-A(4), J. Bone Joint Surg., 565-594, Jun. 1960.
Appendix 3 to Joint Claim Construction Brief,—Exhibits A-C, in the United States District Court for the District of Delaware Civil Action No. 1: 11-cv-00652-LPS, Jun. 8, 2012, 38 pages.
Appendix 2 to Joint Claim Construction Brief,—Globus' Exhibits A-F, in the United States District Court for the District of Delaware Civil Action No. 1 :11-cv-00652-LPS, Jun. 8, 2012, 146 pages.
Appendix 1 to Joint Claim Construction Brief,—Synthes' Exhibits A-9, in the United States District Court for the District of Delaware Civil Action No. 1 :11-cv-00652-LPS, Jun. 8, 2012, 192 pages.
Al-Sanabani, Application of Calcium Phosphate Materials in Dentistry, vol. 2013, Int. J. Biomaterials, 1-12, 2013.
AcroMed Carbon Fiber Interbody Fusion Devices; Jan. 1998, 8 pages.
Polysciences Inc. Info Sheet 2012.
Plaintiffs' Supplemental Responses and Objections to Defendant Globus Medical Inc. 's Interrogatories Nos. 6-10 and Second Supplemental Responses and Objections to Interrogatory No. 5, United States District Court for the District of Delaware, Civil Action No. 11-cv-652-LPS, Sep. 1, 2012,12 pages.
Plaintiffs' Responses and Objections to Defendant Globus Medical, Inc. 's First Set of Interrogatories (Nos. 1-11), United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Nov. 14, 2011, 18 pages.
PCT International Application No. PCT/US2009/063529: International Search Report and Written Opinion dated Apr. 14, 2010,19 pages.
Parlov et al., “Anterior Lumbar Interbody Fusion with Threaded Fusion Cages and Autologous Grafts”, Eur. Spine J., 1000, 9, 224-229.
Order, United States District Court District of Delaware, Civil Action No. 1: 11-cv-00652-LPS, May 7, 2013, 7 pages.
Order, United States District Court District of Delaware, Civil Action No. 1: 11-cv-00652-LPS, May 15, 2013, 4 pages.
Nasca, Newer Lumbar Interbody Fusion Techniques, 22(2) J. Surg. Ortho. Advances, 113-117, 2013.
Memorandum Opinion, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, May 7, 2013, 33 pages.
McAfee, Minimally Invasive Anterior Retroperitoneal Approach to the Lumbar Spine, 21 (13)Spine, 1476-1484, 1998.
Marcolongo et al., “Trends in Materials for Spine Surgery”, Comprehensive Biomaterials, Biomaterials and Clinical Use, 6.610, Oct. 2011, 21 pages.
Malca, Cervical Interbody Xenografl with Plate Fixation, 21 (6) Spine, 685-690, Mar. 1996.
Lyu, Degradability of Polymers for Implantable Biomedical Devices, 10, Int. J. Mol. Sci., 4033-4065, 2009.
Lund, Interbody Cage Stabilisation in the Lumbar Spine, 80-B(2) J Bone Joint Surg., 351-359 Mar. 1998.
Kroppenstedt, Radiological Comparison of Instrumented Posterior Lumbar Interbody Fusion with One or Two Closed-Box Plasrnapore Coated Titanium Caes, 33(19) Spine, 2083-2088, Sep. 2008.
Kozak, Anterior Lumbar Fusion Options, No. 300, Clin. Orth. Rel. Res., 45-51,1994.
Khan, Chapter 2—Implantable Medical Devices, Focal Controlled Drug Delivery, Advances n Delivery Science and Technology, A.J. Domb and W. Khan (eds.) 2014.
Kastner, Advanced X-Ray Tomographic Methods for Quantitative Charecterisation of Barbon Fibre Reinforced Polymers, 4th Annual Intern. Symposium on NDT in Aerospace, 2012, 9 pages.
Jury Verdict Form, United States District Court District of Delaware, Civil Action No. 1: 11-cv-00652-LPS, Jun. 14, 2013, 20 pages.
Jury Trial Demanded, in the United States District Court for the District of Delaware, Case No. 1:11-cv-00652-LPS, filed Jul. 22, 2011,8 pages.
Jost, Compressive Strength of Interbody Cages in the Lumbar Spine: the Effect of Cage Shape, Posterior Instrumentation and Bone Density, 7 Eur. Spine J. 132-141, 1998.
Jonbergen et al., “Anterior CervicalInterbody fusion with a titanium box cage: Early radiological assessment of fusion and subsidence”, The Spine Journal 5, Jul. 2005, 645-649.
Joint Claim Construction brief, In the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 14, 2012, 97 pages.
Japanese Patent Application No. 2011-534928: Office Action dated Sep. 30, 2013,11 pages.
Japanese Patent Application No. 2011-534926: Office Action dated Oct. 30, 2013, 7 pages.
International Search Report, dated Mar. 20, 2009, for PCT International Application No. PCT/US08/82473, filed Nov. 5, 2008.
International Search Report, completed Aug. 16, 2007 for International Application No. PCT/US2007/005098, filed Feb. 27, 2007, 5 pgs.
International Patent Application No. PCT/CH2003/00089, International Search Report dated Dec. 2, 2003, 3 pgs.
International Patent Application No. PCT /US2011/066421; International Search Report and Written Opinion dated Jun. 14, 2012, 31 pages.
Huttner, Spinal Stenosis & Posterior Lumbar Interbody Fusion, No. 193, Clinical Ortho Rel. Res. 103-114, Mar. 1985.
Gunatillake, Biodegradable Synthetic Polymers for Tissue Engineering, vol. 5, Eur. Cells Materials, 1-16, 2003.
Graham, Lateral Extracavitary Approach to the Thoracic and Thoracolumbar Spine, 20(7) Orthopedics, 605-610, Jul. 1997.
Germay, Resultats Cliniques de Ceramiques D'hydroxyapatite dans les arthrodeses Inter-somatiques du Rachis Dervical Par Voie Anterieure. Etude Retrospective a Propose de 67 cas. 13(3), Rachis 189-195, 2001 (w/Translation).
Fuentes, Les Complications de la Chirurgie Par Voie Anterieure du Rachis Cervical, 8(1) Rachis 3-14,1996 (w/Translation).
Fowler, Complications Associated with Harvesting Autogenous Iliac Bone Graft, 24(12) Am. 1. Ortho. 895-904, Dec. 1995.
Fassio, Use of Cervical Plate-Cage PCB and Results for Anterior Fusion in Cervical Disk Syndrome, 15(6) Rachis 355-361, Dec. 2003 Translation.
Expert Report of Richard J. Gering, Ph.D., CLP in the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 14, 2012, 39 pages.
Expert Report of Paul Ducheyne, Ph.D. Concerning Patent Validity, United States District Court District of Delaware, Civil Action No: 1:11-cv-00652-LPS, Dec. 13, 2012, 155 pages.
Expert Report of John F. Hall, M.D., United States District Court for the District of Delaware, Civil Action No: 1:11-cv-00652-LPS, Dec. 14, 2012, 27 pages.
Expert Report of Dr. Domagoj Carle Regarding the Invalidity of U.S. Pat. Nos. 7,846,207, 7,862,616 and 7,875,076, in the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Nov. 5, 2012,149 pages.
Enker, Interbody Fusion and Instrumentation, No. 300 Clin. Orth. Rel. Res. 90-101, Mar. 1994.
Dickman, Internal Fixation and Fusion of the Lumbar Spine Using Threaded Interbody Cages, 13(3) Barrow Quarterly (1997); http://www.thebarrow.org/Education_And_Resources/Barrow_Quarterly/204837.
Dereymaeker, Nouvelle Cure neuro-Chirurgicale de discopathies Cervicales, 2 Neurochimrgie 226-234; 1956 (w/Translation).
DePuy Motech Surgical Titanium Mesh Brochure; 1998,13 pages.
Delecrin, Morbidite du Prelevement de Greffons osseux au Niveau des Creh'.:S Iliaques dans la Chirurgie Du Rachis; justification du recours aux substituts osseuz, 13(3) Rachis 167-174, 2001 (w/Translation).
Dabrowski, Highly Porous Titanium Scaffolds for Orthopaedic Applications, J. Biomed Mater. Res. B. Appl. Biomat. Oct.;95(1):53-61,2010.
Cloward, The Anterior Approach for Removal of Ruptured Cervical Disks, vol. 15, J. Neuro. 302-617, 1958.
Cloward, Gas-Sterilized Cadaver Bone Graffts for spinal Fusion Operation , 5(1) Spine 4-10 Jan./Feb. 1980.
Chadwick et al., “Radiolucent Structural Materials for Medical Application”, www.mddionline.com/print/238 Jun. 2001, accessed Jul. 31, 2012, 9 pages.
Carbon Fiber Composite Ramps for Lumbar Interbody Fusion; Apr. 1997, 2 pages.
Younger, Morbidity at Bone Graft Donor Sites, 3(3) J. Orth. Trauma, 192-195, 1989.
Written Opinion, dated Mar. 20, 2009, for PCT International Application No. PCT/US08/82473, filed Nov. 5, 2008.
Wilson, Anterior Cervical Discectomy without Bone Graft, 47(4) J. Neurosurg. 551-555, Oct. 1977.
Whitesides, Lateral Approach to the Upper Cervical Spine for Anterior Fusion, vol. 59, South Med J, 879-883, Aug. 1966.
White, Relief of Pain by Anterior Cervical-Spine Fusion for Spondylosis, 55-A(3) J. Bone Joint Surg. 525-534, Apr. 1973.
Weiner, Spinde Update Lumbar Interbody Cages, 23(5) Spine, 634-640, Mar. 1998.
Watters, Anterior Cervical Discectomy with and without Fusion, 19(20) Spine 2343-2347 Oct. 1994.
Wang, Increased Fusion Rates with Cervical Plating for Two-Level Anterior Cervical Discectomy and Fusion, 25(1) Spine 41-45, Jan. 2000.
Wang, Determination of Cortical Bone Porosity and Pore Size Distribution using a Low Field Pulsed NMR Approach, J. Orthop Res., Mar.; 21(2):312-9 Mar. 2003.
Verbiest H., La Chirurgie Anterieure et Laterale du Rachis Cervical,16(S2) Neurochirurgie 1-212; 1970 (w/Translation).
U.S. Appl. No. 11/199,599: Preliminary Amendment dated Jan. 9, 2008, 11pages.
U.S. Appl. No. 11/199,599: Non-Final Office Action dated Apr. 1, 2009, 20 pages.
U.S. Appl. No. 11/199,599: Interview Summary including Draft Claim Amendments dated Sep. 24, 2009, 16 pages.
U.S. Appl. No. 11/199,599: Final Office Action dated Dec. 24, 2009, 21pages.
U.S. Appl. No. 11/199,599: Appeal Brief dated Apr. 15, 2010, 51 pages.
U.S. Appl. No. 11/199,599: Amendment dated Sep. 29, 2009, 30 pages.
U.S.Provisional Application filed Sep. 16, 2011 by Jillian Zaveloff, entitled “Multi-Piece Intervertebral Implants”, U.S. Appl. No. 61/535,726.
U.S.Provisional Application filed Nov. 16, 2007 by Thomas Kueenzi et al., entitled “Low profile intervertebral mplant”, U.S. Appl. No. 60/988,661.
U.S.Provisional Application filed Jan. 15, 1998 by David J. Urbahns ,entitled“Insertion Instruments and Method for Delivering a Vertebral Body Spacer”, U.S. Appl. No. 60/071,527.
U.S.Provisional Application filed Dec. 19, 1997 by David J. Urbahns et al.,entitled “Insertion Instruments and Method for Delivering a Vertebral Body Spacer”, U.S. Appl. No. 60/068,205.
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 7, 2013, 97 pages.
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 6, 2013, 80 pages.
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 5, 2013, 99 pages.
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 4, 2013, 110 pages.
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 3, 2013, 98 pages.
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 14, 2013, 26 pages.
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 13, 2013, 94 pages.
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 12, 2013, 75 pages.
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 11, 2013, 98 pages.
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 10, 2013, 114 pages.
Tan, A Modified Technique of Anterior Lumbar Fusion with Femoral Cortical Allograft, 5(3) 1. Ortho. Surg. Tech., 83-93, 1990.
Tamariz, Biodegradation of Medical Purpose Polymeric Materials and Their Impact on Biocompatibility, Chapter 1, Intech-bio degradation Life of Science, 2013; 28 pages.
Takahama, A New Improved Biodegradable Tracheal Prosthesis Using Hydroxy Apatite and Barbon Fiber 35(3) ASAIO Trans, 291-293, Jul.-Sep. 1989.
Porex Website, http://www.porex.com/technologies/materials/porous-plastics, Porous Plastic Materials, accessed Aug. 21, 2015, 2 pages.
Redacted version of “Defendant Globus Medical, Inc.'s Answering Brief in Opposition to Plaintiffs Motion for Summary Judgment of No Anticipation by the Kozak and Michelson References”, Mar. 12, 2013, 233 pages.
Synthes Spine, “Zero-P Instruments and Implants. Zero-Profile Anterior Cervical Interbody Fusion (ACIF) device”, Technique Guide dated 2008, pp. 2-32, Published by Synthes Spine (USA).
Synthes Spine, “SynFix-LR System, Instruments and Implants for Stand-Alone Anterior Lumbar Interbody Fusion ALIF)”, Technique Guide dated 2008, pp. 2-40, Published by Synthes Spine (USA).
Synthes Spine Cervical Stand-Alone Devices Presentation Brochure; 2010,40 pages.
Spruit et al., “The in Vitro Stabilizing Effect of Polyether-etherketone Cages Versus a Titanium Cage of similar design or anterior lumbar interbody fusion”, Eur. Spine J., Aug. 2005,14 752-758.
Sonntag, Controversy in Spine Care, Is Fusion Necessary Arter Anterior Cervical Discectomy 21(9) Spine, 1111-1113, May 1996.
Second Expert Report of Wilson C. Hayes, Ph.D., United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 14, 2012, 22 pages.
Scholz et al., “A New Stand-Alone Cervical Anterior Interbody Fusion Device”, Spine, Jan. 2009, 34(2), 6 pages.
Schleicher et al., “Biomechanical Comparison of Two Different Concepts for Stand-alone anterior lumbar interbody fusion”, Eur. Spine J., Sep. 2008, 17, 1757-1765.
Samandouras, A New Anterior Cervical Instrumentation System Combinin an Intradiscal Cage with an Integrated plate, 26(10) Spine, 1188-1192, 2001.
Russian Patent Application No. 2011-1122797: Decision to Grant dated Oct. 9, 2013, 20 page.
Reply Report of Dr. Domagoj Carie Regarding the Invalidity of U.S. Pat. Nos. 7,846,207, 7,862,616 and 7,875,076, in the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jan. 4, 2013, 81 pages.
Redacted version of “Plaintiff's Reply Brief in Support of Plaintiff's Motion for Summary Judgment of No Anticipation by the Kozak and Michelson References”, Mar. 21, 2013, 11 pages.
Redacted version of “Opening Brief in Support of Plaintiffs' Motion for Summary Judgment of No Anticipation by the Kozak and Michelson References”, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Feb. 13, 2013, 66 pages.
Related Publications (1)
Number Date Country
20150320571 A1 Nov 2015 US
Continuations (5)
Number Date Country
Parent 14273760 May 2014 US
Child 14801336 US
Parent 12969330 Dec 2010 US
Child 14273760 US
Parent 12432088 Apr 2009 US
Child 12969330 US
Parent 11199599 US
Child 12432088 US
Parent PCT/CH03/00089 Feb 2003 US
Child 11199599 US