Implants for spinal fusion typically include a spacer body to allow for growth of bone between adjacent vertebral bodies while restoring and maintaining intervertebral space height that is defined between the vertebral bodies. In some cases, a plate is used to provide stability during healing so as to allow the patient to quickly resume an active lifestyle. The profile of the plate, which is placed on the anterior aspect of the vertebral bodies, however, can lead to dysphasia or patient discomfort which has resulted in various “zero-profile” devices currently being developed. For example, one zero profile device is an intervertebral device that is inserted into the intervertebral space. While the threaded device provides graft retention, stability in flexion and extension is questionable since the device does not positively lock to the vertebral bodies during implantation.
Other intervertebral implants have been utilized that include a frame shaped in a manner so as to hold a spacer body made from PEEK. Such spacer bodies typically are customized to have complimentary features to the frame so that the spacer bodies may be affixed to the frame. Such frames may not be desirable for spacer bodies made from allograft, however, because allograft spacer bodies may vary in shape, may not include the complimentary features needed to be affixed to the frame, and may degrade or resorb overtime.
In accordance with an embodiment, an intervertebral implant frame can be configured to support a spacer body in an intervertebral space that is defined by a first vertebral body and a second vertebral body. The intervertebral implant frame can include a support member having a body that defines first and second vertebral body facing surfaces, the second vertebral body facing surface spaced from the first vertebral body facing surface along a first direction. The body can further define at least two fixation element receiving apertures that extend through the support member and are each configured to receive a respective bone fixation element. The implant frame can further include a first tab and a second tab that each extend from the first vertebral body facing surface and are spaced from each other along a second direction that is substantially perpendicular to the first direction so as to define a gap that extends between the first and second tabs along the second direction, each of the first and second tabs being configured to abut the first vertebral body when the intervertebral implant is inserted in the intervertebral space. The frame can further include first and second arms arm that extend from the support member and include, respectively, a first inner spacer contacting surface and a second inner spacer contacting surface that is spaced from the first inner spacer contacting surface along the second direction such that the first arm and the second arm are configured to grip and retain the spacer body. The gap can be configured to receive a portion of the first vertebral body when each of the first and second tabs abuts the first vertebral body.
The foregoing summary, as well as the following detailed description of embodiments of the application, will be better understood when read in conjunction with the appended drawings. For the purposes of illustrating the methods, implants and systems of the present application, there is shown in the drawings preferred embodiments. It should be understood, however, that the application is not limited to the precise methods, implants, and systems shown. In the drawings:
Referring to
Certain terminology is used in the following description for convenience only and is not limiting. The words “right”, “left”, “lower” and “upper” designate directions in the drawings to which reference is made. The words “inner” or “distal” and “outer” or “proximal” refer to directions toward and away from, respectively, the geometric center of the implant and related parts thereof. The words, “anterior”, “posterior”, “superior,” “inferior,” “medial,” “lateral,” and related words and/or phrases are used to designate various positions and orientations in the human body to which reference is made and are not meant to be limiting. The terminology includes the above-listed words, derivatives thereof and words of similar import.
The intervertebral implant 22 is described herein as extending horizontally along a longitudinal direction “L” and lateral direction “A”, and vertically along a transverse direction “T”. Unless otherwise specified herein, the terms “lateral,” “longitudinal,” and “transverse” are used to describe the orthogonal directional components of various components. It should be appreciated that while the longitudinal and lateral directions are illustrated as extending along a horizontal plane, and that the transverse direction is illustrated as extending along a vertical plane, the planes that encompass the various directions may differ during use. For instance, when the intervertebral implant 22 is implanted into the intervertebral space 18 along an insertion direction I, the transverse direction T extends vertically generally along the superior-inferior (or caudal-cranial) direction, while the horizontal plane defined by the longitudinal direction L and lateral direction A lies generally in the anatomical plane defined by the anterior-posterior direction, and the medial-lateral direction, respectively. Accordingly, the directional terms “vertical” and “horizontal” are used to describe the intervertebral implant 22 and its components as illustrated merely for the purposes of clarity and illustration.
As shown in
In reference to
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
The flexible arms 38 and 42 can have a transverse height and a lateral width that at least partially define a cross-sectional area of the arms 38 and 42. The arms 38 and 42 can have a cross-sectional area that may vary so long as the arms 38 and 42 are capable of elastically deforming or flexing to thereby allow the frame 26 to receive the spacer body and subsequently apply a retention force to the spacer body 30 after the frame 26 has received the spacer body 30. In that regard, the arms 38 and 42 are configured to elastically flex laterally outwardly away from each other, or otherwise elastically deform from a first position to a second flexed position to allow the frame 26 to receive the spacer body 30. It should be appreciated that the first position can be a relaxed position of the arms 38 and 42 or a flexed position of the arms 38 and 42 that is outwardly flexed with respect to a relaxed position. At least respective portions of the arms 38 and 42, such as contact locations 320 and 324 (see
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
Now referring to
As shown in
As shown in
As shown in
As shown, the instrument 210 includes a first arm 220 that is configured to releasably couple to the first arm 38 of the frame 26, and a second arm 224 that is rotatably coupled to the first arm 220 at a first pivot 228 and is configured to releasably couple to the second arm 42 of the frame 26. The first and second arms 220 and 224 are configured as expansions arms. The first and second expansion arms 220 and 224 are pivotally coupled to each other at the first pivot 228 such that rotation of the first and second expansion arms 220 and 224 about the first pivot 228 causes the first and second arms 38 and 42 of the frame 26 to elastically flex away from each other when the instrument 210 is coupled to the frame 26. Therefore, the instrument 210 is configured to have a first position or configuration whereby the instrument 210 can be coupled to the frame 26, and a second position or configuration whereby the instrument 210 is applying expansion forces to the arms 38 and 42 of the frame 26 so that the frame can receive the spacer body 30.
As shown in
As shown in
As shown in
As shown in
As shown in
In operation and in reference to
This rotation will cause at least one of the first and second arms 38 and 42 to elastically flex away from the other. For example, the first and second inner spacer contacting surfaces 88 and 92 of the first and second arms 38 and 42 can define respective first and second respective contact locations 320 and 324, and at least one of the first and second arms 38 and 42 is flexible so as to be movable between a first position, whereby the frame 26 defines a first distance d1 that extends along the lateral direction A between the first and second contact locations 320 and 324, and a second position, whereby the frame 26 defines a second distance d2 that extends along the lateral direction A between the first and second contact locations 320 and 324. It should be appreciated that the first and second contact locations 320 and 324 can be located anywhere along the arms 320 and 324 so long as they remain the same when the first and second distances are measured.
As shown in
In another embodiment and in reference to
As shown in
As shown in
Once coupled to the arms 438 and 442, the clips 470 extend out from the arms 438 and 442 at an angle such that the clips 470 diverge from each other as they extend proximally. By squeezing a proximal portion of the clips 470 toward each other, the cantilevered beams 478 apply an expansion force to the engagement members 454 or at least to the bent portions 450 such that the arms 438 and 442 elastically flex away from each other. While flexed, the frame 426 can receive the spacer body 30. By releasing the clips 470, the arms 438 and 442 will apply a retention force to the spacer body 30 to thereby retain the spacer body 30 in the frame 426.
In another embodiment and in reference to
As shown in
As shown in
Once coupled to the arms 538 and 542, the clips 570 extend out from the arms 538 and 542 such that the handle portions 574 are proximal to the front of the frame 526 and the shoulders 590 are abutting the arms 538 and 542 proximate to the support member 526 as shown in
It should be appreciated that the engagement members of the frames 26, 426, and 526, and the engagement members of the instruments 210, 428, and 528 are interchangeable. Therefore, for example, frame 26 and instrument 210 can include any of the engagement members 170, 262, 454, 476, 554, and 584 so long as the engagement members of the frame 26 can mate with the engagement members of the instrument 210 to thereby releasably couple the frame 26 to the instrument 210.
As shown in
As shown in
In another embodiment the frame can be configured to have portions of the frame arms crimped toward the spacer body to thereby retain the spacer body. In such embodiments, the frame is capable of receiving the spacer body without flexing the arms of the frame away from each other. The spacer body will then be retained by the frame by crimping the arms toward the spacer body to thereby provide a retention force to the spacer body.
For example, in reference to
The first and second arms 738 and 742 are configured to be crimped rather than flexed. As shown, the arms 738 and 742 include first and second inner spacer contacting surfaces 744 and 746, respectively that are configured to contact and retain the spacer body 30. That is, the inner surface of the support member 734, the first inner spacer contacting surface 744 and the second inner spacer contacting surface 746 together define a void 748 that is configured to receive the spacer body 30. Each arm 738 and 742 further includes a substantially straight portion 750 and a crimp member 752 that extends distally from the straight portion 748. As shown, the crimp members 752 are each coupled to the straight portions 750 by a hinge 756. In the illustrated embodiment, the hinges 756 define transverse bending grooves 758 formed in the inner spacer contacting surfaces 744 and 746.
In operation, the frame 726 can receive the spacer body 30 within the void 748 without expanding the arms 738 and 742 away from each other. Though it should be appreciated some expanding may occur. Once the spacer body 30 is properly positioned, the first crimp member 752 of the first arm 738 can be rotated about the first hinge 756 such that the first crimp member 752 is bent toward the second arm 742. Similarly, the second crimp member 752 of the second arm 742 can be rotated about the second hinge 756 such that the second crimp member 752 is bent toward the first arm 738. After the crimp members 752 have been crimped or otherwise bent, the arms 738 and 742 apply a retention force to the spacer body 30 to thereby retain the spacer body 30 to the frame 726. As shown, each arm 738 and 742 can further include a retention member 760 that extends from the first and second inner spacer contacting surfaces 744 and 746, respectively. The retention members 760 are configured to engage the spacer body 30 to thereby prevent migration of the spacer body 30 from the frame 726.
In another embodiment and in reference to
The first and second arms 838 and 842 are configured to be crimped rather than flexed. As shown, the arms 838 and 842 include first and second inner spacer contacting surfaces 844 and 846, respectively that are configured to contact and retain the spacer body 30. That is, the inner surface of the support member 834, the first inner spacer contacting surface 844 and the second inner spacer contacting surface 846 together define a void 848 that is configured to receive the spacer body 30. Each arm 838 and 842 further includes a first crimp member 850 and a second crimp member 852 that extends distally from the first crimp member 850. In other words, the first arm 838 can include a first crimp member 850 and a third crimp member 852 of the frame 826, and the second arm 842 can include a second crimp member 850 and a fourth crimp member 852 of the frame 826. As shown, the first crimp member 850 and the second crimp member 850 are each coupled to the support member 834 by first and second hinges 856 respectively. Similarly, the third and fourth crimp members 852 are coupled to the first crimp members 850 by third and fourth hinges 860 respectively. In the illustrated embodiment, the hinges 856 and 860 define transverse bending grooves 864 formed in the outer surfaces of the first and second arms 838 and 842.
In operation, the frame 826 can receive the spacer body 30 within the void 848 without expanding the arms 838 and 842 away from each other. Though it should be appreciated some expanding may occur. Once the spacer body 30 is properly positioned, the first crimp member 850 and the second crimp member 852 of the first arm 838 can be rotated about the first and second hinges 856 and 860 respectively such that the crimp members 850 and 852 are bent toward the second arm 842. Similarly, the first crimp member 850 and the second crimp member 852 of the second arm 842 can be rotated about the first and second hinges 856 and 860 respectively such that the crimp members 850 and 852 are bent toward the first arm 838. After the crimp members 850 and 852 have been bent, the arms 838 and 842 apply a retention force to the spacer body 30 to thereby retain the spacer body 30 to the frame 826. As shown, each arm 838 and 842 can further include a retention member 868 that extends from the first and second inner spacer contacting surfaces 844 and 846, respectively. The retention members 868 are configured to engage the spacer body 30 to thereby prevent migration of the spacer body 30 from the frame 826.
In another embodiment and in reference to
The first and second arms 938 and 942 are configured to be crimped rather than flexed. As shown, the arms 938 and 942 include first and second inner spacer contacting surfaces 944 and 946, respectively that are configured to contact and retain the spacer body 30. That is, the inner surface of the support member 934, the first inner spacer contacting surface 944 and the second inner spacer contacting surface 946 together define a void 948 that is configured to receive the spacer body 30. Each arm 938 and 942 further includes a substantially straight portion 950, a bent portion 951 extending from a distal end of the straight portion 950, and a crimp member 952 that is formed in the straight and bent portion 950 and 951. As shown, the crimp members 952 each define a crimping tab 956 that is attached to one of the straight portion 950 or the bent portion 951 by a hinge 958. In the illustrated embodiment, a proximal edge of the crimping tab 956 is coupled to the straight portion 950 and defines the hinge 958. It should be appreciated, however, that an upper edge, a lower edge, or a distal edge of the crimping tabs 956 could define the hinges 958. As shown, each crimping tab 956 is disposed within a window defined by the respective arm.
In operation, the frame 926 can receive the spacer body 30 within the void 948 without expanding the arms 938 and 942 away from each other. Though it should be appreciated some expanding may occur. Once the spacer body 30 is properly positioned, the crimping tab 956 of the first arm 938 can be rotated about the hinge 958 such that the crimping tab 956 is bent toward the second arm 942. Similarly, the crimping tab 956 of the second arm 942 can be rotated about the hinge 958 such that the crimping tab 956 is bent toward the first arm 938. After the crimping tabs 956 have been bent, the frame is in the crimped or engaged position such that the arms 938 and 942 apply a retention force to the spacer body 30 to thereby retain the spacer body 30 to the frame 926. It should be appreciated that the first and second arms 938 and 942 can include any number of crimping tabs 956 as desired.
In another embodiment and in reference to
The first and second arms 1038 and 1042 are configured to be crimped rather than flexed. As shown, the arms 1038 and 1042 include first and second inner spacer contacting surfaces 1044 and 1046, respectively that are configured to contact and retain the spacer body 30. That is, the inner surface of the support member 1034, the first inner spacer contacting surface 1044 and the second inner spacer contacting surface 1046 together define a void 1048 that is configured to receive the spacer body 30. Each arm 1038 and 1042 further includes a substantially straight portion 1050, a bent portion 1051 extending from a distal end of the straight portion 1050, and at least one, such as a plurality of crimp members 1052 that are formed in upper and lower edges of the arms 1038 and 1042. As shown, the crimp members 1052 each define a crimping tab 1056 that are each attached to the straight and bent portions 1050 and 1051 by respective horizontal hinges 1058.
In operation, the frame 1026 can receive the spacer body 30 within the void 1048 without expanding the arms 1038 and 1042 away from each other. Though it should be appreciated some expanding may occur. Once the spacer body 30 is properly positioned, the crimping tabs 1056 of the first arm 1038 can be rotated about the hinges 1058 such that the crimping tabs 1056 are bent toward the second arm 1042. Similarly, the crimping tabs 1056 of the second arm 1042 can be rotated about the hinges 1058 such that the crimping tabs 1056 are bent toward the first arm 1038. After the crimping tabs 1056 have been bent, the frame 1026 is in the crimped or engaged position such that the arms 1038 and 1042 apply a retention force to the spacer body 30 to thereby retain the spacer body 30 to the frame 1026. It should be appreciated that the first and second arms 1038 and 1042 can include any number of crimping tabs 1056 as desired.
As shown in
As shown in
As shown in
As shown in
In operation and in reference to
In another embodiment and in reference to
In another embodiment and in reference to
Now in reference to
As shown in
The first and second extension members 1332 and 1356 are substantially parallel to each other and remain substantially parallel to each other as the first and second handles 1328 and 1352 are rotated about the first pivot 1324. This allows the first and second jaws 1344 and 1358 to translate rather than rotate relative to each other as the first and second handles 1328 and 1352 are rotated about the first pivot 1324. As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
As shown in
The mounting portion 1484 further includes a pair of drill guide apertures 1500 that extend through body 1488 and into the channel 1492. The drill guide apertures 1500 of the mounting portion 1484 are configured to align with the drill guide apertures 1410 of the first jaw 1344 when the first jaw 1344 is received by the channel 1492. The mounting portion 1484 further includes a first platform 1504 that a distal end of the channel 1492 terminates into, and a mating member 1508 that is defined by the first platform 1504. In the illustrated embodiment, the mating member 1508 is a peg 1512 that is configured to mate with the bore 1418 of the first jaw 1344. It should be appreciated, however, that the mating member 1508 can have other configurations as desired so long as the mating members of the mounting portion 1484 and the first jaw 1344 can mate with each other.
As shown in
In operation and in reference to
As shown in
It should be appreciated, that the drill guide 1300 can be part of a kit that also includes at least one of an intervertebral implant frame, an actuation instrument, and a drill bit. Moreover is should be appreciated, that the kit can also include the spacer body 30 and at least one fixation element 62.
In another embodiment and in reference to
As shown in
As shown in
As shown in
As shown in
As shown in
With continued reference to
Each of the tabs 1664a-1664d defines a front surface 1666a and an opposed bone contacting surface 1666b. The front surfaces 1666a of each tab 1664a-1664d can be flush with or otherwise coincident with the front face 1654 as illustrated. It should be appreciated, however, that the front surfaces 1666a can be offset with respect to the front face 1654, as desired. The bone contacting surfaces 1666b of the first and second tabs 1664a and 1664b are configured to abut the first vertebral body and bone contacting surfaces 1666b of the third and fourth tabs 1664c and 1664d are configured to abut the second vertebral body when the first and second arms 1638 and 1642 are inserted into the intervertebral space. When the frame is implanted into the intervertebral space, anterior surfaces of the first and second vertebral bodies can be flush with or extend beyond the front faces of the tabs.
As shown in
As shown in
As shown in
As shown in
Now in reference to
In use, the intervertebral implant can be inserted into the intervertebral space until the spacer body is disposed in the intervertebral space such that opposed first and second surfaces of the spacer body face respective ones of the first and second vertebral bodies. A common one of the first and second vertebral bodies can be abutted with each of the first and second tabs. And, a portion of the common one of the first and second vertebral bodies is caused to extend at least through a gap that extends between the first and second tabs. A common one of the first and second vertebral bodies can also be abutted by the third and fourth tabs. And, a portion of the common one of the first and second vertebral bodies can be caused to extend at least through a gap that extends between the third and fourth tabs. It should be appreciated that the implant can be prepackaged with the frame retaining the spacer body or the frame can be configured to retain the spacer body immediately prior to insertion into the intervertebral space. It should be appreciated that the spacer body can be synthetic or made of allograft bone.
For example, the first and second arms can be moved from a first position to a second position, whereby first and second spacer contacting surfaces of the first and second arms, respectively, are spaced apart by a first distance when in the first position, and are spaced apart by a second distance that is greater than the first distance when in the second position. The allograft spacer body can then be inserted into the frame between the first and second arms when the first and second arms are in the second position. The first and second arms can then be moved to a third position, whereby the first and second spacer contacting surfaces are spaced apart by a third distance when in the third position, the third distance is less than the second distance such that the arms apply a retention force against the allograft spacer body to thereby retain the allograft spacer body in the frame. Once the implant is inserted into the intervertebral space respective bone anchors can be inserted through the apertures of the frame and into the respective first and second vertebral bodies to thereby attach the implant to the first and second vertebral bodies.
It will be appreciated by those skilled in the art that changes could be made to the embodiments described above without departing from the broad inventive concept thereof. Furthermore, it should be appreciated that the structure, features, and methods as described above with respect to any of the embodiments described herein can be incorporated into any of the other embodiments described herein unless otherwise indicated. For example, the frame 1626 can also include crimp members as shown in
This application is a continuation-in-part of U.S. patent application Ser. No. 13/333,065 filed Dec. 21, 2011, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/425,505 filed Dec. 21, 2010 and U.S. Provisional Patent Application Ser. No. 61/425,509 filed Dec. 21, 2010, the contents of each of which are hereby incorporated by reference in their entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
424836 | Thompson | Apr 1890 | A |
1105105 | Sherman | Jul 1914 | A |
1200797 | Barbe | Oct 1916 | A |
2151919 | Jacobson | Mar 1939 | A |
2372888 | Edward | Apr 1945 | A |
2621145 | Sano | Dec 1952 | A |
2782827 | Joseph | Feb 1957 | A |
2906311 | Boyd | Sep 1959 | A |
2972367 | Wootton | Feb 1961 | A |
3062253 | Melvin | Nov 1962 | A |
3272249 | Houston | Sep 1966 | A |
3350103 | Ahlstone | Oct 1967 | A |
3561075 | Selinko | Feb 1971 | A |
3579831 | Stevens et al. | May 1971 | A |
3707303 | Petri | Dec 1972 | A |
3810703 | Pasbrig | May 1974 | A |
3899897 | Boerger et al. | Aug 1975 | A |
3945671 | Gerlach | Mar 1976 | A |
4017946 | Soja | Apr 1977 | A |
4056301 | Norden | Nov 1977 | A |
4123132 | Hardy | Oct 1978 | A |
4135506 | Ulrich | Jan 1979 | A |
4278120 | Hart et al. | Jul 1981 | A |
4280875 | Werres | Jul 1981 | A |
4285377 | Hart | Aug 1981 | A |
4288902 | Franz | Sep 1981 | A |
4297063 | Hart | Oct 1981 | A |
4299902 | Soma et al. | Nov 1981 | A |
4388921 | Sutter et al. | Jun 1983 | A |
4484570 | Sutter et al. | Nov 1984 | A |
4488543 | Tornier | Dec 1984 | A |
4501269 | Bagby | Feb 1985 | A |
4503848 | Caspar et al. | Mar 1985 | A |
4512038 | Alexander et al. | Apr 1985 | A |
4553890 | Gulistan | Nov 1985 | A |
4599086 | Doty | Jul 1986 | A |
4627853 | Campbell et al. | Dec 1986 | A |
4640524 | Sedlmair | Feb 1987 | A |
4648768 | Hambric | Mar 1987 | A |
4678470 | Nashef et al. | Jul 1987 | A |
4708377 | Hunting | Nov 1987 | A |
4711760 | Blaushild | Dec 1987 | A |
4717115 | Schmitz et al. | Jan 1988 | A |
4793335 | Frey et al. | Dec 1988 | A |
4804290 | Balsells | Feb 1989 | A |
4812094 | Grube | Mar 1989 | A |
4858603 | Clemow et al. | Aug 1989 | A |
4904261 | Dove et al. | Feb 1990 | A |
4936851 | Fox et al. | Jun 1990 | A |
4950296 | Mcintyre | Aug 1990 | A |
4955908 | Frey et al. | Sep 1990 | A |
4961740 | Ray et al. | Oct 1990 | A |
4976576 | Mahaney | Dec 1990 | A |
4978350 | Wagenknecht | Dec 1990 | A |
4994084 | Brennan | Feb 1991 | A |
5010783 | Sparks et al. | Apr 1991 | A |
5017069 | Stencel | May 1991 | A |
5020949 | Davidson et al. | Jun 1991 | A |
5026373 | Ray et al. | Jun 1991 | A |
5030220 | Howland | Jul 1991 | A |
5053049 | Campbell | Oct 1991 | A |
5062850 | MacMillan et al. | Nov 1991 | A |
5071437 | Steffee | Dec 1991 | A |
5084051 | Tormala et al. | Jan 1992 | A |
5085660 | Lin | Feb 1992 | A |
5096150 | Westwood | Mar 1992 | A |
5108438 | Stone | Apr 1992 | A |
5112354 | Sires | May 1992 | A |
5118235 | Dill | Jun 1992 | A |
5139424 | Yli-Urpo | Aug 1992 | A |
5147404 | Downey | Sep 1992 | A |
5180381 | Aust et al. | Jan 1993 | A |
5192327 | Brantigan | Mar 1993 | A |
5207543 | Kirma | May 1993 | A |
5211664 | Tepic et al. | May 1993 | A |
5235034 | Bobsein et al. | Aug 1993 | A |
5238342 | Stencel | Aug 1993 | A |
5275601 | Gogolewski et al. | Jan 1994 | A |
5281226 | Davydov et al. | Jan 1994 | A |
5284655 | Bogdansky et al. | Feb 1994 | A |
5290312 | Kojimoto et al. | Mar 1994 | A |
5298254 | Prewett et al. | Mar 1994 | A |
5304021 | Oliver et al. | Apr 1994 | A |
5314476 | Prewett et al. | May 1994 | A |
5314477 | Marnay | May 1994 | A |
5330535 | Moser et al. | Jul 1994 | A |
5348788 | White | Sep 1994 | A |
5368593 | Stark | Nov 1994 | A |
5380323 | Howland | Jan 1995 | A |
5385583 | Cotrel | Jan 1995 | A |
5397364 | Kozak et al. | Mar 1995 | A |
5405391 | Hednerson et al. | Apr 1995 | A |
5411348 | Balsells | May 1995 | A |
5423817 | Lin | Jun 1995 | A |
5425772 | Brantigan | Jun 1995 | A |
5439684 | Prewett et al. | Aug 1995 | A |
5458638 | Kuslich et al. | Oct 1995 | A |
5458641 | Ramirez | Oct 1995 | A |
5458643 | Oka et al. | Oct 1995 | A |
5478342 | Kohrs | Dec 1995 | A |
5487744 | Howland | Jan 1996 | A |
5489308 | Kuslich et al. | Feb 1996 | A |
5507818 | McLaughlin | Apr 1996 | A |
5514180 | Heggeness et al. | May 1996 | A |
5520690 | Errico et al. | May 1996 | A |
5522899 | Michelson | Jun 1996 | A |
5531746 | Errico et al. | Jul 1996 | A |
5534030 | Navarro et al. | Jul 1996 | A |
5534031 | Matsuzaki et al. | Jul 1996 | A |
5534032 | Hodorek | Jul 1996 | A |
5545842 | Balsells | Aug 1996 | A |
5549612 | Yapp et al. | Aug 1996 | A |
5549679 | Kuslich | Aug 1996 | A |
5554191 | Lahille et al. | Sep 1996 | A |
5556430 | Gendler | Sep 1996 | A |
5569308 | Sottosanti | Oct 1996 | A |
5570983 | Hollander | Nov 1996 | A |
5571190 | Ulrich et al. | Nov 1996 | A |
5571192 | Schonhoffer | Nov 1996 | A |
5578034 | Estes | Nov 1996 | A |
5593409 | Michelson | Jan 1997 | A |
5597278 | Peterkort | Jan 1997 | A |
5601553 | Trebing et al. | Feb 1997 | A |
5601554 | Howland et al. | Feb 1997 | A |
5607428 | Lin | Mar 1997 | A |
5607474 | Athanasiou et al. | Mar 1997 | A |
5609635 | Michelson | Mar 1997 | A |
5609636 | Kohrs et al. | Mar 1997 | A |
5609637 | Biedermann et al. | Mar 1997 | A |
5616144 | Yapp et al. | Apr 1997 | A |
5642960 | Salice | Jul 1997 | A |
5645606 | Oehy et al. | Jul 1997 | A |
5653708 | Howland | Aug 1997 | A |
5676666 | Oxland | Oct 1997 | A |
5676699 | Gogolewski et al. | Oct 1997 | A |
5681311 | Foley et al. | Oct 1997 | A |
5683216 | Erbes | Nov 1997 | A |
5683394 | Rinner | Nov 1997 | A |
5683463 | Godefroy et al. | Nov 1997 | A |
5702449 | McKay | Dec 1997 | A |
5702451 | Biedermann et al. | Dec 1997 | A |
5702453 | Rabbe et al. | Dec 1997 | A |
5702455 | Saggar | Dec 1997 | A |
5713899 | Marnay et al. | Feb 1998 | A |
5713900 | Benzel et al. | Feb 1998 | A |
5725588 | Errico et al. | Mar 1998 | A |
5728159 | Stroever et al. | Mar 1998 | A |
5735853 | Olerud | Apr 1998 | A |
5735905 | Parr | Apr 1998 | A |
5755796 | Ibo et al. | May 1998 | A |
5766253 | Brosnahan | Jun 1998 | A |
5776194 | Mikol et al. | Jul 1998 | A |
5776196 | Matsuzaki et al. | Jul 1998 | A |
5776197 | Rabbe et al. | Jul 1998 | A |
5776198 | Rabbe et al. | Jul 1998 | A |
5776199 | Michelson | Jul 1998 | A |
5778804 | Read | Jul 1998 | A |
5782915 | Stone | Jul 1998 | A |
5785710 | Michelson | Jul 1998 | A |
5800433 | Benzel et al. | Sep 1998 | A |
5861041 | Tienboon | Jan 1999 | A |
5865845 | Thalgott | Feb 1999 | A |
5865849 | Stone | Feb 1999 | A |
5876402 | Errico et al. | Mar 1999 | A |
5876452 | Athanasiou et al. | Mar 1999 | A |
5879389 | Koshino | Mar 1999 | A |
5885299 | Winslow et al. | Mar 1999 | A |
5888222 | Coates et al. | Mar 1999 | A |
5888223 | Bray | Mar 1999 | A |
5888224 | Beckers et al. | Mar 1999 | A |
5888227 | Cottle | Mar 1999 | A |
5895426 | Scarborough et al. | Apr 1999 | A |
5899939 | Boyce et al. | May 1999 | A |
5902303 | Eckhof et al. | May 1999 | A |
5902338 | Stone | May 1999 | A |
5904683 | Pohndorf et al. | May 1999 | A |
5904719 | Errico et al. | May 1999 | A |
5910315 | Stevenson et al. | Jun 1999 | A |
5911758 | Oehy et al. | Jun 1999 | A |
5920312 | Wagner et al. | Jul 1999 | A |
5922027 | Stone | Jul 1999 | A |
5931838 | Vito | Aug 1999 | A |
5944755 | Stone | Aug 1999 | A |
5951558 | Fiz | Sep 1999 | A |
5954722 | Bono | Sep 1999 | A |
5958314 | Draenet | Sep 1999 | A |
5968098 | Winslow | Oct 1999 | A |
5972368 | McKay | Oct 1999 | A |
5976141 | Haag et al. | Nov 1999 | A |
5976187 | Richelsoph | Nov 1999 | A |
5980522 | Koros et al. | Nov 1999 | A |
5981828 | Nelson et al. | Nov 1999 | A |
5984967 | Zdeblick et al. | Nov 1999 | A |
5989289 | Coates et al. | Nov 1999 | A |
6013853 | Athanasiou et al. | Jan 2000 | A |
6017345 | Richelsoph | Jan 2000 | A |
6025538 | Yaccarino et al. | Feb 2000 | A |
6033405 | Winslow et al. | Mar 2000 | A |
6033438 | Bianchi et al. | Mar 2000 | A |
6039762 | McKay | Mar 2000 | A |
6045579 | Hochshuler et al. | Apr 2000 | A |
6045580 | Scarborough et al. | Apr 2000 | A |
6056749 | Kuslich | May 2000 | A |
6066175 | Henderson et al. | May 2000 | A |
6080158 | Lin | Jun 2000 | A |
6080193 | Hochshuler et al. | Jun 2000 | A |
6086593 | Bonutti | Jul 2000 | A |
6086614 | Mumme | Jul 2000 | A |
6090998 | Grooms et al. | Jul 2000 | A |
6096080 | Nicholson et al. | Aug 2000 | A |
6096081 | Grivas et al. | Aug 2000 | A |
6099531 | Bonutti | Aug 2000 | A |
6110482 | Khouri et al. | Aug 2000 | A |
6113637 | Gill et al. | Sep 2000 | A |
6113638 | Williams et al. | Sep 2000 | A |
6120503 | Michelson | Sep 2000 | A |
6123731 | Boyce et al. | Sep 2000 | A |
6129763 | Chauvin et al. | Oct 2000 | A |
6136001 | Michelson | Oct 2000 | A |
6139550 | Michelson | Oct 2000 | A |
6143030 | Schroder | Nov 2000 | A |
6143033 | Paul et al. | Nov 2000 | A |
6156070 | Incavo et al. | Dec 2000 | A |
6193721 | Michelson | Feb 2001 | B1 |
6193756 | Studer et al. | Feb 2001 | B1 |
6193757 | Foley et al. | Feb 2001 | B1 |
6200347 | Anderson et al. | Mar 2001 | B1 |
6206922 | Zdeblick et al. | Mar 2001 | B1 |
6224602 | Hayes | May 2001 | B1 |
6231610 | Geisler | May 2001 | B1 |
6235033 | Brace et al. | May 2001 | B1 |
6235034 | Bray | May 2001 | B1 |
6235059 | Benezech et al. | May 2001 | B1 |
6241731 | Fiz | Jun 2001 | B1 |
6241769 | Nicholson et al. | Jun 2001 | B1 |
6245108 | Biscup | Jun 2001 | B1 |
6258089 | Campbell et al. | Jul 2001 | B1 |
6258125 | Paul et al. | Jul 2001 | B1 |
6261291 | Talaber et al. | Jul 2001 | B1 |
6261586 | McKay | Jul 2001 | B1 |
6264695 | Stoy | Jul 2001 | B1 |
6270528 | McKay | Aug 2001 | B1 |
6306139 | Fuentes | Oct 2001 | B1 |
6322562 | Wolter | Nov 2001 | B1 |
6331179 | Freid et al. | Dec 2001 | B1 |
6342074 | Simpson | Jan 2002 | B1 |
6364880 | Michelson | Apr 2002 | B1 |
6371986 | Bagby | Apr 2002 | B1 |
6371988 | Pafford et al. | Apr 2002 | B1 |
6371989 | Chauvin et al. | Apr 2002 | B1 |
6375681 | Truscott | Apr 2002 | B1 |
6383186 | Michelson | May 2002 | B1 |
6387130 | Stone et al. | May 2002 | B1 |
6395031 | Foley et al. | May 2002 | B1 |
6398811 | McKay | Jun 2002 | B1 |
6413259 | Lyons et al. | Jul 2002 | B1 |
6423063 | Bonutti | Jul 2002 | B1 |
6432106 | Fraser | Aug 2002 | B1 |
6447512 | Landry et al. | Sep 2002 | B1 |
6447546 | Bramlet et al. | Sep 2002 | B1 |
6454771 | Michelson | Sep 2002 | B1 |
6458158 | Anderson et al. | Oct 2002 | B1 |
6461359 | Tribus et al. | Oct 2002 | B1 |
6468311 | Boyd et al. | Oct 2002 | B2 |
6471724 | Zdeblick et al. | Oct 2002 | B2 |
6503250 | Paul | Jan 2003 | B2 |
6524312 | Landry et al. | Feb 2003 | B2 |
6558387 | Errico et al. | May 2003 | B2 |
6558423 | Michelson | May 2003 | B1 |
6558424 | Thalgott | May 2003 | B2 |
6562073 | Foley | May 2003 | B2 |
6569201 | Moumene et al. | May 2003 | B2 |
6575975 | Brace et al. | Jun 2003 | B2 |
6576017 | Foley et al. | Jun 2003 | B2 |
6579290 | Hardcastle et al. | Jun 2003 | B1 |
6592624 | Fraser et al. | Jul 2003 | B1 |
6602291 | Ray et al. | Aug 2003 | B1 |
6605090 | Trieu et al. | Aug 2003 | B1 |
6616671 | Landry et al. | Sep 2003 | B2 |
6620163 | Michelson | Sep 2003 | B1 |
6623486 | Weaver et al. | Sep 2003 | B1 |
6629998 | Lin | Oct 2003 | B1 |
6638310 | Lin et al. | Oct 2003 | B2 |
6645212 | Goldhahn et al. | Nov 2003 | B2 |
6652525 | Assaker et al. | Nov 2003 | B1 |
6656181 | Dixon et al. | Dec 2003 | B2 |
6679887 | Nicholson et al. | Jan 2004 | B2 |
6682561 | Songer et al. | Jan 2004 | B2 |
6682563 | Scharf | Jan 2004 | B2 |
6695846 | Richelsoph et al. | Feb 2004 | B2 |
6695851 | Zdeblick et al. | Feb 2004 | B2 |
6706067 | Shimp et al. | Mar 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6712818 | Michelson | Mar 2004 | B1 |
6730127 | Michelson | May 2004 | B2 |
6736850 | Davis | May 2004 | B2 |
6761739 | Shepard | Jul 2004 | B2 |
6770096 | Bolger et al. | Aug 2004 | B2 |
6786909 | Dransfeld et al. | Sep 2004 | B1 |
6800092 | Williams et al. | Oct 2004 | B1 |
6805714 | Sutcliffe | Oct 2004 | B2 |
6808537 | Michelson | Oct 2004 | B2 |
6824564 | Crozet | Nov 2004 | B2 |
6833006 | Foley et al. | Dec 2004 | B2 |
6837905 | Lieberman | Jan 2005 | B1 |
6849093 | Michelson | Feb 2005 | B2 |
6855168 | Crozet | Feb 2005 | B2 |
6863673 | Gerbec et al. | Mar 2005 | B2 |
6872915 | Koga et al. | Mar 2005 | B2 |
6884242 | LeHuec et al. | Apr 2005 | B2 |
6890334 | Brace et al. | May 2005 | B2 |
6896701 | Boyd et al. | May 2005 | B2 |
6899735 | Coates et al. | May 2005 | B2 |
6902578 | Anderson et al. | Jun 2005 | B1 |
6916320 | Michelson | Jul 2005 | B2 |
6923756 | Sudakov et al. | Aug 2005 | B2 |
6953477 | Berry | Oct 2005 | B2 |
6962606 | Michelson | Nov 2005 | B2 |
6964664 | Freid et al. | Nov 2005 | B2 |
6964687 | Bernard et al. | Nov 2005 | B1 |
6972019 | Michelson | Dec 2005 | B2 |
6972035 | Michelson | Dec 2005 | B2 |
6974479 | Trieu | Dec 2005 | B2 |
6984234 | Bray | Jan 2006 | B2 |
7001385 | Bonutti | Feb 2006 | B2 |
7001432 | Keller et al. | Feb 2006 | B2 |
7018416 | Hanson et al. | Mar 2006 | B2 |
7033394 | Michelson | Apr 2006 | B2 |
7041135 | Michelson | May 2006 | B2 |
7044968 | Yaccarino et al. | May 2006 | B1 |
7044972 | Mathys et al. | May 2006 | B2 |
7060097 | Fraser et al. | Jun 2006 | B2 |
7066961 | Michelson | Jun 2006 | B2 |
7077864 | Byrd, III et al. | Jul 2006 | B2 |
7112222 | Fraser et al. | Sep 2006 | B2 |
7112223 | Davis | Sep 2006 | B2 |
7135024 | Cook et al. | Nov 2006 | B2 |
7135043 | Nakahara et al. | Nov 2006 | B2 |
7137984 | Michelson | Nov 2006 | B2 |
7147665 | Bryan et al. | Dec 2006 | B1 |
7163561 | Michelson | Jan 2007 | B2 |
7172627 | Fiere et al. | Feb 2007 | B2 |
7172672 | Silverbrook | Feb 2007 | B2 |
7226452 | Zubok | Jun 2007 | B2 |
7226482 | Messerli et al. | Jun 2007 | B2 |
7232463 | Falahee | Jun 2007 | B2 |
7232464 | Mathieu et al. | Jun 2007 | B2 |
7238203 | Bagga et al. | Jul 2007 | B2 |
7255698 | Michelson | Aug 2007 | B2 |
7276082 | Zdeblick et al. | Oct 2007 | B2 |
7320708 | Bernstein | Jan 2008 | B1 |
7323011 | Shepard et al. | Jan 2008 | B2 |
7442209 | Michelson | Oct 2008 | B2 |
7491237 | Randall et al. | Feb 2009 | B2 |
7534265 | Boyd et al. | May 2009 | B1 |
7594932 | Aferzon et al. | Sep 2009 | B2 |
7601173 | Messerli et al. | Oct 2009 | B2 |
7608107 | Michelson | Oct 2009 | B2 |
7618456 | Mathieu et al. | Nov 2009 | B2 |
7621960 | Boyd et al. | Nov 2009 | B2 |
7625380 | Drewry et al. | Dec 2009 | B2 |
7637951 | Michelson | Dec 2009 | B2 |
7655042 | Foley et al. | Feb 2010 | B2 |
7704279 | Moskowitz et al. | Apr 2010 | B2 |
7846188 | Moskowitz et al. | Dec 2010 | B2 |
7846207 | Lechmann et al. | Dec 2010 | B2 |
7862616 | Lechmann | Jan 2011 | B2 |
7875076 | Mathieu et al. | Jan 2011 | B2 |
7942903 | Moskowitz et al. | May 2011 | B2 |
7993403 | Foley et al. | Aug 2011 | B2 |
8062303 | Berry et al. | Nov 2011 | B2 |
8128700 | Delurio et al. | Mar 2012 | B2 |
8182532 | Anderson, et al. | May 2012 | B2 |
8211148 | Zhang et al. | Jul 2012 | B2 |
8273127 | Jones et al. | Sep 2012 | B2 |
8308804 | Kureger | Nov 2012 | B2 |
8328872 | Duffield et al. | Dec 2012 | B2 |
8343222 | Cope | Jan 2013 | B2 |
8353913 | Moskowitz et al. | Jan 2013 | B2 |
8382768 | Berry et al. | Feb 2013 | B2 |
8425607 | Waugh et al. | Apr 2013 | B2 |
8465546 | Jodaitis et al. | Jun 2013 | B2 |
8540774 | Kueenzi et al. | Sep 2013 | B2 |
8545567 | Kreuger | Oct 2013 | B1 |
8641743 | Michelson | Feb 2014 | B2 |
8641768 | Duffield et al. | Feb 2014 | B2 |
8764831 | Lechmann et al. | Jul 2014 | B2 |
9005295 | Kueenzi et al. | Apr 2015 | B2 |
20010001129 | McKay et al. | May 2001 | A1 |
20010005796 | Zdeblick et al. | Jun 2001 | A1 |
20010010021 | Boyd et al. | Jul 2001 | A1 |
20010016777 | Biscup | Aug 2001 | A1 |
20010020186 | Boyce et al. | Sep 2001 | A1 |
20010031254 | Bianchi et al. | Oct 2001 | A1 |
20010039456 | Boyer et al. | Nov 2001 | A1 |
20010041941 | Boyer et al. | Nov 2001 | A1 |
20020004683 | Michelson et al. | Jan 2002 | A1 |
20020010511 | Michelson | Jan 2002 | A1 |
20020016595 | Michelson | Feb 2002 | A1 |
20020022843 | Michelson | Feb 2002 | A1 |
20020029084 | Paul et al. | Mar 2002 | A1 |
20020065517 | Paul | May 2002 | A1 |
20020082597 | Fraser | Jun 2002 | A1 |
20020082603 | Dixon et al. | Jun 2002 | A1 |
20020091447 | Shimp et al. | Jul 2002 | A1 |
20020095155 | Michelson | Jul 2002 | A1 |
20020099376 | Michelson | Jul 2002 | A1 |
20020099378 | Michelson | Jul 2002 | A1 |
20020106393 | Bianchi et al. | Aug 2002 | A1 |
20020111680 | Michelson | Aug 2002 | A1 |
20020128712 | Michelson | Sep 2002 | A1 |
20020128717 | Alfaro et al. | Sep 2002 | A1 |
20020147450 | LeHuecetal. | Oct 2002 | A1 |
20020169508 | Songer et al. | Nov 2002 | A1 |
20020193880 | Fraser | Dec 2002 | A1 |
20030045939 | Casutt | Mar 2003 | A1 |
20030078668 | Michelson | Apr 2003 | A1 |
20030125739 | Bagga et al. | Jul 2003 | A1 |
20030135277 | Bryan et al. | Jul 2003 | A1 |
20030153975 | Byrd | Aug 2003 | A1 |
20030167092 | Foley | Sep 2003 | A1 |
20030195626 | Huppert | Oct 2003 | A1 |
20030195632 | Foley et al. | Oct 2003 | A1 |
20030199983 | Michelson | Oct 2003 | A1 |
20040078078 | Shepard | Apr 2004 | A1 |
20040078081 | Ferree | Apr 2004 | A1 |
20040092929 | Zindrick | May 2004 | A1 |
20040093084 | Michelson | May 2004 | A1 |
20040102848 | Michelson | May 2004 | A1 |
20040126407 | Falahee | Jul 2004 | A1 |
20040133278 | Marino et al. | Jul 2004 | A1 |
20040143270 | Zucherman et al. | Jul 2004 | A1 |
20040176853 | Sennett et al. | Sep 2004 | A1 |
20040199254 | Louis et al. | Oct 2004 | A1 |
20040210219 | Bray | Oct 2004 | A1 |
20040210310 | Trieu | Oct 2004 | A1 |
20040210314 | Michelson | Oct 2004 | A1 |
20040249377 | Kaes et al. | Dec 2004 | A1 |
20040254644 | Taylor | Dec 2004 | A1 |
20050015149 | Michelson | Jan 2005 | A1 |
20050021143 | Keller | Jan 2005 | A1 |
20050033433 | Michelson | Feb 2005 | A1 |
20050049593 | Duong et al. | Mar 2005 | A1 |
20050049595 | Suh et al. | Mar 2005 | A1 |
20050065605 | Jackson | Mar 2005 | A1 |
20050065607 | Gross | Mar 2005 | A1 |
20050065608 | Michelson | Mar 2005 | A1 |
20050071008 | Kirschman | Mar 2005 | A1 |
20050085913 | Fraser et al. | Apr 2005 | A1 |
20050101960 | Fiere et al. | May 2005 | A1 |
20050149193 | Zucherman et al. | Jul 2005 | A1 |
20050154391 | Doherty et al. | Jul 2005 | A1 |
20050159813 | Molz | Jul 2005 | A1 |
20050159818 | Blain | Jul 2005 | A1 |
20050159819 | McCormick et al. | Jul 2005 | A1 |
20050171607 | Michelson | Aug 2005 | A1 |
20050177236 | Mathieu et al. | Aug 2005 | A1 |
20050240267 | Randall et al. | Oct 2005 | A1 |
20050240271 | Zubock et al. | Oct 2005 | A1 |
20050261767 | Anderson et al. | Nov 2005 | A1 |
20060020342 | Ferree et al. | Jan 2006 | A1 |
20060030851 | Bray et al. | Feb 2006 | A1 |
20060079901 | Ryan et al. | Apr 2006 | A1 |
20060079961 | Michelson | Apr 2006 | A1 |
20060085071 | Lechmann et al. | Apr 2006 | A1 |
20060089717 | Krishna | Apr 2006 | A1 |
20060129240 | Lessar et al. | Jun 2006 | A1 |
20060136063 | Zeegers | Jun 2006 | A1 |
20060142765 | Dixon et al. | Jun 2006 | A9 |
20060195189 | Link et al. | Aug 2006 | A1 |
20060206208 | Michelson | Sep 2006 | A1 |
20060229725 | Lechmann et al. | Oct 2006 | A1 |
20070088441 | Duggal et al. | Apr 2007 | A1 |
20070093819 | Albert | Apr 2007 | A1 |
20070106384 | Bray et al. | May 2007 | A1 |
20070118125 | Orbay et al. | May 2007 | A1 |
20070123987 | Bernstein | May 2007 | A1 |
20070162130 | Rashbaum et al. | Jul 2007 | A1 |
20070168032 | Muhanna et al. | Jul 2007 | A1 |
20070219635 | Mathieu et al. | Sep 2007 | A1 |
20070225806 | Squires et al. | Sep 2007 | A1 |
20070225812 | Gill | Sep 2007 | A1 |
20070250167 | Bray et al. | Oct 2007 | A1 |
20070270961 | Ferguson | Nov 2007 | A1 |
20080033440 | Moskowitz et al. | Feb 2008 | A1 |
20080051890 | Waugh et al. | Feb 2008 | A1 |
20080082169 | Gittings | Apr 2008 | A1 |
20080119933 | Aebi et al. | May 2008 | A1 |
20080133013 | Duggal et al. | Jun 2008 | A1 |
20080161925 | Brittan et al. | Jul 2008 | A1 |
20080177307 | Moskowitz et al. | Jul 2008 | A1 |
20080200984 | Jodaitis et al. | Aug 2008 | A1 |
20080249569 | Waugh et al. | Oct 2008 | A1 |
20080249575 | Waugh et al. | Oct 2008 | A1 |
20080249625 | Waugh et al. | Oct 2008 | A1 |
20080269806 | Zhang et al. | Oct 2008 | A1 |
20080275455 | Berry et al. | Nov 2008 | A1 |
20080306596 | Jones et al. | Dec 2008 | A1 |
20090076608 | Gordon et al. | Mar 2009 | A1 |
20090105830 | Jones et al. | Apr 2009 | A1 |
20090192613 | Wing et al. | Jul 2009 | A1 |
20090210062 | Thalgott et al. | Aug 2009 | A1 |
20090210064 | Lechmann et al. | Aug 2009 | A1 |
20090234455 | Moskowitz et al. | Sep 2009 | A1 |
20090326580 | Anderson et al. | Dec 2009 | A1 |
20100016901 | Robinson | Jan 2010 | A1 |
20100125334 | Krueger | May 2010 | A1 |
20100145459 | McDonough et al. | Jun 2010 | A1 |
20100145460 | McDonough et al. | Jun 2010 | A1 |
20110118843 | Mathieu et al. | May 2011 | A1 |
20110295371 | Moskowitz et al. | Dec 2011 | A1 |
20120101581 | Mathieu et al. | Apr 2012 | A1 |
20120109309 | Mathieu et al. | May 2012 | A1 |
20120109310 | Mathieu et al. | May 2012 | A1 |
20120109311 | Mathieu et al. | May 2012 | A1 |
20120109312 | Mathieu et al. | May 2012 | A1 |
20120109313 | Mathieu et al. | May 2012 | A1 |
20120179259 | McDonough et al. | Jul 2012 | A1 |
20130073046 | Zaveloff et al. | Mar 2013 | A1 |
20130073047 | Laskowitz et al. | Mar 2013 | A1 |
20130166032 | McDonough et al. | Jun 2013 | A1 |
20130173013 | Anderson et al. | Jul 2013 | A1 |
20130268008 | McDonough et al. | Oct 2013 | A1 |
20140025168 | Klimek et al. | Jan 2014 | A1 |
20140121777 | Rosen et al. | May 2014 | A1 |
20140180422 | Klimek et al. | Jun 2014 | A1 |
20140257487 | Lawson et al. | Sep 2014 | A1 |
20140336770 | Petersheim et al. | Nov 2014 | A1 |
20140371859 | Petersheim et al. | Dec 2014 | A1 |
Number | Date | Country |
---|---|---|
2004232317 | Nov 2004 | AU |
2004232317 | Nov 2010 | AU |
2317791 | Aug 1999 | CA |
2821678 | Nov 1979 | DE |
3042003 | Jul 1982 | DE |
3933459 | Apr 1991 | DE |
4242889 | Jun 1994 | DE |
4409392 | Sep 1995 | DE |
4423257 | Jan 1996 | DE |
I9504867 | Feb 1996 | DE |
29913200 | Sep 1999 | DE |
20 2004 020209 | May 2006 | DE |
202004020209 | May 2006 | DE |
0179695 | Apr 1986 | EP |
0505634 | Sep 1992 | EP |
0517030 | Dec 1992 | EP |
0517030 | Apr 1993 | EP |
0577178 | Jan 1994 | EP |
0639351 | Feb 1995 | EP |
0639351 | Mar 1995 | EP |
504346 | May 1995 | EP |
0517030 | Sep 1996 | EP |
0505634 | Aug 1997 | EP |
897697 | Feb 1999 | EP |
0966930 | Dec 1999 | EP |
0968692 | Jan 2000 | EP |
0974319 | Jan 2000 | EP |
1033941 | Sep 2000 | EP |
1051133 | Nov 2000 | EP |
1103236 | May 2001 | EP |
1402836 | Mar 2004 | EP |
0906065 | Sep 2004 | EP |
1124512 | Sep 2004 | EP |
1124512 | Sep 2004 | EP |
1459711 | Jul 2007 | EP |
1459711 | Jul 2007 | EP |
1194087 | Aug 2008 | EP |
2552659 | Apr 1985 | FR |
2697996 | May 1994 | FR |
2700947 | Aug 1994 | FR |
2727003 | May 1996 | FR |
2747034 | Oct 1997 | FR |
2753368 | Mar 1998 | FR |
157668 | Jan 1921 | GB |
265592 | Aug 1927 | GB |
2148122 | May 1985 | GB |
2207607 | Feb 1989 | GB |
2239482 | Jul 1991 | GB |
2266246 | Oct 1993 | GB |
03-505416 | Nov 1991 | JP |
9-280219 | Oct 1997 | JP |
2006-513752 | Apr 2006 | JP |
2229271 | May 2004 | RU |
2244527 | Jan 2005 | RU |
2307625 | Oct 2007 | RU |
1465040 | Mar 1989 | SU |
WO 8803417 | May 1988 | WO |
WO 8810100 | Dec 1988 | WO |
WO 9000037 | Jan 1990 | WO |
WO 9201428 | Feb 1992 | WO |
WO 9206005 | Apr 1992 | WO |
WO 9521053 | Aug 1995 | WO |
WO 9639988 | Dec 1996 | WO |
WO 9720526 | Jun 1997 | WO |
WO 9723175 | Jul 1997 | WO |
WO 9725941 | Jul 1997 | WO |
WO 9725945 | Jul 1997 | WO |
WO 9739693 | Oct 1997 | WO |
WO 9817209 | Apr 1998 | WO |
WO 9855052 | Dec 1998 | WO |
WO 9856319 | Dec 1998 | WO |
WO 9856433 | Dec 1998 | WO |
WO 9909903 | Mar 1999 | WO |
WO 9927864 | Jun 1999 | WO |
WO 9929271 | Jun 1999 | WO |
WO 9932055 | Jul 1999 | WO |
WO 9938461 | Aug 1999 | WO |
WO 9938463 | Aug 1999 | WO |
WO 9956675 | Nov 1999 | WO |
WO 9963914 | Dec 1999 | WO |
WO 0007527 | Feb 2000 | WO |
WO 0007528 | Feb 2000 | WO |
WO 0025706 | May 2000 | WO |
WO 0030568 | Jun 2000 | WO |
WO 0040177 | Jul 2000 | WO |
WO 0041654 | Jul 2000 | WO |
WO 0059412 | Oct 2000 | WO |
WO 0066044 | Nov 2000 | WO |
WO 0066045 | Nov 2000 | WO |
WO 0074607 | Dec 2000 | WO |
WO 0108611 | Feb 2001 | WO |
WO 0156497 | Aug 2001 | WO |
WO 0162190 | Aug 2001 | WO |
WO 0180785 | Nov 2001 | WO |
WO 0156497 | Dec 2001 | WO |
WO 0193742 | Dec 2001 | WO |
WO 0195837 | Dec 2001 | WO |
WO 0156497 | Mar 2002 | WO |
WO 0193742 | Sep 2002 | WO |
WO 2004069106 | Aug 2004 | WO |
WO 2005007040 | Jan 2005 | WO |
WO 2005020861 | Mar 2005 | WO |
WO 2006138500 | Dec 2006 | WO |
WO 2007098288 | Aug 2007 | WO |
WO 2008014258 | Jan 2008 | WO |
WO 2008082473 | Jul 2008 | WO |
WO 2008124355 | Oct 2008 | WO |
WO 2008154326 | Dec 2008 | WO |
WO 2009064644 | May 2009 | WO |
WO 2010054181 | May 2010 | WO |
WO 2010054208 | May 2010 | WO |
WO 2012088238 | Jun 2012 | WO |
Entry |
---|
International Patent Application No. PCT/US2011/066421: International Search Report and Written Opinion dated Jun. 14, 2012, 31 pages. |
Appendix 1 to Joint Claim Construction Brief; Synthes' Exhibits A-9, In the United States District Court for the District of Delaware Civil Action No. 1:11-cv-00652-LPS, Jun. 8, 2012, 192 pages. |
Appendix 2 to Joint Claim Construction Brief; Globus' Exhibits A-F, In the United States District Court for the District of Delaware Civil Action No. 1:11-cv-00652-LPS, Jun. 8, 2012, 146 pages. |
Appendix 3 to Joint Claim Construction Brief; Exhibits A-C, In the United States District Court for the District of Delaware Civil Action No. 1:11-cv-00652-LPS, Jun. 8, 2012, 38 pages. |
Chadwick et al., “Radiolucent Structural Materials for Medical Applications,” www.mddionline.com/print/238, Jun. 1, 2001, accessed date Jul. 31, 2012, 9 pages. |
Expert Report of Dr. Domagoj Carie Regarding the Invalidity of U.S. Pat. Nos. 7,846,207, 7,862,616 and 7,875,076, In the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Nov. 5, 2012, 149 pages. |
Expert Report of John F. Hall, M.D., United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 14, 2012, 27 pages. |
Expert Report of Paul Ducheyne, Ph.D. Concerning Patent Validity, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 13, 2012, 155 pages. |
Expert Report of Richard J. Gering, Ph.D., CLP In the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 14, 2012, 39 pages. |
International Patent Application No. PCT/CH2003/00089, International Search Report dated Dec. 2, 2003, 3 pgs. |
International Search Report, completed Aug. 16, 2007 for International Application No. PCT/US2007/005098, filed Feb. 27, 2007. |
Joint Claim Construction Brief, In the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 14, 2012, 97 pages. |
Jonbergen et al., “Anterior CervicalLnterbody fusion with a titanium box cage: Early radiological assessment of fusion and subsidence”, The Spine Journal 5, Jul. 2005, 645-649. |
Jury Trial Demanded, In the United States District Court for the District of Delaware, Case No. 1:11-cv-00652-LPS, filed Jul. 22, 2011,8 pages. |
Jury Verdict Form, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 14, 2013, 20 pages. |
Marcolongo et al., “Trends in Materials for Spine Surgery”, Biomaterials and Clinical Use, 6, 2011, 21 pages. |
Memorandum Opinion, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, May 7, 2013, 33 pages. |
Order, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, May 15, 2013, 4 pages. |
Order, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, May 7, 2013, 7 pages. |
Parlov et al., “Anterior Lumbar Interbody Fusion with Threaded Fusion Cages and Autologous Grafts”, Eur. Spine J., 2000, 9, 224-229. |
Plaintiffs' Responses and Objections to Defendant Globus Medical, Inc.'s First Set of Interrogatories (Nos. 1-11), United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Nov. 14, 2011, 18 pages. |
Plaintiffs' Supplemental Responses and Objections to Defendant Globus Medical Inc.'s Interrogatories Nos. 6-10 and Second Supplemental Responses and Objections to Interrogatory No. 5, United States District Court for the District of Delaware, Civil Action No. 11-cv-652-LPS, Sep. 1, 2012, 12 pages. |
Redacted version of “Defendant Globus Medical, Inc.'s Answering Brief in Opposition to Plaintiff's Motion for Summary Judgment of No Anticipation by the Kozak and Michelson References”, Mar. 12, 2013, 233 pages. |
Redacted version of “Opening Brief in Support of Plaintiffs' Motion for Summary Judgment of No Anticipation by the Kozak and Michelson References”, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Feb. 13, 2013, 66 pages. |
Redacted version of “Plaintiff's Reply Brief in Support of Plaintiff's Motion for Summary Judgment of No Anticipation by the Kozak and Michelson References”, Mar. 21, 2013, 11 pages. |
Reply Report of Dr. Domagoj Carie Regarding the Invalidity of U.S. Pat. Nos. 7,846,207, 7,862,616 and 7,875,076, In the United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jan. 4, 2013, 81 pages. |
Schleicher et al., “Biomechanical Comparison of Two Different Concepts for Stand-alone anterior lumbar interbody fusion”, Eur. Spine J., Sep. 2008, 17, 1757-1765. |
Scholz et al., “A New Stand-Alone Cervical Anterior Interbody Fusion Device”, Spine, Jan. 2009, 34(2), 6 pages. |
Second Expert Report of Wilson C. Hayes, Ph.D., United States District Court for the District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Dec. 14, 2012, 22 pages. |
Spruit et al., “The in Vitro Stabilizing Effect of Polyether-etherketone Cages Versus a Titanium Cage of similar design for anterior lumbar interbody fusion”, Eur. Spine J., Aug. 2005, 14 752-758. |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 10, 2013, 114 pages. |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 11, 2013, 98 pages. |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 12, 2013, 75 pages. |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 13, 2013, 94 pages. |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 14, 2013, 26 pages. |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 3, 2013, 98 pages. |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 4, 2013, 110 pages. |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 5, 2013, 99 pages. |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 6, 2013, 80 pages. |
Trial Transcript, United States District Court District of Delaware, Civil Action No. 1:11-cv-00652-LPS, Jun. 7, 2013, 97 pages. |
U.S. Appl. No. 11/199,599: Amendment/Request for Reconsideration after Non-Final Rejection, dated Sep. 29, 2009, 30 pages. |
U.S. Appl. No. 11/199,599: Appeal Brief, dated Apr. 15, 2010, 51 pages. |
U.S. Appl. No. 11/199,599: Final Rejection, dated Dec. 24, 2009, 21 pages. |
U.S. Appl. No. 11/199,599: Interview Summary included Draft Amendments, dated Sep. 24, 2009, 16 pages. |
U.S. Appl. No. 11/199,599: Non-Final Rejection, dated Apr. 1, 2009, 20 pages. |
U.S. Appl. No. 11/199,599: Preliminary Amendment, dated Jan. 9, 2008, 11 pages. |
Japanese Patent Application No. 2011-534926: Office Action dated Oct. 30, 2013, 7 pages. |
Japanese Patent Application No. 2011-534928: Office Action dated Sep. 30, 2013, 11 pages. |
Russian Patent Application No. 2011-1122797: Decision to Grant dated Oct. 9, 2013, 20 pages. |
U.S. Appl. No. 60/988,661, filed Nov. 16, 2007, Kueenzi et al. |
U.S. Appl. No. 61/535,726, filed Sep. 16, 2011, Zaveloff. |
Synthes Spine, “SynFix-LR System. Instruments and Implants for Stand-Alone Anterior Lumbar Interbody Fusion (ALIF)”, Technique Guide dated 2008, pp. 2-40, Published by Synthes Spine (USA). |
Synthes Spine, “Zero-P Instruments and Implants. Zero-Profile Anterior Cervical Interbody Fusion (ACIF) device”, Technique Guide dated 2008, pp. 2-32, Published by Synthes Spine (USA). |
Bray, “InterPlate Spine Fusion Device: Subsidence Control Without Stress Shielding”, Orthopaedic Product News, Sep./Oct. 2006, pp. 22-25. |
International Search Report, Mailed Mar. 20, 2009, for PCT International Application No. PCT/US80/82473, filed Nov. 5, 2008. |
Written Opinion, Mailed Mar. 20, 2009, for PCT International Application No. PCT/US08/82473, filed Nov. 5, 2008. |
Synthes Spine, “CorticoCancellous ACF Spacer. An allograft space or anterior fusion of the cervical spine,” brochure, Musculoskeletal Transplant Foundationm, 2003, 6 pages. |
International Patent Application PCT/US2011/066421, International Search Report dated Jun. 14, 2012, 31 pages. |
Number | Date | Country | |
---|---|---|---|
20130166032 A1 | Jun 2013 | US |
Number | Date | Country | |
---|---|---|---|
61425505 | Dec 2010 | US | |
61425509 | Dec 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13333065 | Dec 2011 | US |
Child | 13767097 | US |