1. Field of the Invention
The present invention relates to an osteogenic interbody fusion implant device and, more particularly, to a non-threaded intervertebral bone implant having a plurality of expandable barbs configured to facilitate securement of the implant within the intervertebral space.
2. Prior Art
The spine is a flexible column formed of a plurality of bones called vertebra. The vertebrae are hollow and piled one upon the other, forming a strong hollow column for support of the cranium and trunk. The hollow core of the spine houses and protects the nerves of the spinal cord. The different vertebrae are connected to one another by means of articular processes and intervertebral, fibro-cartilaginous bodies.
The intervertebral fibro-cartilages are also known as intervertebral disks and are made of a fibrous ring filled with pulpy material. The disks function as spinal shock absorbers and also cooperate with synovial joints to facilitate movement and maintain flexibility of the spine. When one or more disks degenerate through accident or disease, nerves passing near the affected area may be compressed and are consequently irritated. The result may be chronic and/or debilitating back pain. Various methods and apparatus, both surgical and non-surgical, have been designed to relieve such back pain.
One method, interbody fusion, involves stretching the spine into a natural position so that nerve root canal sizes are increased and nerve irritation is eliminated or reduced. The space between vertebrae is maintained by fusing the vertebrae in the affected area together at a fixed distance. Numerous prosthetic implants have been suggested to fill the void between vertebrae. For example, U.S. Pat. No. 4,936,848 describes a spherical cage implant made of metal or ceramics, which is inserted between adjacent vertebrae. The cage has an interior cavity within which bone fragments are inserted. Such bone fragments may be autogenic and are intended to promote subsequent bone growth and fusion of the vertebrae.
Another method of preventing contact of vertebrae is described in U.S. Pat. No. 5,011,484, wherein a stud-shaped insert is inserted longitudinally between two vertebrae and secured in position. U.S. Pat. No. 4,309,777 describes an artificial intervertebral disc having upper and lower discs, which are connected to each other by springs. The artificial disc is held in between adjacent vertebrae by spikes which project from the disc into the surface of the vertebrae in contact therewith. U.S. Pat. No. 4,743,256 describes a rigid, porous plug which can be inserted between vertebrae and held in place by prongs or screws. The porous nature of the plug is alleged to facilitate ingrowth of bone tissue.
An implantable bone plug for insertion between vertebrae is also described in U.S. Pat. No. 4,878,915, wherein, in one embodiment, the exterior of the plug is provided with external threading which will, when the plug is rotated, advance the plug into prepared sites between the vertebrae. A portion of the plug is provided with a slot designed to receive the end of a key, which is used to rotate the plug. U.S. Pat. No. 5,105,255 describes a method for forming a bored hole between two adjacent vertebrae and then inserting a graft medium such as finely chopped cortical or cancellous bone chips into the bored hole.
U.S. Pat. No. 4,961,740 is directed to a substantially open fusion cage, which is inserted between the opposing bony surfaces of adjacent vertebrae by screwing the cage into place. The cage may be filled with bone chips or other bone growth-inducing (osteogenic) substances and, when inserted into the intervertebral space, intimate contact between the bone inducing substance contained within the cage and the native bone occurs through the outer surface of the cage.
Ideally, a fusion graft should stabilize the intervertebral space and become fused to adjacent vertebrae. Moreover, during the time it takes for fusion to occur, the graft should have sufficient structural integrity to withstand the stress of maintaining the space without substantially degrading or deforming and have sufficient stability to remain securely in place prior to actual bone ingrowth fusion. Consequently, a fusion graft should contain some kind of anchor and, additionally, a bone inducing substance, which causes rapid bone growth and quick fusion of the graft to adjacent vertebrae. In addition, the material from which the fusion graft is made should be biocompatible. Further, the implant material should closely resemble host tissue and not elicit an immune response from the host.
All of the above-described implants are intended to support and maintain an appropriate intervertebral space. Unfortunately, most prior art implants do not fulfill one or more of these criteria for an ideal interbody fusion graft. For example, many of the implants, such as the one described in U.S. Pat. No. 4,936,848 are made of metals and ceramics and, while biocompatible, do not precisely mimic the body's natural bone tissue. U.S. Pat. No. 5,015,255 describes a graft in the form of bone chips that may eventually result in fusion between the vertebrae. If adequate fusion of the bone chips occurs, the final fused graft may closely mimic the body's naturally occurring tissues. However, when the bone chips are inserted, they are unconfined and may not remain contained between the vertebrae for a sufficient time to adequately fuse to each other and to adjacent vertebrae. The bone plug disclosed in U.S. Pat. No. 4,878,915 has a threaded outer surface to assist in placement of the implant between the adjacent vertebrae. The external threads, however, compromise the strength of the implant. In addition, the threaded bone implant may have a tendency of backing out of the prepared bore.
In U.S. Pat. Nos. 4,580,936, 4,859,128, 4,877,362, 5,030,050, 5,441,500, 5,489,210, 5,713,903, 5,968,044, 5,417,712, 5,501,695, 5,522,845, 5,571,104 and 6,290,701 there are disclosed a variety of anchors for attaching suture, bone and/or soft tissue to bone. The foregoing patents further disclose a number of installation tools for deploying the anchors disclosed therein. Complete details of the construction and operation of these anchors and their associated installation tools are provided in the above-identified patents, which patents are hereby incorporated herein by reference. Other prior art bone-engaging substrate fastening means often employ several straight or curved cantilevered barbs, where the barbs may be elastically deformed to permit insertion into a hole drilled in a bone. These fasteners are well known in medical applications wherein the need for high holding strength has lead to the development of anchors having multiple cantilevered barbs. In each case, the body, the attachment means, and the bone-engaging means mechanically cooperate with one another to fasten a suture, bone portion, soft tissue, prosthesis, post or other substrate to a bone.
There remains a need for improved intervertebral fusion implants with anchoring means, which more closely embody the ideal properties of a spinal fusion implant. In particular, there remains a need for an expandable intervertebral prosthesis capable of elevating the intervertebral spacing by rotation of the expansion cylinder. The ability of the prosthesis to control intervertebral elevation positions the tubular outer body of the expandable intervertebral prosthesis snugly between the vertebrae, pressing against the bone surfaces of the adjacent vertebra to promote fast bone growth and healing.
There further remains a need for an expandable intervertebral prosthesis for facilitating arthrodesis in the disc space between adjacent vertebrae with predictable and controllable initial anchorage strength sufficient to permit gradual load sharing and provide full repair and restoration of function during bone fusion. There exists a further need for a expandable intervertebral prosthesis device having elastically deformable expansion barbs on its exterior surface, wherein the outer ends of the barbs extend outwardly from the prosthetic body toward a surrounding bone when the prosthetic body, or a portion thereof, is controllably moved. There exists a further need for a expandable intervertebral prosthesis device having a movable expansion cylinder, wherein the outer ends of the barbs extend outwardly from the prosthetic body toward a surrounding bone thereafter to easily, rapidly and reliably anchor the prosthesis to the bone as the expansion cylinder is retracted from a fully extended position.
An expandable intervertebral prosthesis for implantation within a hole drilled between adjacent vertebrae, thereafter promoting the fusion of the adjacent vertebrae to one another. In a first embodiment, the intervertebral prosthesis comprises: (a) a tubular outer body portion having a proximal end, a distal end and an axial bore therebetween; and (b) an expansion cylinder slidably mounted within the axial bore of the tubular outer body portion. The tubular outer body portion has a generally cylindrical outer surface with a plurality of apertures therewithin. The tubular outer body portion may further include a plurality of elastically deformable barbs on its exterior surface that may be elastically deformed from their normally outward projecting configuration. The expansion cylinder includes a plurality barbs located in circumferentially spaced relation on the outer surface of the cylinder and disposed in various angles and attitudes with respect to the longitudinal axis. When the expansion cylinder is advanced into the axial bore of the tubular outer body portion, the barbs deform to lie within slots on the outer surface thereof. The assembly comprising the tubular outer body portion and the expansion cylinder slidably mounted within the axial bore therof comprises a first embodiment of the intervertebral prosthesis.
In operation, a hole is drilled between adjacent vertebrae and the above-described assembly (i.e., the intervertebral prosthesis) is inserted into the hole. The expansion cylinder is then partially retracted, thereby driving the outwardly biased elastically deformable barbs through the holes in the outer surface of the tubular outer body portion and into the surrounding bone, thereby anchoring the prosthesis within the intervertebral space. This embodiment of the present invention is not elevatable.
In another embodiment, the tubular outer body portion is frangible—being formed from two mirror image hemicylinders attached together along the length thereof to form a frangible joint therebetween. The frangible tubular outer body portion has an axial bore and preferably a plurality of elastically deformable barbs on the outer surface thereof. An elevating cylinder having longitudinal flanges or ridges on the outer surface thereof is rotatably disposed within the axial bore of the tubular outer body portion. The longitudinal ridges on the elevating cylinder fit snugly into a mating set of longitudinal channels or grooves on the inner wall of the axial bore of the tubular outer body portion.
In operation, a hole is drilled between adjacent vertebrae and the frangible tubular outer body portion containing the elevating cylinder is inserted into the hole. The barbs, being elastically deformable, flatten out during insertion and expand into the surrounding bone when the prosthesis is partially retracted. The elevating cylinder is then rotated through a 90′ angle. As the flanges move out of the mating grooves on the inner surface of the axial bore, the flanges urge the hemicylinders apart thereby breaking the frangible joint therebetween and elevating the opposing hemicylinders to press tightly against the surrounding bone, forcing the barbs even deeper into the bone. When the 90° rotation is complete, the flanges engage a second, shallower set of grooves within the axial bore that serve as a detent position. The elevating cylinder may further include an axial bore that contains a bone graft material and a plurality of holes in the outer surface thereof.
In yet a further embodiment of the intervertebral prosthesis of the present invention, a longitudinally frangible, tubular outer body portion has an elevating cylinder rotatable mounted within the axial bore thereof, and further includes a barbed expansion cylinder slidably mounted within a second axial bore in the elevating cylinder. In operation, a hole is drilled between the adjacent vertebrae to be fused and the prosthesis is inserted into the hole. Rotation of the elevating cylinder through a 90° angle separates the hemicylinders comprising the tubular outer body portion, forcing the opposing surfaces thereof against the surrounding bone, After rotation of the elevating cylinder is complete, partial retraction of the expansion cylinder drives the barbs on the surface thereof through holes in the elevating cylinder and tubular outer body portion and into the bone to anchor the prosthesis within the hole. In all embodiments, the elevating cylinder and/or the expansion cylinder may include a bone graft material housed within an axial bore therewithin.
In yet a further embodiment of an intervertebral prosthesis in accordance with the present invention, the prosthesis comprises a single tubular outer body portion having a plurality of holes and barbs on the outer cylindrical surface thereof and an axial bore. The barbs are elastically deformable. The plurality of holes in the surface thereof extend inwardly to the axial bore. The axial bore contains a bone graft material. In operation, a hole is drilled between adjacent vertebrae and the tubular outer body portion is inserted into the hole and advanced thereinto. As the prosthesis is advanced, the barbs bend, lying against the surface of the prosthesis. When the prosthesis is fully inserted into the hole, retraction of the prosthesis drives the elastically deformable barbs into the surrounding bone thereby anchoring the prosthesis within the hole. The plurality of holes in the surface of the tubular outer body permit ingrowth of bone into the bone graft material housed within the axial bore thereby promoting fusion of the adjacent vertebrae.
The features of the invention believed to be novel are set forth with particularity in the appended claims. However the invention itself, both as to organization and method of operation, together with further objects and advantages thereof may be best understood by reference to the following description taken in conjunction with the accompanying drawings in which:
a is an end view of the expansion cylinder of
a is an end view of the expansion cylinder of
a is a perspective view of an embodiment of the intervertebral prosthesis of the present invention consisting of a tubular outer body portion wherein there are no expansion or elevating cylinders.
With reference to
In order to use the embodiment of the expandable intervertebral prosthesis indicated at numeral 10, a hole is first drilled between adjacent vertebrae in a direction substantially transverse to the direction of the spine, the hole being centered between adjacent vertebrae. The tubular outer body portion 11 (without barbs) is inserted into the hole. The outer diameter of the expansion cylinder 12 is dimensioned to slidably fit within the axial bore 13 of the tubular outer body portion 11 of the expandable intervertebral prosthesis 10. At least one longitudinal guiding track 16 and 17 on the interior wall of the axial bore 13 is dimensioned to fit snugly to at least one mating track 18 on the outer surface of the expansion cylinder 12. The barbs 20 on the expansion cylinder 12 are depressed by the application of external pressure to the proximal end 14 of the expansion cylinder 12 as it is slidably guided down through the axial bore 13 to the distal end 14 of the tubular outer body portion 11. As the barbed portion of the expansion cylinder enters the axial bore, barbs 20, which are formed out of an elastically deformable material, are forced radially inwardly so as to be disposed entirely within the axial bore 13 of the outer tubular member 11. When the distal end 15 of the expansion cylinder 12 is fully advanced into the axial bore 13, the sharp tips 21 of the barbs 20 are adjacent to holes 19 and partially expand thereinto. The expansion cylinder 12 is then retracted and the sharp outer ends 21 of the barbs 20 are forced progressively outwardly thereby penetrating the cancellous bone. As the expansion cylinder is progressively retracted from within the axial bore, that is, pulled in a proximal direction, the sharp outer ends 21 of the barbs 20 enter and are forced into the cortical bone. When the barbs 20 are fully expanded, no further retraction of the expansion cylinder is possible and the intervertebral prosthesis is locked in position between adjacent vertebrae.
To remove the embedded intervertebral prosthesis from the bone, a pushpin (not shown) is inserted into the proximal end of axial bore 13 to contact the proximal end of the expansion cylinder 12. When pressure is applied to the pushpin, the expansion cylinder is forced in a distal direction until the distal end of the expansion cylinder underlies the distal end of the tubular outer body portion. In this fully depressed position, the barbs 20 are retracted through the holes 19 from within the surrounding bone and folded against the outer surface of the expansion cylinder 12 to lie within the axial bore 13 in a space between the outer surface of the expansion cylinder 12 and the inner surface of the tubular outer body portion 11. The expandable intervertebral prosthesis 10 may then be removed from the hole by applying traction to the tubular outer body portion 11.
An elevatable embodiment of an intervertebral prosthesis in accordance with the present invention is shown in perspective view at numeral 30 in
The rotatable elevating cylinder 37, shown in perspective view in
In a further embodiment of an intervertebral prosthesis in accordance with either of the two foregoing embodiments, the expansion cylinder 50 may be modified by hollowing it out to provide an axial bore 51 that can be used to contain bone graft material 52 as shown in
The operation of an intervertebral prosthesis comprising a frangible tubular outer body portion 30, an elevating cylinder 37 and the expansion cylinder 50 is best understood with reference to
It is preferred that the barbs 20 of expansion cylinders 12 or 50 and the spikes 36 of the tubular outer body portion 30 are formed out of polymer blends of glycolide and/or lactide homopolymer, copolymer and/or glycolide/lactide copolymer and polycaprolactone copolymers, and/or copolymers of glycolide, lactide, poly (L-lactide-co-DL-lactide), caprolactone, polyorthoesters, polydioxanone, trimethylene carbonate and/or polyethylene oxide or any other bioabsorbable material. A pseudoelastic shape memory alloy of the type disclosed in U.S. Pat. No. 4,665,906 entitled “Medical Devices Incorporating SIM Alloy Elements”, issued May 19, 1987 to Jervis, which patent is specifically incorporated herein by reference, may also be used to fabricate the barbs 20. By way of example, one such pseudoelastic shape memory alloy might be a nickel titanium alloy such as Nitinol, which is available from Flexmedics of Minneapolis, Minn., among others. The use of such a material, in combination with the normal orientation of the barbs relative to the anchor body, permits the barbs to initially deflect inwardly to the extent required to permit the tubular outer body portion to be advanced into the drilled hole, or for the expansion cylinder 12 to be advanced into the axial bore of the tubular outer body portion 11, yet resiliently “spring back” toward their normal, outwardly projecting position so as to prevent the prosthesis 10 or 60 from withdrawing from the drilled hole after being deployed therein. Other implantable (biocompatible) materials that may be used to fabricate an intervertebral prosthesis in accordance with any of the embodiments of the present invention include stainless steel, titanium and cobalt-chrome alloy.
In yet a further embodiment of an intervertebral prosthesis in accordance with the present invention, indicated generally at numeral 80 in
A tool useful for inserting an expandable intervertebral prosthesis 10, 60 or 80 into a hole drilled in bone in accordance with another aspect of the present invention is shown in elevational cross-sectional view at 90 in
While particular embodiments of the present invention have been illustrated and described, it would be obvious to those skilled in the art that various other changes and modifications can be made without departing from the spirit and scope of the invention. For example, axially elevating the expandable intervertebral prosthesis may be perform by other mean such as conical shape cylinders, screw, nail or wedge driven expander, collapsing, reducing or expanding diameter or any other expansion driven design. Other example, the outer tubular member 20 can be either expanded partially, fully or remain un-deformed when the expansion cylinder is advanced into the axial bore 21 of the outer tubular member 22 in a distal direction. Similarly, the outer surface of the outer tubular member is disclosed as cylindrical in the preferred embodiment, but may be hexagonal or have another polygonal cross sectional profile. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.
Number | Date | Country | |
---|---|---|---|
Parent | 10193331 | Jul 2002 | US |
Child | 10968425 | Oct 2004 | US |