The present disclosure relates generally to orthopedics and spinal surgery. More specifically, the present disclosure relates to intervertebral prosthetic discs.
In human anatomy, the spine is a generally flexible column that can take tensile and compressive loads. The spine also allows bending motion and provides a place of attachment for keels, muscles and ligaments. Generally, the spine is divided into three sections: the cervical spine, the thoracic spine and the lumbar spine. The sections of the spine are made up of individual bones called vertebrae. Also, the vertebrae are separated by intervertebral discs, which are situated between adjacent vertebrae.
The intervertebral discs function as shock absorbers and as joints. Further, the intervertebral discs can absorb the compressive and tensile loads to which the spinal column may be subjected. At the same time, the intervertebral discs can allow adjacent vertebral-bodies to move relative to each other a limited amount, particularly during bending, or flexure, of the spine. Thus, the intervertebral discs are under constant muscular and/or gravitational pressure and generally, the intervertebral discs are the first parts of the lumbar spine to show signs of deterioration.
Facet joint degeneration is also common because the facet joints are in almost constant motion with the spine. In fact, facet joint degeneration and disc degeneration frequently occur together. Generally, although one may be the primary problem while the other is a secondary problem resulting from the altered mechanics of the spine, by the time surgical options are considered, both facet joint degeneration and disc degeneration typically have occurred. For example, the altered mechanics of the facet joints and/or intervertebral disc may cause spinal stenosis, degenerative spondylolisthesis, and degenerative scoliosis.
One surgical procedure for treating these conditions is spinal arthrodesis, i.e., spine fusion, which can be performed anteriorally, posteriorally, and/or laterally. The posterior procedures include in-situ fusion, posterior lateral instrumented fusion, transforaminal lumbar interbody fusion (“TLIF”) and posterior lumbar interbody fusion (“PLIF”). Solidly fusing a spinal segment to eliminate any motion at that level may alleviate the immediate symptoms, but for some patients maintaining motion may be beneficial. It is also known to surgically replace a degenerative disc or facet joint with an artificial disc or an artificial facet joint, respectively.
An intervertebral prosthetic disc is disclosed and can be installed within an intervertebral space between a first vertebra and a second vertebra. The intervertebral prosthetic disc can include a first component that can have a first compliant layer that can be configured to engage the first vertebra and at least partially conform to a shape of the first vertebra. Further, the intervertebral prosthetic disc can include a second component that is configured to engage the second vertebra.
In another embodiment, an intervertebral prosthetic disc is disclosed and can be installed within an intervertebral space between an inferior vertebra and a superior vertebra. The intervertebral prosthetic disc can include an inferior support plate that can have an inferior bearing surface. Moreover, an inferior compliant layer can be disposed on the inferior bearing surface. Also, an inferior embedded layer can be disposed within the inferior bearing surface. The intervertebral prosthetic disc can also include a superior support plate that can have a superior bearing surface. A superior compliant layer can be disposed on the superior bearing surface. Further, a superior embedded layer can be disposed within the superior bearing surface.
In yet another embodiment, an intervertebral prosthetic disc is disclosed and can be installed within an intervertebral space between an inferior vertebra and a superior vertebra. The intervertebral prosthetic disc can include a superior component and the superior component can include a superior support plate that can have a superior bearing surface. Additionally, a superior compliant layer can be disposed on the superior bearing surface. The intervertebral disc can also include an inferior component that can have an inferior support plate and the inferior support plate can have an inferior bearing surface. An inferior compliant layer can be disposed on the inferior bearing surface. Moreover, a nucleus can be disposed between the superior component and the inferior component. The nucleus can be configured to allow relative motion between the superior component and the inferior component.
Description of Relevant Anatomy
Referring initially to
As shown in
As depicted in
In a particular embodiment, if one of the intervertebral lumbar discs 122, 124, 126, 128, 130 is diseased, degenerated, damaged, or otherwise in need of replacement, that intervertebral lumbar disc 122, 124, 126, 128, 130 can be at least partially removed and replaced with an intervertebral prosthetic disc according to one or more of the embodiments described herein. In a particular embodiment, a portion of the intervertebral lumbar disc 122, 124, 126, 128, 130 can be removed via a discectomy, or a similar surgical procedure, well known in the art. Further, removal of intervertebral lumbar disc material can result in the formation of an intervertebral space (not shown) between two adjacent lumbar vertebrae.
Referring to
As illustrated in
It is well known in the art that the vertebrae that make up the vertebral column have slightly different appearances as they range from the cervical region to the lumbar region of the vertebral column. However, all of the vertebrae, except the first and second cervical vertebrae, have the same basic structures, e.g., those structures described above in conjunction with
Description of a First Embodiment of an Intervertebral Prosthetic Disc
Referring to
In a particular embodiment, the metal containing materials can be metals. Further, the metal containing materials can be ceramics. Also, the metals can be pure metals or metal alloys. The pure metals can include titanium. Moreover, the metal alloys can include stainless steel, a cobalt-chrome-molybdenum alloy, e.g., ASTM F-999 or ASTM F-75, a titanium alloy, or a combination thereof.
The polymer materials can include polyurethane materials, polyolefin materials, polyether materials, silicone materials, hydrogel materials, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof. The polyether materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), or a combination thereof. Alternatively, the components 500, 600 can be made from any other substantially rigid biocompatible materials.
In a particular embodiment, the superior component 500 includes a superior support plate 502 that has a superior articular surface 504 and a superior bearing surface 506. In a particular embodiment, the superior articular surface 504 can be generally curved and the superior bearing surface 506 can be substantially flat. In an alternative embodiment, the superior articular surface 504 can be substantially flat and at least a portion of the superior bearing surface 506 can be generally curved.
As illustrated in
As further illustrated, the superior component 500 includes a superior compliant layer 520 that can be affixed to, attached to, or otherwise deposited on, the superior bearing surface 506. The superior compliant layer 520 can be chemically bonded to the superior bearing surface 506, e.g., using an adhesive or another chemical bonding agent. Further, the superior compliant layer 520 can be mechanically anchored to the superior bearing surface 506, e.g., using hook-and-loop fasteners, or another type of fastener.
Before the superior compliant layer 520 is deposited, or otherwise affixed to the superior bearing surface 506, the superior bearing surface 506 can be modified to promote adhesion of the superior compliant layer 520 to the superior bearing surface 506. For example, the superior bearing surface 506 can be roughened to promote adhesion of the superior compliant layer 520. For example, the roughening process can include acid etching; knurling; application of a bead coating, e.g., cobalt chrome beads; application of a roughening spray; e.g., titanium plasma spray (TPS); laser blasting; or any other similar process or method.
In a particular embodiment, after installation, the superior compliant layer 520 can be in direct contact with vertebral bone, e.g., cortical bone and cancellous bone. In a particular embodiment, the superior compliant layer 520 can be an extended use biocompatible material. For example, the extended use biocompatible materials can include synthetic polymers, natural polymers, bioactive ceramics, compression molded carbon nanofibers, or combinations thereof.
In a particular embodiment, the synthetic polymers can include polyurethane materials, polyolefin materials, polyether materials, polyester materials, polycarbonate materials, silicone materials, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof. The polyether materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), or a combination thereof. The polyester materials can include polylactide. The polycarbonate materials can include tyrosine polycarbonate.
In a particular embodiment, the natural polymers can include collagen, gelatin, fibrin, keratin, chitosan, chitin, hyaluronic acid, albumin, silk, elastin, or a combination thereof. Further, in a particular embodiment, the bioactive ceramics can include hydroxyapatite (HA), hydroxyapatite tricalcium phosphate (HATCP), calcium phosphate, calcium sulfate, or a combination thereof.
In a particular embodiment, the superior compliant layer 520 can be coated with, impregnated with, or otherwise include, a biological factor that can promote bone on-growth or bone in-growth. For example, the biological factor can include bone morphogenetic protein (BMP), cartilage-derived morphogenetic protein (CDMP), platelet derived growth factor (PDGF), insulin-like growth factor (IGF), LIM mineralization protein, fibroblast growth factor (FGF), osteoblast growth factor, stem cells, or a combination thereof. Further, the stem cells can include bone marrow derived stem cells, lipo derived stem cells, or a combination thereof.
As illustrated in
In a particular embodiment, the inferior component 600 includes an inferior support plate 602 that has an inferior articular surface 604 and an inferior bearing surface 606. In a particular embodiment, the inferior articular surface 604 can be generally curved and the inferior bearing surface 606 can be substantially flat. In an alternative embodiment, the inferior articular surface 604 can be substantially flat and at least a portion of the inferior bearing surface 606 can be generally curved.
As illustrated in
As further illustrated, the inferior component 600 includes an inferior compliant layer 620 that can be affixed to, attached to, or otherwise deposited on, the inferior bearing surface 606. The inferior compliant layer 620 can be chemically bonded to the inferior bearing surface 606, e.g., using an adhesive or another chemical bonding agent. Further, the inferior compliant layer 620 can be mechanically anchored to the inferior bearing surface 606, e.g., using hook-and-loop fasteners, or another type of fastener.
Before the inferior compliant layer 620 is deposited, or otherwise affixed to the inferior bearing surface 606, the inferior bearing surface 606 can be modified to promote adhesion of the inferior compliant layer 620 to the inferior bearing surface 606. For example, the inferior bearing surface 606 can be roughened to promote adhesion of the inferior compliant layer 620. For example, the roughening process can include acid etching; knurling; application of a bead coating, e.g., cobalt chrome beads; application of a roughening spray; e.g., titanium plasma spray (TPS); laser blasting; or any other similar process or method.
In a particular embodiment, after installation, the inferior compliant layer 620 can be in direct contact with vertebral bone, e.g., cortical bone and cancellous bone. In a particular embodiment, the inferior compliant layer 620 can be an extended use biocompatible material. For example, the extended use biocompatible materials can include synthetic polymers, natural polymers, bioactive ceramics, compression molded carbon nanofibers, or combinations thereof.
In a particular embodiment, the synthetic polymers can include polyurethane materials, polyolefin materials, polyether materials, polyester materials, polycarbonate materials, silicone materials, hydrogel materials, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof. The polyether materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), or a combination thereof. The polyester materials can include polylactide. The polycarbonate materials can include tyrosine polycarbonate.
In a particular embodiment, the natural polymers can include collagen, gelatin, fibrin, keratin, chitosan, chitin, hyaluronic acid, albumin, silk, elastin, or a combination thereof. Further, in a particular embodiment, the bioactive ceramics can include hydroxyapatite (HA), hydroxyapatite tricalcium phosphate (HATCP), calcium phosphate, calcium sulfate, or a combination thereof.
In a particular embodiment, the inferior compliant layer 620 can be coated with, impregnated with, or otherwise include, a biological factor that can promote bone on-growth or bone in-growth. For example, the biological factor can include bone morphogenetic protein (BMP), cartilage-derived morphogenetic protein (CDMP), platelet derived growth factor (PDGF), insulin-like growth factor (IGF), LIM mineralization protein, fibroblast growth factor (FGF), osteoblast growth factor, stem cells, or a combination thereof. Further, the stem cells can include bone marrow derived stem cells, lipo derived stem cells, or a combination thereof.
In a particular embodiment, as shown in
In a particular embodiment, the overall height of the intervertebral prosthetic device 400 can be in a range from fourteen millimeters to forty-six millimeters (14-46 mm). Further, the installed height of the intervertebral prosthetic device 400 can be in a range from eight millimeters to sixteen millimeters (8-16 mm). In a particular embodiment, the installed height can be substantially equivalent to the distance between an inferior vertebra and a superior vertebra when the intervertebral prosthetic device 400 is installed there between.
In a particular embodiment, the length of the intervertebral prosthetic device 400, e.g., along a longitudinal axis, can be in a range from thirty millimeters to forty millimeters (30-40 mm). Additionally, the width of the intervertebral prosthetic device 400, e.g., along a lateral axis, can be in a range from twenty-five millimeters to forty millimeters (25-40 mm). Moreover, in a particular embodiment, each keel 548, 648 can have a height in a range from three millimeters to fifteen millimeters (3-15 mm). Installation of the First Embodiment within an Intervertebral Space
Referring to
As shown in
Also, the inferior compliant layer 620 can engage the inferior vertebra 202, e.g., the cortical rim and cancellous bone of the inferior vertebra 202. The inferior compliant layer 620 can mold, or otherwise form, to match the shape of the cortical rim and cancellous bone of the inferior vertebra 200. In a particular embodiment, the inferior compliant layer 620 can increase the contact area between the inferior vertebra 200 and the inferior support plate 602. As such, the inferior compliant layer 620 can substantially reduce the contact stress between the inferior vertebra 200 and the inferior support plate 602.
As illustrated in
In a particular embodiment, the intervertebral prosthetic disc 400 can allow angular movement in any radial direction relative to the intervertebral prosthetic disc 400. Further, as depicted in
Description of a Second Embodiment of an Intervertebral Prosthetic Disc
Referring to
In a particular embodiment, the metal containing materials can be metals. Further, the metal containing materials can be ceramics. Also, the metals can be pure metals or metal alloys. The pure metals can include titanium. Moreover, the metal alloys can include stainless steel, a cobalt-chrome-molybdenum alloy, e.g., ASTM F-999 or ASTM F-75, a titanium alloy, or a combination thereof.
The polymer materials can include polyurethane materials, polyolefin materials, polyether materials, silicone materials, hydrogel materials, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof. The polyether materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), or a combination thereof. Alternatively, the components 1500, 1600 can be made from any other substantially rigid biocompatible materials.
In a particular embodiment, the superior component 1500 includes a superior support plate 1502 that has a superior articular surface 1504 and a superior bearing surface 1506. In a particular embodiment, the superior articular surface 1504 can be generally curved and the superior bearing surface 1506 can be substantially flat. In an alternative embodiment, the superior articular surface 1504 can be substantially flat and at least a portion of the superior bearing surface 1506 can be generally curved.
As illustrated in
As further illustrated, the superior component 1500 includes a superior compliant layer 1520 that can be affixed to, attached to, or otherwise deposited on, the superior bearing surface 1506. The superior compliant layer 1520 can be chemically bonded to the superior bearing surface 1506, e.g., using an adhesive or another chemical bonding agent. Further, the superior compliant layer 1520 can be mechanically anchored to the superior bearing surface 1506, e.g., using hook-and-loop fasteners, or another type of fastener.
Before the superior compliant layer 1520 is deposited, or otherwise affixed to the superior bearing surface 1506, the superior bearing surface 1506 can be modified to promote adhesion of the superior compliant layer 1520 to the superior bearing surface 1506. For example, the superior bearing surface 1506 can be roughened to promote adhesion of the superior compliant layer 1520. For example, the roughening process can include acid etching; knurling; application of a bead coating, e.g., cobalt chrome beads; application of a roughening spray; e.g., titanium plasma spray (TPS); laser blasting; or any other similar process or method.
In a particular embodiment, after installation, the superior compliant layer 1520 can be in direct contact with vertebral bone, e.g., cortical bone and cancellous bone. In a particular embodiment, the superior compliant layer 1520 can be an extended use biocompatible material. For example, the extended use biocompatible materials can include synthetic polymers, natural polymers, bioactive ceramics, compression molded carbon nanofibers, or combinations thereof.
In a particular embodiment, the synthetic polymers can include polyurethane materials, polyolefin materials, polyether materials, polyester materials, polycarbonate materials, silicone materials, hydrogel materials, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof. The polyether materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), or a combination thereof. The polyester materials can include polylactide. The polycarbonate materials can include tyrosine polycarbonate.
In a particular embodiment, the natural polymers can include collagen, gelatin, fibrin, keratin, chitosan, chitin, hyaluronic acid, albumin, silk, elastin, or a combination thereof. Further, in a particular embodiment, the bioactive ceramics can include hydroxyapatite (HA), hydroxyapatite tricalcium phosphate (HATCP), calcium phosphate, calcium sulfate, or a combination thereof.
In a particular embodiment, the superior compliant layer 1520 can be coated with, impregnated with, or otherwise include, a biological factor that can promote bone on-growth or bone in-growth. For example, the biological factor can include bone morphogenetic protein (BMP), cartilage-derived morphogenetic protein (CDMP), platelet derived growth factor (PDGF), insulin-like growth factor (IGF), LIM mineralization protein, fibroblast growth factor (FGF), osteoblast growth factor, stem cells, or a combination thereof. Further, the stem cells can include bone marrow derived stem cells, lipo derived stem cells, or a combination thereof.
As indicated in
As illustrated in
In a particular embodiment, the inferior component 1600 includes an inferior support plate 1602 that has an inferior articular surface 1604 and an inferior bearing surface 1606. In a particular embodiment, the inferior articular surface 1604 can be generally curved and the inferior bearing surface 1606 can be substantially flat. In an alternative embodiment, the inferior articular surface 1604 can be substantially flat and at least a portion of the inferior bearing surface 1606 can be generally curved.
As illustrated in
As further illustrated, the inferior component 1600 includes an inferior compliant layer 1620 that can be affixed to, attached to, or otherwise deposited on, the inferior bearing surface 1606. The inferior compliant layer 1620 can be chemically bonded to the inferior bearing surface 1606, e.g., using an adhesive or another chemical bonding agent. Further, the inferior compliant layer 1620 can be mechanically anchored to the inferior bearing surface 1606, e.g., using hook-and-loop fasteners, or another type of fastener.
Before the inferior compliant layer 1620 is deposited, or otherwise affixed to the inferior bearing surface 1606, the inferior bearing surface 1606 can be modified to promote adhesion of the inferior compliant layer 1620 to the inferior bearing surface 1606. For example, the inferior bearing surface 1606 can be roughened to promote adhesion of the inferior compliant layer 1620. For example, the roughening process can include acid etching; knurling; application of a bead coating, e.g., cobalt chrome beads; application of a roughening spray; e.g., titanium plasma spray (TPS); laser blasting; or any other similar process or method.
In a particular embodiment, after installation, the inferior compliant layer 1620 can be in direct contact with vertebral bone, e.g., cortical bone and cancellous bone. In a particular embodiment, the inferior compliant layer 1620 can be an extended use biocompatible material. For example, the extended use biocompatible materials can include synthetic polymers, natural polymers, bioactive ceramics, compression molded carbon nanofibers, or combinations thereof.
In a particular embodiment, the synthetic polymers can include polyurethane materials, polyolefin materials, polyether materials, polyester materials, polycarbonate materials, silicone materials, hydrogel materials, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof. The polyether materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), or a combination thereof. The polyester materials can include polylactide. The polycarbonate materials can include tyrosine polycarbonate.
In a particular embodiment, the natural polymers can include collagen, gelatin, fibrin, keratin, chitosan, chitin, hyaluronic acid, albumin, silk, elastin, or a combination thereof. Further, in a particular embodiment, the bioactive ceramics can include hydroxyapatite (HA), hydroxyapatite tricalcium phosphate (HATCP), calcium phosphate, calcium sulfate, or a combination thereof.
In a particular embodiment, the inferior compliant layer 1620 can be coated with, impregnated with, or otherwise include, a biological factor that can promote bone on-growth or bone in-growth. For example, the biological factor can include bone morphogenetic protein (BMP), cartilage-derived morphogenetic protein (CDMP), platelet derived growth factor (PDGF), insulin-like growth factor (IGF), LIM mineralization protein, fibroblast growth factor (FGF), osteoblast growth factor, stem cells, or a combination thereof. Further, the stem cells can include bone marrow derived stem cells, lipo derived stem cells, or a combination thereof.
As indicated in
In a particular embodiment, as shown in
In a particular embodiment, the overall height of the intervertebral prosthetic device 1400 can be in a range from fourteen millimeters to forty-six millimeters (14-46 mm). Further, the installed height of the intervertebral prosthetic device 1400 can be in a range from eight millimeters to sixteen millimeters (8-16 mm). In a particular embodiment, the installed height can be substantially equivalent to the distance between an inferior vertebra and a superior vertebra when the intervertebral prosthetic device 1400 is installed there between.
In a particular embodiment, the length of the intervertebral prosthetic device 1400, e.g., along a longitudinal axis, can be in a range from thirty millimeters to forty millimeters (30-40 mm). Additionally, the width of the intervertebral prosthetic device 1400, e.g., along a lateral axis, can be in a range from twenty-five millimeters to forty millimeters (25-40 mm). Moreover, in a particular embodiment, each keel 1548, 1648 can have a height in a range from three millimeters to fifteen millimeters (3-15 mm).
Description of a Third Embodiment of an Intervertebral Prosthetic Disc
Referring to
In a particular embodiment, the metal containing materials can be metals. Further, the metal containing materials can be ceramics. Also, the metals can be pure metals or metal alloys. The pure metals can include titanium. Moreover, the metal alloys can include stainless steel, a cobalt-chrome-molybdenum alloy, e.g., ASTM F-999 or ASTM F-75, a titanium alloy, or a combination thereof.
The polymer materials can include polyurethane materials, polyolefin materials, polyether materials, silicone materials, hydrogel materials, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof. The polyether materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), or a combination thereof. Alternatively, the components 2300, 2400 can be made from any other substantially rigid biocompatible materials.
In a particular embodiment, the inferior component 2300 includes an inferior support plate 2302 that has an inferior articular surface 2304 and an inferior bearing surface 2306. In a particular embodiment, the inferior articular surface 2304 and the inferior bearing surface 2306 are generally rounded.
As illustrated in
As further illustrated in
In a particular embodiment, the inferior teeth 2318 can include other projections such as spikes, pins, blades, or a combination thereof that have any cross-sectional geometry.
As illustrated in
As shown, the inferior compliant layer 2320 can at least partially cover the inferior keels 2310, 2312 and the inferior teeth 2318. Accordingly, when the intervertebral prosthetic disc 2200 is implanted in a patient, the inferior compliant layer 2320 can compress and comply with the shape of a vertebra. Further, as the inferior compliant layer 2320 compresses, the inferior keels 2310, 2312 and the inferior teeth 2318 can at least partially engage cortical bone of the vertebra, cancellous bone of the vertebra, or a combination thereof.
Before the inferior compliant layer 2320 is deposited, or otherwise affixed to the inferior bearing surface 2306, the inferior bearing surface 2306 can be modified to promote adhesion of the inferior compliant layer 2320 to the inferior bearing surface 2306. For example, the inferior bearing surface 2306 can be roughened to promote adhesion of the inferior compliant layer 2320. For example, the roughening process can include acid etching; knurling; application of a bead coating, e.g., cobalt chrome beads; application of a roughening spray; e.g., titanium plasma spray (TPS); laser blasting; or any other similar process or method.
In a particular embodiment, the inferior compliant layer 2320 can be an extended use biocompatible material. For example, the extended use biocompatible materials can include synthetic polymers, natural polymers, bioactive ceramics, compression molded carbon nanofibers, or combinations thereof.
In a particular embodiment, the synthetic polymers can include polyurethane materials, polyolefin materials, polyether materials, polyester materials, polycarbonate materials, silicone materials, hydrogel materials, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof. The polyether materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), or a combination thereof. The polyester materials can include polylactide. The polycarbonate materials can include tyrosine polycarbonate.
In a particular embodiment, the natural polymers can include collagen, gelatin, fibrin, keratin, chitosan, chitin, hyaluronic acid, albumin, silk, elastin, or a combination thereof. Further, in a particular embodiment, the bioactive ceramics can include hydroxyapatite (HA), hydroxyapatite tricalcium phosphate (HATCP), calcium phosphate, calcium sulfate, or a combination thereof.
In a particular embodiment, the inferior compliant layer 2320 can be coated with, impregnated with, or otherwise include, a biological factor that can promote bone on-growth or bone in-growth. For example, the biological factor can include bone morphogenetic protein (BMP), cartilage-derived morphogenetic protein (CDMP), platelet derived growth factor (PDGF), insulin-like growth factor (IGF), LIM mineralization protein, fibroblast growth factor (FGF), osteoblast growth factor, stem cells, or a combination thereof. Further, the stem cells can include bone marrow derived stem cells, lipo derived stem cells, or a combination thereof.
As illustrated in
As shown in
In a particular embodiment, the superior component 2400 includes a superior support plate 2402 that has a superior articular surface 2404 and a superior bearing surface 2406. In a particular embodiment, the superior articular surface 2404 and the superior bearing surface 2406 are generally rounded.
As illustrated in
As further illustrated in
In a particular embodiment, the superior teeth 2418 can include other projections such as spikes, pins, blades, or a combination thereof that have any cross-sectional geometry.
As illustrated in
As shown, the superior compliant layer 2420 can at least partially cover the superior keels 2410, 2412 and the superior teeth 2418. Accordingly, when the intervertebral prosthetic disc 2200 is implanted in a patient, the superior compliant layer 2420 can compress and comply with the shape of a vertebra. Further, as the superior compliant layer 2420 compresses, the superior keels 2410, 2412 and the superior teeth 2418 can at least partially engage cortical bone of the vertebra, cancellous bone of the vertebra, or a combination thereof.
Before the superior compliant layer 2420 is deposited, or otherwise affixed to the superior bearing surface 2406, the superior bearing surface 2406 can be modified to promote adhesion of the superior compliant layer 2420 to the superior bearing surface 2406. For example, the superior bearing surface 2406 can be roughened to promote adhesion of the superior compliant layer 2420. For example, the roughening process can include acid etching; knurling; application of a bead coating, e.g., cobalt chrome beads; application of a roughening spray; e.g., titanium plasma spray (TPS); laser blasting; or any other similar process or method.
In a particular embodiment, the superior compliant layer 2420 can be an extended use biocompatible material. For example, the extended use biocompatible materials can include synthetic polymers, natural polymers, bioactive ceramics, compression molded carbon nanofibers, or combinations thereof.
In a particular embodiment, the synthetic polymers can include polyurethane materials, polyolefin materials, polyether materials, polyester materials, polycarbonate materials, silicone materials, hydrogel materials, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof. The polyether materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), or a combination thereof. The polyester materials can include polylactide. The polycarbonate materials can include tyrosine polycarbonate.
In a particular embodiment, the natural polymers can include collagen, gelatin, fibrin, keratin, chitosan, chitin, hyaluronic acid, albumin, silk, elastin, or a combination thereof. Further, in a particular embodiment, the bioactive ceramics can include hydroxyapatite (HA), hydroxyapatite tricalcium phosphate (HATCP), calcium phosphate, calcium sulfate, or a combination thereof.
In a particular embodiment, the superior compliant layer 2420 can be coated with, impregnated with, or otherwise include, a biological factor that can promote bone on-growth or bone in-growth. For example, the biological factor can include bone morphogenetic protein (BMP), cartilage-derived morphogenetic protein (CDMP), platelet derived growth factor (PDGF), insulin-like growth factor (IGF), LIM mineralization protein, fibroblast growth factor (FGF), osteoblast growth factor, stem cells, or a combination thereof. Further, the stem cells can include bone marrow derived stem cells, lipo derived stem cells, or a combination thereof.
In a particular embodiment, the superior component 2400 can be shaped to match the shape of the inferior component 2300, shown in
As shown in
In a particular embodiment, the overall height of the intervertebral prosthetic device 2200 can be in a range from six millimeters to twenty-two millimeters (6-22 mm). Further, the installed height of the intervertebral prosthetic device 2200 can be in a range from four millimeters to sixteen millimeters (4-16 mm). In a particular embodiment, the installed height can be substantially equivalent to the distance between an inferior vertebra and a superior vertebra when the intervertebral prosthetic device 2200 is installed there between.
In a particular embodiment, the length of the intervertebral prosthetic device 2200, e.g., along a longitudinal axis, can be in a range from thirty-three millimeters to fifty millimeters (33-50 mm). Additionally, the width of the intervertebral prosthetic device 2200, e.g., along a lateral axis, can be in a range from eighteen millimeters to twenty-nine millimeters (18-29 mm). Moreover, in a particular embodiment, each keel 2310, 2312, 2410, 2412 can have a height in a range from one millimeter to six millimeters (1-6 mm). In a particular embodiment, the height of each keel 2310, 2312, 2410, 2412 is measured at a location of each keel 2310, 2312, 2410, 2412 nearest to the center of each half 2300, 2400 of the intervertebral prosthetic device 2200.
In a particular embodiment, the keels 2310, 2312, 2410, 2412 can be considered “low profile”. Further, intervertebral prosthetic disc 2200 can be considered to be “low profile.” The low profile of the keels 2310, 2312, 2410, 2412 and the intervertebral prosthetic device 2200 can allow the intervertebral prosthetic device 2200 to be implanted into an intervertebral space between an inferior vertebra and a superior vertebra laterally through a patient's psoas muscle, e.g., through an insertion device. Accordingly, the risk of damage to a patient's spinal cord or sympathetic chain can be substantially minimized. In alternative embodiments, all of the superior and inferior teeth 2318, 2418 can be oriented to engage in a direction substantially opposite the direction of insertion of the prosthetic disc into the intervertebral space.
Further, the intervertebral prosthetic disc 2200 can have a general “bullet” shape as shown in the posterior plan view, described herein. The bullet shape of the intervertebral prosthetic disc 2200 provided by the rounded bearing surfaces 2304, 2404 can further allow the intervertebral prosthetic disc 2200 to be inserted through the patient's psoas muscle while minimizing risk to the patient's spinal cord and sympathetic chain.
Description of a Fourth Embodiment of an Intervertebral Prosthetic Disc
Referring to
In a particular embodiment, the metal containing materials can be metals. Further, the metal containing materials can be ceramics. Also, the metals can be pure metals or metal alloys. The pure metals can include titanium. Moreover, the metal alloys can include stainless steel, a cobalt-chrome-molybdenum alloy, e.g., ASTM F-999 or ASTM F-75, a titanium alloy, or a combination thereof.
The polymer materials can include polyurethane materials, polyolefin materials, polyether materials, silicone materials, hydrogel materials, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof. The polyether materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), or a combination thereof. Alternatively, the components 3100, 3200 can be made from any other substantially rigid biocompatible materials.
In a particular embodiment, the superior component 3100 includes a superior support plate 3102 that has a superior articular surface 3104 and a superior bearing surface 3106. In a particular embodiment, the superior articular surface 3104 can be substantially flat and the superior bearing surface 3106 can be generally curved. In an alternative embodiment, at least a portion of the superior articular surface 3104 can be generally curved and the superior bearing surface 3106 can be substantially flat.
As illustrated in
As further illustrated, the superior component 3100 includes a superior compliant layer 3120 that can be affixed to, attached to, or otherwise deposited on, the superior bearing surface 3106. As shown, the superior compliant layer 3120 can be substantially convex. Further, the superior compliant layer 3120 can have a thickness that is substantially uniform. Alternatively, the superior compliant layer 3120 can have a thickness that varies throughout the superior compliant layer 3120.
The superior compliant layer 3120 can be chemically bonded to the superior bearing surface 3106, e.g., using an adhesive or another chemical bonding agent. Further, the superior compliant layer 3120 can be mechanically anchored to the superior bearing surface 3106, e.g., using hook-and-loop fasteners, or another type of fastener.
Before the superior compliant layer 3120 is deposited, or otherwise affixed to the superior bearing surface 3106, the superior bearing surface 3106 can be modified to promote adhesion of the superior compliant layer 3120 to the superior bearing surface 3106. For example, the superior bearing surface 3106 can be roughened to promote adhesion of the superior compliant layer 3120. For example, the roughening process can include acid etching; knurling; application of a bead coating, e.g., cobalt chrome beads; application of a roughening spray; e.g., titanium plasma spray (TPS); laser blasting; or any other similar process or method.
In a particular embodiment, after installation, the superior compliant layer 3120 can be in direct contact with vertebral bone, e.g., cortical bone and cancellous bone. In a particular embodiment, the superior compliant layer 3120 can be an extended use biocompatible material. For example, the extended use biocompatible materials can include synthetic polymers, natural polymers, bioactive ceramics, compression molded carbon nanofibers, or combinations thereof.
In a particular embodiment, the synthetic polymers can include polyurethane materials, polyolefin materials, polyether materials, polyester materials, polycarbonate materials, silicone materials, hydrogel materials, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof. The polyether materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), or a combination thereof. The polyester materials can include polylactide. The polycarbonate materials can include tyrosine polycarbonate.
In a particular embodiment, the natural polymers can include collagen, gelatin, fibrin, keratin, chitosan, chitin, hyaluronic acid, albumin, silk, elastin, or a combination thereof. Further, in a particular embodiment, the bioactive ceramics can include hydroxyapatite (HA), hydroxyapatite tricalcium phosphate (HATCP), calcium phosphate, calcium sulfate, or a combination thereof.
In a particular embodiment, the superior compliant layer 3120 can be coated with, impregnated with, or otherwise include, a biological factor that can promote bone on-growth or bone in-growth. For example, the biological factor can include bone morphogenetic protein (BMP), cartilage-derived morphogenetic protein (CDMP), platelet derived growth factor (PDGF), insulin-like growth factor (IGF), LIM mineralization protein, fibroblast growth factor (FGF), osteoblast growth factor, stem cells, or a combination thereof. Further, the stem cells can include bone marrow derived stem cells, lipo derived stem cells, or a combination thereof.
In a particular embodiment, the superior component 3100, depicted in
In a particular embodiment, the inferior component 3200 includes an inferior support plate 3202 that has an inferior articular surface 3204 and an inferior bearing surface 3206. In a particular embodiment, the inferior articular surface 3204 can be substantially flat and the inferior bearing surface 3206 can be generally curved. In an alternative embodiment, at least a portion of the inferior articular surface 3204 can be generally curved and the inferior bearing surface 3206 can be substantially flat.
As illustrated in
As further illustrated, the inferior component 3200 includes an inferior compliant layer 3220 that can be affixed to, attached to, or otherwise deposited on, the inferior bearing surface 3206. As shown, the inferior compliant layer 3220 can be substantially convex. Further, the inferior compliant layer 3220 can have a thickness that is substantially uniform. Alternatively, the inferior compliant layer 3220 can have a thickness that varies throughout the inferior compliant layer 3220.
The inferior compliant layer 3220 can be chemically bonded to the inferior bearing surface 3206, e.g., using an adhesive or another chemical bonding agent. Further, the inferior compliant layer 3220 can be mechanically anchored to the inferior bearing surface 3206, e.g., using hook-and-loop fasteners, or another type of fastener.
Before the inferior compliant layer 3220 is deposited, or otherwise affixed to the inferior bearing surface 3206, the inferior bearing surface 3206 can be modified to promote adhesion of the inferior compliant layer 3220 to the inferior bearing surface 3206. For example, the inferior bearing surface 3206 can be roughened to promote adhesion of the inferior compliant layer 3220. For example, the roughening process can include acid etching; knurling; application of a bead coating, e.g., cobalt chrome beads; application of a roughening spray; e.g., titanium plasma spray (TPS); laser blasting; or any other similar process or method.
In a particular embodiment, after installation, the inferior compliant layer 3220 can be in direct contact with vertebral bone, e.g., cortical bone and cancellous bone. In a particular embodiment, the inferior compliant layer 3220 can be an extended use biocompatible material. For example, the extended use biocompatible materials can include synthetic polymers, natural polymers, bioactive ceramics, compression molded carbon nanofibers, or combinations thereof.
In a particular embodiment, the synthetic polymers can include polyurethane materials, polyolefin materials, polyether materials, polyester materials, polycarbonate materials, silicone materials, hydrogel materials, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof. The polyether materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), or a combination thereof. The polyester materials can include polylactide. The polycarbonate materials can include tyrosine polycarbonate.
In a particular embodiment, the natural polymers can include collagen, gelatin, fibrin, keratin, chitosan, chitin, hyaluronic acid, albumin, silk, elastin, or a combination thereof. Further, in a particular embodiment, the bioactive ceramics can include hydroxyapatite (HA), hydroxyapatite tricalcium phosphate (HATCP), calcium phosphate, calcium sulfate, or a combination thereof.
In a particular embodiment, the inferior compliant layer 3220 can be coated with, impregnated with, or otherwise include, a biological factor that can promote bone on-growth or bone in-growth. For example, the biological factor can include bone morphogenetic protein (BMP), cartilage-derived morphogenetic protein (CDMP), platelet derived growth factor (PDGF), insulin-like growth factor (IGF), LIM mineralization protein, fibroblast growth factor (FGF), osteoblast growth factor, stem cells, or a combination thereof. Further, the stem cells can include bone marrow derived stem cells, lipo derived stem cells, or a combination thereof.
As further shown in
In lieu of, or in addition to, the inferior nucleus containment rail 3230, a superior nucleus containment rail (not shown) can extend from the superior articular surface 3104 of the superior component 3100. In a particular embodiment, the superior nucleus containment rail (not shown) can be configured substantially identical to the inferior nucleus containment rail 3230. In various alternative embodiments (not shown), each or both of the superior component 3100 and the inferior component 3200 can include multiple nucleus containment rails extending from the respective articular surfaces 3104, 3204. The containment rails can be staggered or provided in other configurations based on the perceived need to prevent nucleus migration in a given direction.
In a particular embodiment, the inferior component 3200, shown in
As shown in
In a particular embodiment, the inferior nucleus containment rail 3230 on the inferior component 3200 can prevent the nucleus 3300 from migrating, or moving, with respect to the superior component 3100, the inferior component 3200, or a combination thereof. In other words, the inferior nucleus containment rail 3230 can prevent the nucleus 3300 from moving out of the superior depression 3108, the inferior depression 3208, or a combination thereof.
Further, the inferior nucleus containment rail 3230 can prevent the nucleus 3300 from being expelled from the intervertebral prosthetic device 3000. In other words, the inferior nucleus containment rail 3230 on the inferior component 3200 can prevent the nucleus 3300 from being completely ejected from the intervertebral prosthetic device 3000 while the superior component 3100 and the inferior component 3200 move with respect to each other.
In a particular embodiment, the overall height of the intervertebral prosthetic device 3000 can be in a range from fourteen millimeters to forty-six millimeters (14-46 mm). Further, the installed height of the intervertebral prosthetic device 3000 can be in a range from eight millimeters to sixteen millimeters (8-16 mm). In a particular embodiment, the installed height can be substantially equivalent to the distance between an inferior vertebra and a superior vertebra when the intervertebral prosthetic device 3000 is installed there between.
In a particular embodiment, the length of the intervertebral prosthetic device 3000, e.g., along a longitudinal axis, can be in a range from thirty millimeters to forty millimeters (30-40 mm). Additionally, the width of the intervertebral prosthetic device 3000, e.g., along a lateral axis, can be in a range from twenty-five millimeters to forty millimeters (25-40 mm). Moreover, in a particular embodiment, each keel 3148, 3248 can have a height in a range from three millimeters to fifteen millimeters (3-15 mm).
Description of a Fifth Embodiment of an Intervertebral Prosthetic Disc
Referring to
In a particular embodiment, the metal containing materials can be metals. Further, the metal containing materials can be ceramics. Also, the metals can be pure metals or metal alloys. The pure metals can include titanium. Moreover, the metal alloys can include stainless steel, a cobalt-chrome-molybdenum alloy, e.g., ASTM F-999 or ASTM F-75, a titanium alloy, or a combination thereof.
The polymer materials can include polyurethane materials, polyolefin materials, polyether materials, silicone materials, hydrogel materials, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof. The polyether materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), or a combination thereof. Alternatively, the components 3600, 3700 can be made from any other substantially rigid biocompatible materials.
In a particular embodiment, the superior component 3600 includes a superior support plate 3602 that has a superior articular surface 3604 and a superior bearing surface 3606. In a particular embodiment, the superior articular surface 3604 can be substantially flat and the superior bearing surface 3606 can be generally curved. In an alternative embodiment, at least a portion of the superior articular surface 3604 can be generally curved and the superior bearing surface 3606 can be substantially flat.
As illustrated in
As further illustrated, the superior component 3600 includes a superior compliant layer 3620 that can be affixed to, attached to, or otherwise deposited on, the superior bearing surface 3606. As shown, the superior compliant layer 3620 can be substantially convex. Further, the superior compliant layer 3620 can have a thickness that is substantially uniform. Alternatively, the superior compliant layer 3620 can have a thickness that varies throughout the superior compliant layer 3620.
The superior compliant layer 3620 can be chemically bonded to the superior bearing surface 3606, e.g., using an adhesive or another chemical bonding agent. Further, the superior compliant layer 3620 can be mechanically anchored to the superior bearing surface 3606, e.g., using hook-and-loop fasteners, or another type of fastener.
Before the superior compliant layer 3620 is deposited, or otherwise affixed to the superior bearing surface 3606, the superior bearing surface 3606 can be modified to promote adhesion of the superior compliant layer 3620 to the superior bearing surface 3606. For example, the superior bearing surface 3606 can be roughened to promote adhesion of the superior compliant layer 3620. For example, the roughening process can include acid etching; knurling; application of a bead coating, e.g., cobalt chrome beads; application of a roughening spray; e.g., titanium plasma spray (TPS); laser blasting; or any other similar process or method.
In a particular embodiment, after installation, the superior compliant layer 3620 can be in direct contact with vertebral bone, e.g., cortical bone and cancellous bone. In a particular embodiment, the superior compliant layer 3620 can be an extended use biocompatible material. For example, the extended use biocompatible materials can include synthetic polymers, natural polymers, bioactive ceramics, compression molded carbon nanofibers, or combinations thereof.
In a particular embodiment, the synthetic polymers can include polyurethane materials, polyolefin materials, polyether materials, polyester materials, polycarbonate materials, silicone materials, hydrogel materials, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof. The polyether materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), or a combination thereof. The polyester materials can include polylactide. The polycarbonate materials can include tyrosine polycarbonate.
In a particular embodiment, the natural polymers can include collagen, gelatin, fibrin, keratin, chitosan, chitin, hyaluronic acid, albumin, silk, elastin, or a combination thereof. Further, in a particular embodiment, the bioactive ceramics can include hydroxyapatite (HA), hydroxyapatite tricalcium phosphate (HATCP), calcium phosphate, calcium sulfate, or a combination thereof.
In a particular embodiment, the superior compliant layer 3620 can be coated with, impregnated with, or otherwise include, a biological factor that can promote bone on-growth or bone in-growth. For example, the biological factor can include bone morphogenetic protein (BMP), cartilage-derived morphogenetic protein (CDMP), platelet derived growth factor (PDGF), insulin-like growth factor (IGF), LIM mineralization protein, fibroblast growth factor (FGF), osteoblast growth factor, stem cells, or a combination thereof. Further, the stem cells can include bone marrow derived stem cells, lipo derived stem cells, or a combination thereof.
In a particular embodiment, the superior component 3600, depicted in
In a particular embodiment, the inferior component 3700 includes an inferior support plate 3702 that has an inferior articular surface 3704 and an inferior bearing surface 3706. In a particular embodiment, the inferior articular surface 3704 can be substantially flat and the inferior bearing surface 3706 can be generally curved. In an alternative embodiment, at least a portion of the inferior articular surface 3704 can be generally curved and the inferior bearing surface 3706 can be substantially flat.
As illustrated in
As further illustrated, the inferior component 3700 includes an inferior compliant layer 3720 that can be affixed to, attached to, or otherwise deposited on, the inferior bearing surface 3706. As shown, the inferior compliant layer 3720 can be substantially convex. Further, the inferior compliant layer 3720 can have a thickness that is substantially uniform. Alternatively, the inferior compliant layer 3720 can have a thickness that varies throughout the inferior compliant layer 3720.
The inferior compliant layer 3720 can be chemically bonded to the inferior bearing surface 3706, e.g., using an adhesive or another chemical bonding agent. Further, the inferior compliant layer 3720 can be mechanically anchored to the inferior bearing surface 3706, e.g., using hook-and-loop fasteners, or another type of fastener.
Before the inferior compliant layer 3720 is deposited, or otherwise affixed to the inferior bearing surface 3706, the inferior bearing surface 3706 can be modified to promote adhesion of the inferior compliant layer 3720 to the inferior bearing surface 3706. For example, the inferior bearing surface 3706 can be roughened to promote adhesion of the inferior compliant layer 3720. For example, the roughening process can include acid etching; knurling; application of a bead coating, e.g., cobalt chrome beads; application of a roughening spray; e.g., titanium plasma spray (TPS); laser blasting; or any other similar process or method.
In a particular embodiment, after installation, the inferior compliant layer 3720 can be in direct contact with vertebral bone, e.g., cortical bone and cancellous bone. In a particular embodiment, the inferior compliant layer 3720 can be an extended use biocompatible material. For example, the extended use biocompatible materials can include synthetic polymers, natural polymers, bioactive ceramics, compression molded carbon nanofibers, or combinations thereof.
In a particular embodiment, the synthetic polymers can include polyurethane materials, polyolefin materials, polyether materials, polyester materials, polycarbonate materials, silicone materials, hydrogel materials, or a combination thereof. Further, the polyolefin materials can include polypropylene, polyethylene, halogenated polyolefin, flouropolyolefin, or a combination thereof. The polyether materials can include polyetherketone (PEK), polyetheretherketone (PEEK), polyetherketoneketone (PEKK), polyaryletherketone (PAEK), or a combination thereof. The polyester materials can include polylactide. The polycarbonate materials can include tyrosine polycarbonate.
In a particular embodiment, the natural polymers can include collagen, gelatin, fibrin, keratin, chitosan, chitin, hyaluronic acid, albumin, silk, elastin, or a combination thereof. Further, in a particular embodiment, the bioactive ceramics can include hydroxyapatite (HA), hydroxyapatite tricalcium phosphate (HATCP), calcium phosphate, calcium sulfate, or a combination thereof.
In a particular embodiment, the inferior compliant layer 3720 can be coated with, impregnated with, or otherwise include, a biological factor that can promote bone on-growth or bone in-growth. For example, the biological factor can include bone morphogenetic protein (BMP), cartilage-derived morphogenetic protein (CDMP), platelet derived growth factor (PDGF), insulin-like growth factor (IGF), LIM mineralization protein, fibroblast growth factor (FGF), osteoblast growth factor, stem cells, or a combination thereof. Further, the stem cells can include bone marrow derived stem cells, lipo derived stem cells, or a combination thereof.
As further shown, an inferior nucleus containment rail 3730 can extend from the inferior articular surface 3704 adjacent to the inferior projection 3708. As shown in FIG. 39, the inferior nucleus containment rail 3730 is a curved wall that extends from the inferior articular surface 3704. In a particular embodiment, the inferior nucleus containment rail 3730 can be curved to match the shape, or curvature, of the inferior projection 3708. Alternatively, the inferior nucleus containment rail 3730 can be curved to match the shape, or curvature, of the nucleus 3800. In a particular embodiment, the inferior nucleus containment rail 3730 extends into a gap 3734 that can be established between the superior component 3600 and the inferior component 3700 posterior to the nucleus 3800.
In lieu of, or in addition to, the inferior nucleus containment rail 3730, a superior nucleus containment rail (not shown) can extend from the superior articular surface 3604 of the superior component 3600. In a particular embodiment, the superior nucleus containment rail (not shown) can be configured substantially identical to the inferior nucleus containment rail 3730. In various alternative embodiments (not shown), each or both of the superior component 3600 and the inferior component 3700 can include multiple nucleus containment rails extending from the respective articular surfaces 3604, 3704. The containment rails can be staggered or provided in other configurations based on the perceived need to prevent nucleus migration in a given direction.
In a particular embodiment, the inferior component 3700, shown in
As shown in
In a particular embodiment, the inferior nucleus containment rail 3730 on the inferior component 3700 can prevent the nucleus 3800 from migrating, or moving, with respect to the superior component 3600 and the inferior component 3700. In other words, the inferior nucleus containment rail 3730 can prevent the nucleus 3800 from moving off of the superior projection 3608, the inferior projection 3708, or a combination thereof.
Further, the inferior nucleus containment rail 3730 can prevent the nucleus 3800 from being expelled from the intervertebral prosthetic device 3500. In other words, the inferior nucleus containment rail 3730 on the inferior component 3700 can prevent the nucleus 3800 from being completely ejected from the intervertebral prosthetic device 3500 while the superior component 3600 and the inferior component 3700 move with respect to each other.
In a particular embodiment, the overall height of the intervertebral prosthetic device 3500 can be in a range from fourteen millimeters to forty-six millimeters (14-46 mm). Further, the installed height of the intervertebral prosthetic device 3500 can be in a range from eight millimeters to sixteen millimeters (8-16 mm). In a particular embodiment, the installed height can be substantially equivalent to the distance between an inferior vertebra and a superior vertebra when the intervertebral prosthetic device 3500 is installed there between.
In a particular embodiment, the length of the intervertebral prosthetic device 3500, e.g., along a longitudinal axis, can be in a range from thirty millimeters to forty millimeters (30-40 mm). Additionally, the width of the intervertebral prosthetic device 3500, e.g., along a lateral axis, can be in a range from twenty-five millimeters to forty millimeters (25-40 mm). Moreover, in a particular embodiment, each keel 3648, 3748 can have a height in a range from three millimeters to fifteen millimeters (3-15 mm).
With the configuration of structure described above, the intervertebral prosthetic disc according to one or more of the embodiments provides a device that may be implanted to replace a natural intervertebral disc that is diseased, degenerated, or otherwise damaged. The intervertebral prosthetic disc can be disposed within an intervertebral space between an inferior vertebra and a superior vertebra. Further, after a patient fully recovers from a surgery to implant the intervertebral prosthetic disc, the intervertebral prosthetic disc can provide relative motion between the inferior vertebra and the superior vertebra that closely replicates the motion provided by a natural intervertebral disc. Accordingly, the intervertebral prosthetic disc provides an alternative to a fusion device that can be implanted within the intervertebral space between the inferior vertebra and the superior vertebra to fuse the inferior vertebra and the superior vertebra and prevent relative motion there between.
The compliant layers of the intervertebral prosthetic disc can allow the intervertebral prosthetic disc to conform to the shapes of the vertebrae between which the intervertebral prosthetic disc is implanted. Full conformance can increase the surface area for osteointegration, which, in turn, can prevent, or substantially minimize, the chance of the intervertebral prosthetic disc becoming loose during the lifetime of the intervertebral prosthetic disc.
The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments that fall within the true spirit and scope of the present invention. For example, it is noted that the components in the exemplary embodiments described herein are referred to as “superior” and “inferior” for illustrative purposes only and that one or more of the features described as part of or attached to a respective half may be provided as part of or attached to the other half in addition or in the alternative. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.