INTERVERTEBRAL SPACER

Abstract
An intervertebral spacer adapted for implanting between adjacent vertebral bodies of a human spine as a load-bearing replacement for a spinal disc. The spacing member includes an external, non-porous, concavo-convex contour with respect to one dimension of said spacing member. The spacing member is preferably constructed from a rigid, non-resilient load-bearing material that is incapable of elastic deformation. The spacing member is inserted with the aid of a sheathed trocar device that is releasably attached to the spacer, to enable implantation and selective positioning of the spacer by the surgeon from the posterior side of the spine, without the need to retract the dural nerve or the posterior longitudinal ligament.
Description

Brief Summary and Objects of the Invention

[0014] It is therefore an object of the present invention to provide an intervertebral spacing system that does not require an additional, anterior surgical procedure.


[0015] It is another object of the present invention, in accordance with one aspect thereof, to provide such an intervertebral spacing system by which sagittal alignment of the spine is restored.


[0016] It is a further object of the present invention, in accordance with one aspect thereof, to provide such an intervertebral spacing system that can accommodate a larger host-graft interface between adjacent vertebral bodies.


[0017] It is an additional object of the present invention, in accordance with one aspect thereof, to provide such an intervertebral spacing system in which bone grafting material is loaded in compression between adjacent vertebral bodies of the spine.


[0018] It is yet another object of the present invention, in accordance with one aspect thereof, to provide such an intervertebral spacing system that does not require retraction of the dural nerve, or of the anterior or posterior longitudinal ligaments, for implantation of the spacer.


[0019] The above objects and others not specifically recited are realized in a specific illustrative embodiment of an intervertebral spacer adapted for implanting between adjacent vertebral bodies of a human spine as a load-bearing replacement for a spinal disc. The spacing member includes an external, non-porous, concavo-convex contour with respect to one dimension of said spacing member. The spacing member is preferably constructed from a rigid, non-resilient load-bearing material that is incapable of elastic deformation. The spacing member is inserted with the aid of a sheathed trocar device that is releasably attached to the spacer, to enable implantation and selective positioning of the spacer by the surgeon from the posterior side of the spine, without the need to retract the dural nerve or the posterior longitudinal ligament.


[0020] Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by the practice of the invention without undue experimentation. The objects and advantages of the invention may be realized and obtained by means of the instruments and combinations particularly pointed out in the appended claims.





Brief Description of the Drawings

[0021] The above and other objects, features and advantages of the invention will become apparent from a consideration of the subsequent detailed description presented in connection with the accompanying drawings in which:


[0022]
FIG. 1 is a perspective view of an intervertebral spacer, made in accordance with the principles of the present invention;


[0023]
FIG. 2 is a plan view of the intervertebral spacer of FIG. 1;


[0024]
FIG. 3 is a frontal view of the intervertebral spacer of FIGS. 1 and 2;


[0025]
FIG. 4 is a side view of the intervertebral spacer of FIGS. 1, 2 and 3;


[0026]
FIG. 5 is side view of a pair of adjacent vertebral bodies from the lumbar region of a human spine;


[0027]
FIG. 6 is a schematic view of a sheathed trocar device releasably attached to a trial spacer shaped similarly to the intervertebral spacer of FIG. 1, in accordance with the principles of the present invention;


[0028]
FIG. 7 is a schematic view of a sheathed trocar device releasably attached to the intervertebral spacer of FIG. 1, in accordance with the principles of the present invention;


[0029]
FIGS. 8A-8D illustrate a schematic progression of the placement of the intervertebral spacer of FIG. 1 between vertebral bodies of a human spine; and


[0030]
FIG. 9 illustrates posterior instrumentation by which compression is applied to the posterior sides of a paid of adjacenet vertebral bodies of a human spine.





Detailed Description of the Invention

[0031] For the purposes of promoting an understanding of the principles in accordance with the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications of the inventive features illustrated herein, and any additional applications of the principles of the invention as illustrated herein, which would normally occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention claimed.


[0032] Before the apparatus and methods of the present invention are described further, it is to be understood that the invention is not limited to the particular configurations, process steps, and materials disclosed herein as such configurations, process steps, and materials may vary somewhat. It is also to be understood that the terminology employed herein is used for the purpose of describing particular embodiments of the invention only, and is not intended to be limiting since the scope of the present invention will be limited only by the appended claims and equivalents thereof.


[0033] The publications and other reference materials referred to herein to describe the background of the invention and to provide additional detail regarding its practice are hereby incorporated by reference. The references discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as a suggestion or admission that the inventors are not entitled to antedate such disclosure by virtue of prior invention.


[0034] In describing and claiming the present invention, the following terminology will be used in accordance with the definitions set out below.


[0035] As used herein, "comprising,""including,""containing,""characterized by,"and grammatical equivalents thereof are inclusive or open-ended terms that do not exclude additional, unrecited elements or method steps.


[0036] Applicants have discovered that several of the disadvantages of the prior art spinal disc replacement systems can be minimized, or even eliminated, by the use of a cashew-shaped interbody spacer having a tapered external shape, placing it is far anteriorly as possible between adjacent vertebral bodies, filling in the remaining posterior space with bone graft material, and applying compression to posterior portions of the vertebral bodies to load the bone graft in compression and restore sagittal alignment.


[0037] Referring now to FIGS. 1-4, there is shown a spacing member, referred to also herein as an intervertebral spacer or an interbody spacer, designated generally at 10.


[0038] Briefly stated, the spacer 10 is utilized, along with autogenous bone grafting material, to replace a diseased or damaged spinal disc. Referring now to FIGS. 5-7, the procedure is implemented by making an incision 32 in the anulus 34 connecting adjacent vertebral bodies 31. The spinal disc (not shown) is surgically removed from the incision 32, after which the spacer 10 is placed through the incision 32 into position between the vertebral bodies 31. The spacer is preferably placed with its convex, anterior sidewall 12 facing anteriorly, and with its concave, posterior sidewall 14 facing posteriorly. Bone grafting material is placed through the incision 32 to reside behind the spacer 10, after which posterior instrumentation is attached to pedicle areas 34 to force the vertebral bodies 31 together in compression, as illustrated schematically in FIG. 8D and more particularly in FIG. 9.


[0039] The unique aspects and procedures relating to the spacer 10 will now be explained in more detail. Some of the key features of the invention comprise the size, shape and placement of spacer 10. The spacer 10 is preferably made of titanium, thus having a non-porous quality with a preferably smooth finish. The spacer 10 could also be made of ceramic, or any other suitable material that is inert or biologically compatible. The term "non-porous" as used herein shall be construed broadly in accordance with the common, ordinary meaning of that term to refer to objects possessing an impediment to flow that would operate in the presence of fluid to impede or even block fluid flow through the object. In accordance with such common, ordinary meaning, such objects are either impermeable by liquid, or possess a limited degree of permeability that prevents liquid from passing through the object in a manner that would be considered flow. Examples of objects that are non-porous and impermeable include a solid titanium or solid ceramic intervertebral spacer, or a spacer made from impermeable bone material, or a spacer that is coated or treated in some way to render it impermeable. Examples of objects that are non-porous and possess a limited degree of permeability, and which therefore do not permit fluid to pass through them in a flowable manner, include biologically compatible spacers made from bone, such as milled-bone allograft spacers or particle-bone allograft spacers that are freeze-dried and thereafter re-hydrated prior to insertion, or any other type of non-porous spacer made from bone. Under the definition above, the presence or absence of surface porosity on an object, such as an intervertebral spacer, is irrelevant to whether the object is porous or non-porous. The spacer 10 is thus constructed from a rigid, non-resilient load-bearing material, one that is preferably incapable of elastic deformation. The spacer 10, by its anterior, convex sidewall 12 and its posterior, concave sidewall 14, has thereby a concavo-convex contour with respect to one dimension.


[0040] It is to be understood that the concept of an object having a concavo-convex contour with respect to one dimension of the object, as referred to herein, shall not require the concave and convex sides of the object to be parallel to one another, although such is preferred. The concept does however refer to a dimension in which the concave and convex sides of the object are at least partially facing the direction of that dimension, as indicated by the dimension 16 of FIG. 1 in relation to the spacer 10. It is also to be understood that the concept of an object being concavo-convex in a single dimension shall thereby include an object that has concave and convex sides 14 and 12 in a horizontal dimension 16, even though those very same sides are linear in a vertical dimension 20 at all points, such as in the case of the spacer 10 shown in FIG. 1. For example, the spacer 10 is concavo-convex in the anterior-posterior direction 16, though not in a medial-lateral direction 18 or vertical direction 20.


[0041] The upper surface 22 of the spacer 10 is preferably a planer, discontinuous surface having a plurality of spaced-apart elongate recesses 24, with preferably a corner point 28 whereby one side 26 of the spacer 10 begins tapering in the medial-lateral direction 18, as shown most clearly in FIG. 3. The primary taper of the spacer 10 occurs in the anterio-to-posterior direction 16, in that the spacer 10 narrows in thickness in a continuous manner along substantially the entire spacer 10 as shown most clearly in FIG. 4. The upper surface 22 and lower surface 30 form an acute angle relative to a horizontal plane 23, the angle being with a range of preferably two to eight degrees, most preferably four degrees. The entire taper is therefore most preferably an eight degree total taper, with four degrees of taper resulting from the upper surface 22 and the other four degrees of taper resulting from the lower surface 30.


[0042] As shown most clearly in FIG. 2, the spacer 10 has an arc-length AL that is preferably 1.218 inches, a width W that is preferably 0.320 inches, a depth D that is preferably 0.532 inches, an inner radius R2 that is 0.271 inches, an outer radius R1 that is preferably 0.591 inches, and side radii R3 and R4 that are each preferably 0.160 inches.


[0043] The anterior, convex sidewall 12 and the posterior, concave sidewall 14 of the spacer 10 are each preferably linear in the vertical dimension 20, and are most preferably parallel relative to one another.


[0044] The primary goal in intervertebral fusion are immobilization of the affected vertebrae, restoration of the spinal disc space and sagittal alignment, and to provide an environment for bony fusion between vertebral bodies. Applicants have discovered that these goals are most effectively accomplished by the mechanical principle of a cantilever. Using the spacer 10 as a compression point, a cantilever is constructed within the disc space as shown most clearly in FIG. 8D. The procedure for accomplishing this is as follows.


[0045]
FIG. 8A is a schematic side, internal view of the vertebral bodies 31 indicated in FIG. 5. The spinal disc 33 resides between the vertebral bodies 31, all of which reside between the anterior longitudinal ligament (ALL) 36 and the posterior longitudinal ligament (PLL) 38. The dural nerve (Dura) 40 resides posteriorly to the vertebral bodies 31 and the PLL 38.


[0046] Referring now to FIG. 8B and FIG. 9, posterior access to the spine of the patient (not shown) is accomplished. Posterior instrumentation, preferably pedicle screws 42 (FIG. 9), are affixed to posterior pedicle portions 34 of the vertebral bodies 31. The associated rods 44 and structure interconnecting the rods 44 with the pedicle screws 42 are not affixed until later on in the procedure. A posterior portion of the lower vertebral body involved in the fusion, namely, the left inferior articular facet, is removed and saved for future autogenous bone grafting. A lamina spreader (not shown, but indicated in FIGS. 8B and 8C), is placed between the spinous processes 35 (shown in FIG 5), and is operated to spread the adjacent vertebral bodies 31 apart. The anterior longitudinal ligament 36 and posterior longitudinal ligament 38 are left intact and need not be retracted.


[0047] After coagulation of the veins (not shown), the incision 32 (FIG. 5) is made, preferably with a #15 scalpel, or any suitable surgical instrument, in a side section of the anulus 37. The disc 33 is then detached from the vertebral end plates (not shown) with the proper surgical instrumentation, and is removed through the incision 32. Care is taken not to violate the bony vertebral end plate, which would cause excessive bleeding and compromise the resistance to axial load when the spacer 10 is inserted.


[0048] When as much disc material has been removed as can safely be accomplished, a trial spacer 50 is used to determine the correct spacer size. The trial spacer 50 preferably has the same shape as the spacer 10, both of which are part of a set having various sizes, except that the trial spacer 50 does not include the recesses 24. The trial spacer 50 is inserted into the incision 32 with a sheathed trocar device 52. The main purpose of trial spacer 50 is to evaluate a snugness of fit of said trial spacer 50 as it resides between the adjacent vertebral bodies 31, which enables the surgeon to determine a spacer size thereby. The trial spacer 50 may also have sharp edging, and is useable to clear away any remaining unwanted tissue.


[0049] When the spacer size has been determined, a bone graft is prepared, preferably autogenous bone graft material 54 as shown in FIG. 8C. Care is taken to remove all soft tissue from the autogenous bone, which will facilitate successful osseointegration of the graft. Additional bone can also be harvested from the spinous processes 35. The harvested autogenous bone is then passed through a bone mill (not shown) to form suitable bone grafting material as known and understood to those having ordinary skill in the art.


[0050] The spacer 10 is inserted through the incision 32 with the sheathed trocar device 52. The sheathed trocar device 52 includes a trocar rod 56 preferably slidably disposed within a hollow sheath 58. The trocar rod 56 and the hollow sheath 58 may moveably engaged with each other in any suitable manner.


[0051] Both the trial spacer 50 and the spacer 10 preferably include a female-threaded opening 50a and 10a formed therein, respectively, in which a male-threaded portion 57 of the trocar rod 56 may be releasably inserted. The trocar rod 56 may of course be releasably attached to the trial spacer 50 and spacer 10 in any other suitable manner. The trocar rod 56 has a longer length than the sheath member 58, such that a proximal portion 60 of the trocar rod 56 protrudes from the sheath member 58 when the trocar rod 56 is attached to the trial spacer 50 or the spacer 10.


[0052] The sheathed trocar device 52 accordingly provides an efficiently stabilized, releasable connection with the spacer 10. With the trocar rod 56 being attached directly to the spacer 10, the sheath member 58 provides additional support by abutting up against the spacer and contactably circumscribing the point of the attachment of the trocar rod 56 with the spacer 10, thereby providing additional stability and control over the positioning of the spacer 10.


[0053] The surgeon then selectively positions the spacer 10 within the space residing between the adjacent vertebral bodies 31, preferably as far anteriorly as possible and most preferably such that the spacer 10 resides in contact with the anterior longitudinal ligament 36.


[0054] With the spacer 10 in place, the bone grafting material 54 is placed through the incision 32 and into position between the adjacent vertebral bodies 31, such that said bone grafting material 54 resides posteriorly to the concave sidewall 14 of the spacer 10, and thus between the sidewall 14 and the posterior longitudinal ligament 38. A bone funnel (not shown) as known to those having ordinary skill in the field may be used to funnel morselized bone grafting material into the incision 32.


[0055] It is noted that the concavo-convex shape of the spacer 10, and the method of implantation with the spacer 10 residing as far anteriorly as possible, operates to provide a larger bone-graft interface between the adjacent vertebral bodies 31.


[0056] Referring now to FIG. 8D and FIG. 9, the lamina spreader is removed and the pedicle screws 42 are interconnected with the rods 44 as known in the field. Mild compression is applied by a compression instrument 46 to thereby slide rods 44 downwardly, after which the pedicle screws 42 are tightened to hold the rods 44 in place and maintain the compression. Further compression is applied as desired, with the result being illustrated schematically in FIG. 8D. The bone grafting material 54 is thereby loaded in compression by the posteriorly compressed adjacent vertebral bodies 31 as shown. After final inspection of the placement of the bone grafting material 54, routine closure of the wound is completed. The use of drains may be made at the discretion of the surgeon.


[0057] The spacer 10 thus operates to cause the adjacent vertebral bodies 31 to be suspended in the manner of a cantilever. The posterior compression provided by the pedicle screws 42 and rods 44, which may alternatively be provided by any other suitable holding structure, causes the adjacent vertebral bodies 31 to be brought closer together on their posterior side than on their anterior side, consistent with the natural sagittal alignment in which they were originally positioned, as understood by those having ordinary skill in the field.


[0058] It will be appreciated that the structure and apparatus of the trocar rod 56 and sheath 58 constitute a positioning means for enabling a surgeon to adjust a position of the spacer 10 when the spacer 10 resides between the adjacent intervertebral bodies 31. That structure is merely one example of a means for positioning the spacer 10, and it should be appreciated that any structure, apparatus or system for positioning which performs functions that are the same as, or equivalent to, those disclosed herein are intended to fall within the scope of a means for positioning, including those structures, apparatus or systems for positioning which are presently known, or which may become available in the future. Anything which functions the same as, or equivalently to, a means for positioning falls within the scope of this element.


[0059] In accordance with the features and combinations described above, a preferred method of implanting an artificial intervertebral disc includes:


[0060] (a) making an incision in an anulus of a human spinal column between adjacent vertebral bodies of said spinal column to thereby expose a space residing between said adjacent vertebral bodies;


[0061] (b) inserting a spacing member through the incision and into position between the adjacent vertebral bodies, and positioning said spacing member at an anterior location with respect to the spinal column such that more intervertebral space resides posteriorly to said spacing member than anteriorly thereto;


[0062] (c) applying compression to posterior portions of the adjacent vertebral bodies.


[0063] It is to be understood that the above-described arrangements are only illustrative of the application of the principles of the present invention. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention and the appended are intended to cover such modifications and arrangements. Thus, while the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiment(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications, including, but not limited to, variations in size, materials, shape, form, function and manner of operation, assembly and use may be made without departing from the principles and concepts set forth herein.

Claims
  • What is claimed is:
  • 48. The intervertebral spacing implant of claim 47, wherein the spacing member comprises metal.
  • 49. The intervertebral spacing implant of claim 48, wherein the spacing member comprises titanium.
  • 50. The intervertebral spacing implant of claim 47, wherein the spacing member comprises ceramic.
  • 51. The intervertebral spacing implant of claim 47, wherein the spacing member includes an anterior wall and a posterior wall, and wherein the external concavo-convex contour of the spacer is defined by the posterior wall being concave in a horizontal dimension and by the anterior wall being convex in a horizontal dimension.
  • 52. The intervertebral spacing implant of claim 51, wherein the anterior wall and the posterior wall of the spacing member are each linear in a vertical dimension.
  • 53. The intervertebral spacing implant of claim 52, wherein the concavo-convex contour comprises a concave posterior side, and a convex anterior side disposed in a substantially parallel orientation with respect to the concave posterior side.
  • 54. The intervertebral spacing implant of claim 47, wherein the imaginary arcuate centerline enables said spacing member to be inserted through an incision along an arcuate insertion path.
  • 55. The intervertebral spacing implant of claim 54, wherein the spacing member is configured and adapted to be inserted along said arcuate insertion path in a manner such that said arcuate insertion path coincides with the imaginary arcuate centerline of said spacing member.
  • 56. The intervertebral spacing implant of claim 47, wherein the spacing member further comprises a disc-like member having a thickness at a thickest part of the spacing member, and a length that is greater in length than said thickness at said thickest part, and a width that is greater in width than said thickness at said thickest part.
  • 57. The intervertebral spacing implant of claim 56, wherein the thickness of the spacing member is defined by a perimeter wall that constitutes the concave side and the convex side of the external concavo-convex contour of said spacing member.
  • 58. The intervertebral spacing implant of claim 47, wherein the spacing member further comprises an upper side having a plurality of spaced-apart recesses formed therein.
  • 59. The intervertebral spacing implant of claim 58, wherein the recesses are elongate and are disposed in a substantially parallel orientation with respect to each other.
  • 60. The intervertebral spacing implant of claim 59, wherein the recesses extend in an anterior-to-posterior direction.
  • 61. The intervertebral spacing implant of claim 47, said spacing member having a discontinuous upper surface.
  • 62. The intervertebral spacing implant of claim 47, wherein said spacing member comprises a tapered external shape such that said spacing member narrows in thickness in a first direction.
  • 63. The intervertebral spacing implant of claim 62, wherein the tapered external shape of said spacing member narrows in thickness in a continuous manner along a majority width of said spacing member in an anterior-to-posterior direction.
  • 64. The intervertebral spacing implant of claim 63, wherein the spacing member includes an upper surface that forms a first acute angle with respect to a horizontal plane, said first acute angle being in a range of two to six degrees.
  • 65. The intervertebral spacing implant of claim 63, the spacing member having a discontinuous upper surface.
  • 66. The intervertebral spacing implant of claim 65, wherein the upper surface includes a plurality of elongate recesses formed therein, said recesses extending in an anterior-to-posterior direction.
  • 67. The intervertebral spacing implant of claim 64, wherein the spacing member includes a lower surface that forms a second acute angle with respect to a horizontal plane, said second acute angle being in a range of approximately two degrees to eight degrees.
  • 68. The intervertebral spacing implant of claim 67, wherein the first acute angle and the second acute angle are approximately four degrees with respect to a horizontal plane, for a total continuous taper of approximately eight degrees.
  • 69. The intervertebral spacing implant of claim 62, wherein said spacing member further comprises a convex side, and wherein the tapered external shape of said spacing member is adapted such that said spacing member narrows in thickness in an anterior-to-posterior direction when implanted with said convex side facing an anterior direction.
  • 70. The intervertebral spacing implant of claim 69, wherein the spacing member further comprises an upper surface, and wherein the tapered external shape of the spacing member is such that the upper surface of said spacing member defines a first acute angle with respect to a plane that is orthogonal to the convex side of the spacing member.
  • 71. The intervertebral spacing implant of claim 62, wherein the tapered external shape of said spacing member comprises a taper sufficient in degree to permit a lordosis spinal configuration to be restored when said spacing member is sandwiched between adjacent intervertebral bodies.
  • 72. The intervertebral spacing implant of claim 47, wherein the spacing member includes an upper surface and a lower surface, and wherein said upper surface and said lower surface are substantially parallel.
  • 73. The intervertebral spacing implant of claim 47, wherein the imaginary arcuate centerline extends between opposing free ends, said spacing member tapering in thickness in a direction toward one of said free ends such that the thickness at one end is greater than the thickness at the other end.
  • 74. The intervertebral spacing implant of claim 47, wherein said spacing member further comprising an upper surface and a lower surface, wherein at least one of said surfaces is multi-planar including at least two nonparallel planes.
  • 75. The intervertebral spacing implant of claim 47, wherein said spacing member further comprises an upper side having a plurality of spaced-apart ridges and valleys formed therein, wherein the ridges and valleys extend in an anterior-to-posterior direction.
  • 76. The intervertebral spacing implant of claim 47, wherein said spacing member further comprises attachment means for releasably attaching positioning means to said spacing member.
  • 77. The intervertebral spacing implant of claim 76, wherein said attachment means for releasably attaching positioning means to said spacing member comprises a recess in said spacing member.
  • 78. The intervertebral spacing implant of claim 77, wherein said attachment means for releasably attaching positioning means to said spacing member comprises a threaded bore.
  • 79. The intervertebral spacing implant of claim 47, wherein said implant is made of bone.
  • 80. The intervertebral spacing implant of claim 47, wherein said implant is inert.
  • 81. An intervertebral spacing implant comprising:
  • 82. The intervertebral spacing implant of claim 81, wherein the spacing member comprises metal.
  • 83. The intervertebral spacing implant of claim 82, wherein the spacing member comprises titanium.
  • 84. The intervertebral spacing implant of claim 81, wherein the spacing member comprises ceramic.
  • 85. The intervertebral spacing implant of claim 81, wherein the spacing member defines an imaginary arcuate centerline residing between opposing sides of the external concavo-convex contour of said spacing member, said arcuate centerline forming less than half a circle.
  • 86. The intervertebral spacing implant of claim 81, wherein the spacing member further comprises an upper side having a plurality of spaced-apart ridges and valleys formed therein.
  • 87. The intervertebral spacing implant of claim 86, wherein the ridges and valleys are disposed in a substantially parallel orientation with respect to each other.
  • 88. The intervertebral spacing implant of claim 87, wherein the ridges and valleys extend in an anterior-to-posterior direction.
  • 89. The intervertebral spacing implant of claim 81, wherein the spacing member includes an upper surface and a lower surface, and wherein said upper surface and said lower surface are substantially parallel.
  • 90. The intervertebral spacing implant of claim 81, wherein the spacing member defines an imaginary arcuate centerline extending between opposing free ends, said spacing member tapering in thickness in a direction toward one of said free ends such that the thickness at one end is greater than the thickness at the other end.
  • 91. The intervertebral spacing implant of claim 81, wherein said spacing member further comprises an upper surface and a lower surface, wherein at least one of said surfaces is multi-planar including at least two nonparallel planes.
  • 92. The intervertebral spacing implant of claim 81, wherein said spacing member further comprises attachment means for releasably attaching positioning means to said spacing member.
  • 93. The intervertebral spacing implant of claim 92, wherein said attachment means for releasably attaching positioning means to said spacing member comprises a recess in said spacing member.
  • 94. The intervertebral spacing implant of claim 93, wherein said attachment means for releasably attaching positioning means to said spacing member comprises a threaded bore.
  • 95. The intervertebral spacing implant of claim 81, wherein said spacing member comprises a tapered external shape such that said spacing member narrows in thickness in an anterior-to-posterior direction.
  • 96. The intervertebral spacing implant of claim 81, wherein the spacing member includes an upper surface that forms a first acute angle with respect to a horizontal plane, said first acute angle being in a range of two to six degrees.
  • 97. The intervertebral spacing implant of claim 96, wherein the spacing member includes a lower surface that forms a second acute angle with respect to a horizontal plane, said second acute angle being in a range of approximately two degrees to eight degrees.
  • 98. The intervertebral spacing implant of claim 97, wherein the first acute angle and the second acute angle are each approximately four degrees with respect to a horizontal plane, for a total continuous taper of approximately eight degrees.
  • 99. The intervertebral spacing implant of claim 81, wherein the thickest part of the spacing member is at the anterior wall corresponding to the convex contour.
  • 100. The intervertebral spacing implant of claim 81, wherein said implant is made of bone.
  • 101. The intervertebral spacing implant of claim 81, wherein said implant is inert.
  • 102. An intervertebral spacing implant comprising:
  • 103. The intervertebral spacing implant of claim 102, wherein the spacing member is either inherently non-porous or is otherwise rendered non-porous.
  • 104. The intervertebral spacing implant of claim 102, wherein the spacing member is constructed from a rigid, non-resilient load-bearing material.
  • 105. The intervertebral spacing implant of claim 102, wherein the arcuate centerline forms less than half a circle.
  • 106. The intervertebral spacing implant of claim 102, wherein the spacing member comprises metal.
  • 107. The intervertebral spacing implant of claim 106, wherein the spacing member comprises titanium.
  • 108. The intervertebral spacing implant of claim 102, wherein the spacing member is porous.
  • 109. The intervertebral spacing implant of claim 102, wherein the spacing member includes an upper surface and a lower surface, and wherein said upper surface and said lower surface are substantially parallel.
  • 110. The intervertebral spacing implant of claim 102, wherein said spacing member further comprising an upper surface and a lower surface, wherein at least one of said surfaces is multi-planar including at least two nonparallel planes.
  • 111. The intervertebral spacing implant of claim 102, wherein said spacing member further comprises an upper side having a plurality of spaced-apart ridges and valleys formed therein, wherein the ridges and valleys extend in an anterior-to-posterior direction.
  • 112. The intervertebral spacing implant of claim 102, wherein said spacing member further comprises attachment means for releasably attaching positioning means to said spacing member.
  • 113. The intervertebral spacing implant of claim 112, wherein said attachment means for releasably attaching positioning means to said spacing member comprises a recess in said spacing member.
  • 114. The intervertebral spacing implant of claim 113, wherein said attachment means for releasably attaching positioning means to said spacing member comprises a threaded bore.
  • 115. The intervertebral spacing implant of claim 102, wherein the spacing member comprises ceramic.
  • 116. The intervertebral spacing implant of claim 102, wherein the spacing member includes an anterior wall and a posterior wall, and wherein the external concavo-convex contour of the spacer is defined by the posterior wall being concave in a horizontal dimension and by the anterior wall being convex in a horizontal dimension.
  • 117. The intervertebral spacing implant of claim 116, wherein the anterior wall and the posterior wall of the spacing member are each linear in a vertical dimension.
  • 118. The intervertebral spacing implant of claim 117, wherein the concavo-convex contour comprises a concave posterior side, and a convex anterior side disposed in a substantially parallel orientation with respect to the concave posterior side.
  • 119. The intervertebral spacing implant of claim 102, wherein the imaginary arcuate centerline enables said spacing member to be inserted through an incision along an arcuate insertion path.
  • 120. The intervertebral spacing implant of claim 119, wherein the spacing member is configured and adapted to be inserted along said arcuate insertion path in a manner such that said arcuate insertion path coincides with the imaginary arcuate centerline of said spacing member.
  • 121. The intervertebral spacing implant of claim 102, wherein the spacing member further comprises a disc-like member having a thickness at a thickest part of said spacing member, and a length that is greater in length than said thickness at said thickest part, and a width that is greater in width than said thickness at said thickest part.
  • 122. The intervertebral spacing implant of claim 102, wherein the thickness of the spacing member is defined by a perimeter wall that constitutes the concave side and the convex side of the external concavo-convex contour of said spacing member.
  • 123. The intervertebral spacing implant of claim 102, wherein the spacing member further comprises an upper side having a plurality of spaced-apart recesses formed therein.
  • 124. The intervertebral spacing implant of claim 123, wherein the recesses are elongate and are disposed in a substantially parallel orientation with respect to each other.
  • 125. The intervertebral spacing implant of claim 124, wherein the recesses extend in an anterior-to-posterior direction.
  • 126. The intervertebral spacing implant of claim 102, said spacing member having a discontinuous upper surface.
  • 127. The intervertebral spacing implant of claim 102, wherein said spacing member comprises a tapered external shape such that said spacing member narrows in thickness in a first direction.
  • 128. The intervertebral spacing implant of claim 127, wherein the tapered external shape of said spacing member narrows in thickness in a continuous manner along a majority width of said spacing member in an anterior-to-posterior direction.
  • 129. The intervertebral spacing implant of claim 128, wherein the spacing member includes an upper surface that forms a first acute angle with respect to a horizontal plane, said first acute angle being in a range of two to six degrees.
  • 130. The intervertebral spacing implant of claim 128, the spacing member having a discontinuous upper surface.
  • 131. The intervertebral spacing implant of claim 130, wherein the upper surface includes a plurality of elongate recesses formed therein, said recesses extending in an anterior-to-posterior direction.
  • 132. The intervertebral spacing implant of claim 129, wherein the spacing member includes a lower surface that forms a second acute angle with respect to a horizontal plane, said second acute angle being in a range of approximately two degrees to eight degrees.
  • 133. The intervertebral spacing implant of claim 132, wherein the first acute angle and the second acute angle each form a continuous acute angle of approximately four degrees with respect to a horizontal plane, for a total continuous taper of approximately eight degrees.
  • 134. The intervertebral spacing implant of claim 127, wherein said spacing member further comprises a convex side, and wherein the tapered external shape of said spacing member is adapted such that said spacing member narrows in thickness in an anterior-to-posterior direction when implanted with said convex side facing an anterior direction.
  • 135. The intervertebral spacing implant of claim 134, wherein the spacing member further comprises an upper surface, and wherein the tapered external shape of the spacing member is such that the upper surface of said spacing member defines a first acute angle with respect to a plane that is orthogonal to the convex side of the spacing member.
  • 136. The intervertebral spacing implant of claim 127, wherein the tapered external shape of said spacing member comprises a taper sufficient in degree to permit a lordosis spinal configuration to be restored when said spacing member is sandwiched between adjacent intervertebral bodies.
  • 137. The intervertebral spacing implant of claim 102, wherein said implant is made of bone.
  • 138. The intervertebral spacing implant of claim 102, wherein said implant is inert.
  • 139. An intervertebral spacing implant comprising:
  • 140. The intervertebral spacing implant of claim 139, wherein the spacing member is either inherently non-porous or is otherwise rendered non-porous.
  • 141. The intervertebral spacing implant of claim 139, wherein the spacing member is constructed from a rigid, non-resilient load-bearing material.
  • 142. The intervertebral spacing implant of claim 139, wherein the spacing member defines an imaginary arcuate centerline extending between opposing free ends, wherein the arcuate centerline forms less than half a circle.
  • 143. The intervertebral spacing implant of claim 139, wherein the spacing member comprises metal.
  • 144. The intervertebral spacing implant of claim 143, wherein the spacing member comprises titanium.
  • 145. The intervertebral spacing implant of claim 139, wherein the spacing member comprises ceramic.
  • 146. The intervertebral spacing implant of claim 139, wherein the spacing member includes an anterior wall and a posterior wall, and wherein the external concavo-convex contour of the spacer is defined by the posterior wall being concave in a horizontal dimension and by the anterior wall being convex in a horizontal dimension.
  • 147. The intervertebral spacing implant of claim 146, wherein the anterior wall and the posterior wall of the spacing member are each linear in a vertical dimension.
  • 148. The intervertebral spacing implant of claim 147, wherein the concavo-convex contour comprises a concave posterior side, and a convex anterior side disposed in a substantially parallel orientation with respect to the concave posterior side.
  • 149. The intervertebral spacing implant of claim 142, wherein the imaginary arcuate centerline enables said spacing member to be inserted through an incision along an arcuate insertion path.
  • 150. The intervertebral spacing implant of claim 149, wherein the spacing member is configured and adapted to be inserted along said arcuate insertion path in a manner such that said arcuate insertion path coincides with the imaginary arcuate centerline of said spacing member.
  • 151. The intervertebral spacing implant of claim 139, wherein the spacing member further comprises a disc-like member having a thickness at a thickest part of said spacing member, and a length that is greater in length than said thickness at said thickest part, and a width that is greater in width than said thickness at said thickest part.
  • 152. The intervertebral spacing implant of claim 151, wherein the thickness of the spacing member is defined by a perimeter wall that constitutes the concave side and the convex side of the external concavo-convex contour of said spacing member.
  • 153. The intervertebral spacing implant of claim 139, wherein said upper surface comprises a plurality of spaced-apart recesses formed therein.
  • 154. The intervertebral spacing implant of claim 153, wherein the recesses are elongate and are disposed in a substantially parallel orientation with respect to each other.
  • 155. The intervertebral spacing implant of claim 154, wherein the recesses extend in an anterior-to-posterior direction.
  • 156. The intervertebral spacing implant of claim 139, wherein said upper surface is discontinuous.
  • 157. The intervertebral spacing implant of claim 139, wherein said spacing member comprises a tapered external shape such that said spacing member narrows in thickness in a first direction.
  • 158. The intervertebral spacing implant of claim 157, wherein the tapered external shape of said spacing member narrows in thickness in a continuous manner along a majority width of said spacing member in an anterior-to-posterior direction.
  • 159. The intervertebral spacing implant of claim 158, wherein said upper surface forms a first acute angle with respect to a horizontal plane, said first acute angle being in a range of two to six degrees.
  • 160. The intervertebral spacing implant of claim 159, wherein said lower surface forms a second acute angle with respect to a horizontal plane, said second acute angle being in a range of approximately two degrees to eight degrees.
  • 161. The intervertebral spacing implant of claim 160, wherein the first and second acute angles each form a continuous acute angle of approximately four degrees with respect to a horizontal plane, for a total continuous taper of approximately eight degrees.
  • 162. The intervertebral spacing implant of claim 157, wherein said spacing member further comprises a convex side, and wherein the tapered external shape of said spacing member is adapted such that said spacing member narrows in thickness in an anterior-to-posterior direction when implanted with said convex side facing an anterior direction.
  • 163. The intervertebral spacing implant of claim 162, wherein the tapered external shape of the spacing member is such that the upper surface of said spacing member defines a first acute angle with respect to a plane that is orthogonal to the convex side of the spacing member.
  • 164. The intervertebral spacing implant of claim 157, wherein the tapered external shape of said spacing member comprises a taper sufficient in degree to permit a lordosis spinal configuration to be restored when said spacing member is sandwiched between adjacent intervertebral bodies.
  • 165. The intervertebral spacing implant of claim 139, wherein said upper surface and said lower surface are substantially parallel.
  • 166. The intervertebral spacing implant of claim 139, wherein the spacing member defines an imaginary arcuate centerline extending between opposing free ends, said spacing member tapering in thickness in a direction toward one of said free ends such that the thickness at one end is greater than the thickness at the other end.
  • 167. The intervertebral spacing implant of claim 139, wherein said upper surface comprises a plurality of spaced-apart ridges and valleys formed therein, wherein the ridges and valleys extend in an anterior-to-posterior direction.
  • 168. The intervertebral spacing implant of claim 139, wherein said spacing member further comprises attachment means for releasably attaching positioning means to said spacing member.
  • 169. The intervertebral spacing implant of claim 168, wherein said attachment means for releasably attaching positioning means to said spacing member comprises a recess in said spacing member.
  • 170. The intervertebral spacing implant of claim 169, wherein said attachment means for releasably attaching positioning means to said spacing member comprises a threaded bore.
  • 171. The intervertebral spacing implant of claim 139, wherein said spacing member is porous.
  • 172. The intervertebral spacing implant of claim 139, wherein said implant is made of bone.
  • 173. The intervertebral spacing implant of claim 139, wherein said implant is inert.
  • 174. An intervertebral spacing implant comprising:
  • 175. The intervertebral spacing implant of claim 174, wherein said implant is made of bone.
  • 176. The intervertebral spacing implant of claim 174, wherein said implant is inert.
  • 177. An intervertebral spacing implant comprising:
  • 178. An intervertebral spacing implant comprising:
  • 179. An intervertebral spacing implant comprising:
Cross-Reference To Related Applications

[0001] Not Applicable.

Statement Regarding Federally Sponsored Research or Development

[0002] Not Applicable.