The present application relates to intervertebral implants configured to promote intervertebral fusion and associated methods thereof.
The goal of spine surgery may be for fusion of the two vertebrae adjacent to the targeted disc level, which may be accomplished through an interbody cage procedure, for example. The endplates of the implant come into contact with the patient's vertebral endplates, and the structure of the implant's endplates may be used to promote fusion between the implant and the vertebral endplates.
Fusion may also be enhanced by packing the implant with a graft material. Pre-packing an implant with graft material can result in some graft material falling out during the insertion procedure as well as missing out on available void space, such as for expandable implants. After expansion, some expandable implants will have an increase of volume that could be used as a graft window; however, this volume cannot be pre-packed because of the expansion of space after implantation.
Post-packing the implant may also be used to fill the implant with graft material. For example, the implant may be backfilled through the inserter or post-packed with another instrument. A complication that may arise when post-packing without the inserter is that it can be difficult to engage the implant once the inserter is removed. Therefore, it may be beneficial to provide a system that allows for better post-packing of the implant.
To meet this and other needs, endplates having geometries designed for enhanced bone fusion, intervertebral implants, such as expandable implants, utilizing such endplates, and methods of increasing bone graft packing are provided. The endplate geometries and improved packing methods may promote and enhance bone growth and fusion.
According to one embodiment, an implant, such as an expandable implant, includes a superior endplate and an inferior endplate. Each of the endplates may include a first portion having a solid structure and a second portion having a porosity. The first portion comprises a plurality of transverse struts having voids located between the struts and the second portion comprises a lattice structure formed in the voids of the solid structure.
In another embodiment, an intervertebral implant includes a superior endplate and an inferior endplate expandably connected to the superior endplate. Each of the superior endplate and the inferior endplate includes a rigid structure having a plurality of voids formed therein, wherein a lattice structure is formed in at least some of the plurality of voids.
In still another embodiment, an intervertebral implant includes an endplate comprising a first portion defining a central opening extending therethrough and a plurality of voids formed therein. A second portion having a lattice structure defined by a plurality of pores is located around the generally central opening and in at least some off the plurality of voids.
In an alternative embodiment, a bone funnel tube assembly can be used to inject graft material into the implant after the implant has been implanted into a patient. The bone funnel tube includes a hollow inserter that is releasably attached to the implant and is used to insert the implant between two adjacent vertebral discs. A funnel tube is inserted into and can be releasably attached to the inserter to prevent the funnel tube from inadvertently dislodging. A funnel is attached to a proximal end of the funnel tube to assist in inserting the graft material into the funnel tube. A graft pusher can be inserted into the funnel tube through the funnel to push the graft material through the funnel tube.
Also provided are methods for installing, expanding, and backfilling the implants, and kits including implants and components for the same.
Other aspects, features, and advantages of the present device will become more fully apparent from the following detailed description, the appended claims, and the accompanying drawings in which like reference numerals identify similar or identical elements.
In the drawings, like numerals indicate like elements throughout. Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present device. The terminology includes the words specifically mentioned, derivatives thereof and words of similar import. As used herein, the term “proximal” is defined as a direction closer to a clinician inserting the bone funnel tube of the present invention and the term “distal” is defined as a direction farther from the clinician inserting the bone funnel tube of the present invention.
The embodiments illustrated below are not intended to be exhaustive or to limit the device to the precise form disclosed. These embodiments are chosen and described to best explain the principle of the device and its application and practical use and to enable others skilled in the art to best utilize the device.
Reference herein to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment of the device. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments necessarily mutually exclusive of other embodiments. Features of one embodiment may be included in another embodiment.
As used in this application, the word “exemplary” is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the word exemplary is intended to present concepts in a concrete fashion.
Additionally, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form.
Unless explicitly stated otherwise, each numerical value and range should be interpreted as being approximate as if the word “about” or “approximately” preceded the value of the value or range.
The use of figure numbers and/or figure reference labels in the claims is intended to identify one or more possible embodiments of the claimed subject matter in order to facilitate the interpretation of the claims. Such use is not to be construed as necessarily limiting the scope of those claims to the embodiments shown in the corresponding figures.
It should be understood that the steps of any exemplary methods set forth herein are not necessarily required to be performed in the order described, and the order of the steps of such methods should be understood to be merely exemplary. Likewise, additional steps may be included in such methods, and certain steps may be omitted or combined, in methods consistent with various embodiments of the present device.
Although the elements in the following method claims, if any, are recited in a particular sequence with corresponding labeling, unless the claim recitations otherwise imply a particular sequence for implementing some or all of those elements, those elements are not necessarily intended to be limited to being implemented in that particular sequence.
Also for purposes of this description, the terms “couple,” “coupling,” “coupled,” “connect,” “connecting,” or “connected” refer to any manner known in the art or later developed of joining or connecting two or more elements directly or indirectly to one another, and the interposition of one or more additional elements is contemplated, although not required.
According to one embodiment, an implant, such as an expandable implant, includes at least a portion of the device having a solid structure and another portion of the device having a lattice structure with a porosity defined by the lattice network. In particular, it may be desirable for the endplates to have a composite structure with a portion being solid and a portion being porous. In an exemplary embodiment, the implant device or components thereof (e.g., the endplates) may be 3D printed to obtain the composite structure (solid structure combined with porous structure). The parts may be 3D printed with materials, such as biocompatible materials, including metals, polymers, ceramics or combinations thereof. Biocompatible metals may include titanium, titanium alloys, cobalt-chrome, stainless steel, or the like and biocompatible plastics, such as PEEK may be suitable. In an exemplary embodiment, the material for both the solid structure and the lattice structure can be Ti-6Al-4V extra low interstitials (TAV ELI) according to ASTM standard F3001, although those skilled in the art will recognize that other materials can be used. It is also envisioned that the solid structure material could be different from the lattice structure material. It may be desirable, however, that the lattice material be porous or more porous relative to the solid structure material (e.g., non-porous). It is also contemplated that one or more components of the device (e.g., the inner workings of the implant) may be machined or otherwise produced according to standard techniques and are not necessarily 3D printed components.
Various forms of additive manufacturing, or 3D printing, have been developed which allow structures to be formed layer by layer. One illustrative 3D printing technology is Direct Metal Laser Sintering (DMLS) or Selective Laser Melting (SLM) where parts are built using a laser to selectively sinter (heat and fuse) a powdered metal material into layers. The process begins once a 3D CAD file is mathematically sliced into multiple 2D cross sections and uploaded into the system. After the first layer is produced, the build platform is lowered, another powder layer is spread across the plate, and the laser sinters the second layer. This process is repeated until the part is complete. Layer-by-layer manufacturing allows for the direct fabrication of complex parts that would be cost-prohibitive, and often impossible, to produce through traditional manufacturing processes. The powder layer thickness used during the fabrication of the spacers may be as thin at 30 μm. The resolution of the laser may be as fine as 70 μm. Although it is envisioned that any suitable thickness or laser resolution may be used or selected.
The disclosure is not limited to DMLS, but various 3D printing methods may be utilized. For example, VAT Photopolymerization utilizes a vat of liquid photopolymer resin which is cured through selective exposure to light (via a laser or projector) which then initiates polymerization and converts the exposed areas to a solid part. As another example, Powder Bed Fusion, of which DMLS is a subcategory, utilizes powdered materials which are selectively consolidated by melting it together using a heat source such as a laser or electron beam. The powder surrounding the consolidated part acts as support material for overhanging features. As yet another example, in Binder Jetting Liquid bonding agents are selectively applied onto thin layers of powdered material to build up parts layer by layer. The binders include organic and inorganic materials. Metal or ceramic powdered parts are typically fired in a furnace after they are printed. Material Jetting is another example of a 3D printing process which may be utilized wherein droplets of material are deposited layer by layer to make parts. Common varieties include jetting a photocurable resin and curing it with UV light, as well as jetting thermally molten materials that then solidify in ambient temperatures. As another example, in Sheet Lamination sheets of material are stacked and laminated together to form an object. The lamination method can be adhesives or chemical (paper/plastics), ultrasonic welding, or brazing (metals). Unneeded regions are cut out layer by layer and removed after the object is built. Another example of a 3D printing process that may be utilized is Material Extrusion wherein material is extruded through a nozzle or orifice in tracks or beads, which are then combined into multi-layer models. Common varieties include heated thermoplastic extrusion and syringe dispensing. Yet another example is Directed Energy Deposition wherein powder or wire is fed into a melt pool which has been generated on the surface of the part where it adheres to the underlying part or layers by using an energy source such as a laser or electron beam.
The implants of the disclosure may be manufactured from any of these or other additive manufacturing processes currently known or later developed. The implants may also be manufactured utilizing a combination of additive manufacturing processes and other manufacturing processes, for example, laser etching. Additionally, the implants may be further processed during and/or after manufacture utilizing various techniques, for example, abrasion, machining, polishing, or chemical treatment.
Referring to
In an exemplary embodiment, shown in
The expanded implant 100 provides for disc height restoration and ensures maximum contact with the vertebral endplates (not shown) of the patient. Those skilled in the art, however, will recognize that, for purposes of this disclosure, implant 100 can omit the expander 190 and merely include a superior surface (superior endplate 110) and an inferior surface (inferior endplate 150) with an integral body therebetween, for example, as a traditional interbody fusion spacer or scaffold.
Referring to
The solid portions 111 and/or the porous portions 113 may be constructed, for example, using a 3D printing process. The lattice structure 140 forms a geometry that includes a plurality of microscopic struts or micro-lattice structure oriented in a trabecular fashion, for example, to create a micro-porosity that has the potential to promote bone fusion.
The porosity of the lattice structure 140 may have a randomized pattern of open pores 142 or a repeating pattern of open pores 142. The lattice structure 140 may have a suitable porosity (open volume). For example, the porosity of the structure 140 may be greater than 50% open, greater than 60% open, greater than 70% open, or approximately 70% open, or approximately 75% open. The porosity of the structure 140 may feature interconnected pores or open pores. The porosity of the structure 140 may have pores, for example, ranging from approximately 100 μm-2 mm, approximately 100 μm-1 mm, approximately 200-900 μm, or approximately 300-800 μm in diameter. The pore size may have an average pore size of about 300-800 μm, about 400-700 μm, or about 500-600 μm. The pore size distribution may be unimodal or bi-modal. Although spherical or partially-spherical pores or nodes are exemplified in forming the porous structure, it is envisioned that other suitable pore shapes and configurations may be used, for example, repeating or random patterns of cylinders, cubes, cones, pyramids, polyhedrons, or the like.
The combination of the porous and the solid material 111, 113 allows for a high strength to porosity ratio for implant 100. The advantage of this combination of solid and porous material 111, 113 allows for an increase in bone fusion due to the porosity characteristics of the lattice structure 140. The combination of porous and solid material 111, 113 allows for an increase in fusion while still maintaining the structural integrity required to support the necessary load that the implant 100 will be subjected to in the patient.
Referring to
Inner struts 114 may include a plurality of teeth 115, if desired, at a superior end thereof that extend transverse to the central longitudinal axis 112 and enable the implant 100 to better grip the vertebral endplates. A side view of the collapsed implant 100 can be seen in
Referring back to
The lattice structure 140 is formed in at least some of the plurality of voids 118, thereby connecting struts 114 to one another. In some embodiments, at least some of the plurality of voids can be devoid of the lattice structure 140 and may remain open for graft material, for example. As shown, an elongate and enlarged central opening 120 may extend through the superior endplate 110 along the central longitudinal axis 112 and is devoid of any lattice structure.
While a significant portion of each endplate 110, 150 is a mixture of solid and porous material, there are specific sections of each endplate 110, 150 that are porous entirely through from top to bottom, such as a void 128 at a tapered front portion 130, and a void 132 at a rear portion 134 of each endplate 110, 150, as well as in between the teeth 115.
The geometry mentioned above allows for porous material to be placed throughout a thickness of the endplate 150 while still maintaining its structural integrity. Additionally, the tapered front portion 130 of the endplate 150, shown in
The front portion 130 tapers toward the inferior endplate 150, wherein the front portion is devoid of the porous material. The front portion 130 includes the tapered front portion 130 extending generally transverse to the plurality of struts 114. Referring to
After implant 100 (or any other implant) is inserted between adjacent vertebrae, it may be desirable to add graft material to the implant 100. It is particularly desirous to add graft material after insertion if the implant is expandable (such as implant 100), due to the fact that the expansion of the implant is performed during the implantation process and can increase the volume available for graft filling.
To insert graft material into implant 100, an exemplary embodiment of a bone funnel tube assembly 200, shown in
Bone funnel tube assembly 200 has a funnel tube 210 that is inserted into the inserter 202 to direct graft material through the inserter 202 and into voids in the implant 100. A funnel 220 is attached to a proximal end 212 of the funnel tube 210. The proximal end 212 of the funnel tube 210 includes a longitudinally ribbed knob 214 that allows a clinician to readily grip the funnel tube 210 to insert the funnel tube 210 into the inserter 202.
In an exemplary embodiment, the funnel 220 can be fixedly connected to funnel tube 210. In an alternative embodiment, the funnel 220 can be releasably connected to the funnel tube 210, such as by a threaded connection. In this exemplary embodiment, the funnel tube 210 is merely slidingly inserted into the inserter 202, without any connection between the inserter 202 and the funnel tube 210.
It can be advantageous to restrict the motion of the bone funnel relative to the inserter and prevent the funnel tube from inadvertently disengaging from the inserter. Alternative embodiments that restrict motion of the bone funnel with respect to the inserted are described below with reference to bone funnel assemblies 300, 400, 500. In all of the described embodiments, the bone funnel can axially translate down the shaft of the inserter until the bone funnel bottoms out at the proximal face of the inserter.
A bone funnel tube assembly 300 according to an alternative exemplary embodiment is shown in
Mechanism 304 includes a pushbutton 306 that is biased away from the bone funnel tube 310 by biasing members 308, shown in
A first end 308A of biasing members 308 engages an interior surface of the pushbutton 306, while a second end 308B of the biasing members 308 engages an interior face 316 of the handle 305. The pushbutton 306 includes a tang 318 that wraps around the bone funnel tube 210 and extends into a slot 319 in the handle 305. Referring to
The funnel tube 310 includes a shaft 311 having a radial notch 313 that aligns with the tang 318 when the funnel tube 310 is bottomed out against the proximal end of the inserter 302. The notch 313 in the funnel tube shaft 311 allows the pushbutton 306 to spring back and return to its original location (shown in
Pressing on the top of the pushbutton 306 radially inwardly moves the tang 318 radially outwardly and out of the notch 313, allowing for the removal of the bone funnel 310 proximally from the inserter 302.
An alternative embodiment of a bone funnel tube assembly 400 is shown in
Another alternative embodiment of a bone funnel tube assembly 500 is shown in
A funnel tube 510 includes a radially extending groove 512 located at a predetermined length along the tube 510, distal from funnel 520, such that, when the funnel tube 510 is fully inserted into the inserter 502 and the knob 514 of the funnel tube 510 bottoms out on proximal end of the inserter 502, the grooves 504 and 512 line up with each other, allowing the spring 506 to expand into the groove 512 so that the spring 506 engages both the groove 504 and the groove 512, thereby securing the funnel tube 510 in the inserter 502. An effort on the part of the clinician is required to separate the bone funnel tube 510 from the inserter 502.
For any of assembly 200, 300, 400, 500, a graft pusher 600, shown in
The implant may utilize endplates 110, 150 having geometries designed for enhanced bone fusion and improved packing methods may further promote and enhance bone growth and fusion.
It will be further understood that various changes in the details, materials, and arrangements of the parts which have been described and illustrated in order to explain the nature of this device may be made by those skilled in the art without departing from the scope of the device as expressed in the following claims.
The present application is a continuation-in-part of U.S. patent application Ser. No. 15/815,091, filed on Nov. 16, 2017, which is continuation-in-part of U.S. application Ser. No. 15/189,188, filed on Jun. 22, 2016, which is a continuation-in-part of U.S. Ser. No. 15/014,189, filed Feb. 3, 2016. The present application is also a continuation-in-part of U.S. patent application Ser. No. 15/973,609 filed on May 8, 2018. The disclosures of all applications and patents mentioned herein are incorporated by reference herein in their entireties for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 15815091 | Nov 2017 | US |
Child | 16053300 | US | |
Parent | 15189188 | Jun 2016 | US |
Child | 15815091 | US | |
Parent | 15014189 | Feb 2016 | US |
Child | 15189188 | US | |
Parent | 15973609 | May 2018 | US |
Child | 15014189 | US |