The present invention relates generally to the field of programmable controllers for homes and/or buildings and their related grounds. More specifically, the present invention relates to simplified interfaces for such controllers having interview programming capabilities.
Controllers are used on a wide variety of devices and systems for controlling various functions in homes and/or buildings and their related grounds. Some controllers have schedule programming that modifies device parameter set points as a function of date and/or time. Some such device or system controllers that utilize schedule programming for controlling various functions in homes and/or buildings and their related grounds include, for example, HVAC controllers, water heater controllers, water softener controllers, security system controllers, lawn sprinkler controllers, and lighting system controllers.
HVAC controllers, for example, are employed to monitor and, if necessary, control various environmental conditions within a home, office, or other enclosed space. Such devices are useful, for example, in regulating any number of environmental conditions with a particular space including for example, temperature, humidity, venting, air quality, etc. The controller may include a microprocessor that interacts with other components in the system. For example, in many modern thermostats for use in the home, a controller unit equipped with temperature and humidity sensing capabilities may be provided to interact with a heater, blower, flue vent, air compressor, humidifier and/or other components, to control the temperature and humidity levels at various locations within the home. A sensor located within the controller unit and/or one or more remote sensors may be employed to sense when the temperature or humidity reaches a certain threshold level, causing the controller unit to send a signal to activate or deactivate one or more components in the system.
The controller may be equipped with an interface that allows the user to monitor and adjust the environmental conditions at one or more locations within the building. With more modern designs, the interface typically includes a liquid crystal display (LCD) panel inset within a housing that contains the microprocessor as well as other components of the controller. In some designs, the interface may permit the user to program the controller to activate on a certain schedule determined by the user. For example, the interface may include a separate menu routine that permits the user to change the temperature at one or more times during a particular day. Once the settings for that day have been programmed, the user can then repeat the process to change the settings for the other remaining days.
With more modern designs, the programmable controller may include a feature that allows the user to set a separate schedule for weekday and weekend use, or to copy the settings for a particular day and then apply them towards other selected days of the week. While these designs allow the user to copy settings from one day to another, a number of steps are often required to establish a program, adding to the complexity of the interface. In some cases, the interface may not permit the user to select multiple days outside of the normal weekday/weekend scheme. In other cases, the interface is simply too complex to be conveniently used to program a temperature scheme and is simply by-passed or not programmed by the user. Accordingly, there is an ongoing need in the art to decrease the time and complexity associated with programming a multi-day schedule in a programmable controller.
During the installation process, the steps required to program the controller to operate with other system components can also add to the time and complexity associated with configuring the controller. Typically, programming of the controller is accomplished by entering in numeric codes via a fixed segment user interface, by manually setting jumper switches on a circuit board, or by adjusting screws or potentiometers on a circuit board. In some cases, the codes or settings used to program the controller are obtained from a manual or table which must be consulted by the installer during the installation process. For example, to configure an HVAC system having a multistage heat pump, the controller may require the installer to enter a numeric or alphanumeric code (e.g. 91199) from a manual or table in order to program the controller to properly operate the various stages of the heat pump. Such process of referring to a manual or table of codes is not often intuitive to the user, and requires the user to store the manual in a safe place for subsequent use. Accordingly, there is also an ongoing need in the art to decrease the time and complexity associated with programming the controller during the installation process.
Generally, the present invention pertains to simplified interfaces for controllers having interview programming capabilities.
In one illustrative embodiment, a method of programming a schedule of a controller having a user interface is described. The illustrative method includes the steps of providing one or more interview questions to a user via the user interface; accepting one or more user responses to the one or more interview questions from the user via the user interface; and creating and/or modifying or building a schedule based on the user responses.
In another illustrative embodiment, a method of programming configuration information within a controller is further described. An illustrative method can include the steps of providing one or more interview questions to a user via a user interface, prompting the user to selected between at least two answers simultaneously displayed on the user interface, accepting one or more user responses to the interview questions via the user interface, and modifying the operational parameters of the controller and/or one or more components controlled by the controlled based at least in part on the user responses. The interview questions can include at least one question relating to the installation or setup of the controller as well as any components controlled by the controller.
An illustrative controller having interview programming capabilities can include an interview question generator adapted to generate a number of interview questions relating to the installation or setup of the controller and/or any components controlled by the controller, a user interface including a display screen adapted to display interview questions to a user along with at least two answers for each interview question, and a memory unit for storing operational parameters within the controller based at least in part on the user responses to the interview questions.
The above summary of the present invention is not intended to describe each disclosed embodiment or every implementation of the present invention. The Figures, Detailed Description and Examples which follow more particularly exemplify these embodiments.
The invention may be more completely understood in consideration of the following detailed description of various embodiments of the invention in connection with the accompanying drawings, in which:
While the invention is amenable to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention.
The following description should be read with reference to the drawings, in which like elements in different drawings are numbered in like fashion. The drawings, which are not necessarily to scale, depict selected embodiments and are not intended to limit the scope of the invention. Although examples of construction, dimensions, and materials are illustrated for the various elements, those skilled in the art will recognize that many of the examples provided have suitable alternatives that may be utilized.
Generally, the present invention pertains to simplified interfaces for controllers having interview programming capabilities. These controllers can be used in a variety of systems such as, for example, HVAC systems, water heater systems, water softener systems, sprinkler systems, security systems, lighting systems, and the like. The Figures depict HVAC controllers. While the present invention is not so limited, an appreciation of various aspects of the invention will be gained through a discussion of the examples provided below.
In some embodiments, the interview scheduling blocks 120 and 130 can provide interview questions that elicit an affirmative (e.g., “yes”) or negative (e.g., “no”) user response. Alternatively, or in addition, the interview scheduling blocks 120, and 130 can provide include interview questions that allow a user to select one (or more) answers from a predetermined list of answers.
In some embodiments, these interview questions can solicit information from the user regarding the grouping of the controller set points entered or the temporal relationship of the controller set points such as, for example, the interview question may ask “Do you want the schedule to apply to every day of the week?”, requiring the user to respond with a “YES” or “NO” answer. The interview scheduling block 120 preferably includes questions that are natural language questions, which may be phrases that have one, two, three, four, five, six, or seven or more words, although this is not required in all embodiments.
Alternatively, or in addition, interview scheduling block 130 can provide interview questions that require a numerical user response. For example, these interview questions can solicit information from the user regarding the specific time and temperature set points for each grouping of controller set points solicited by the interview block 120 described above. Interview block 130 can provide a question such as, for example, “What is a comfortable sleeping temperature in the winter?”, requiring the user to respond with a numerical temperature answer. Like interview schedule block 120 above, interview scheduling block 130 can include questions that are natural language questions, which may be phrases that have one, two, three, four, five, six, or seven or more words, although this is not required in all embodiments.
The interview scheduling blocks 120 and 130 can provide one or more interview questions about, for example, which weekdays will have the same schedule?, when a first person wakes up?, when a last person goes to sleep?, when a last person leaves during the day?, when a first person arrives home?, what a comfortable temperature is when heat is on?, what a comfortable temperature is when air conditioning is on?, what a comfortable sleeping temperature is in summer?, and/or what a comfortable sleeping temperature is in winter?
Alternatively, or in addition, the interview scheduling blocks 120 and 130 may provide one or more interview questions that provide a plurality of predetermined answers or responses (e.g., multiple choice format) where the user selects an answer or response. For example, the interview question may provide a question such as, “What type of schedule do you desire?” In this illustrative embodiment, a series of predetermined responses or answers can be provided such as, “Every day of the week is the same,” “Weekdays are the same and Saturday/Sunday is the same,” “Weekday are the same and Saturday/Sunday is different,” “Each Weekday is different and Saturday/Sunday is the same,” and “Each day of the week is different.”
Alternatively, or in addition, once an initial schedule has been built, the interview scheduling blocks 120, and 130 can display a previous answer that was accepted by the user interface based on the prior built schedule. This illustrative feature can provide the user with a convenient option to select and alter only the schedule parameters 140, 150 that the user desires to modify. This feature can be utilized in all illustrative embodiments described herein, however it is not required.
In an illustrative embodiment, the interview question generator 225 provides interview questions, such as those described above, to the user interface 220. The user interface 220 can be any form of user interface such as, for example, a physical interface including a touchscreen, an LCD with buttons, and/or an aural interface including a speaker and microphone, or any other suitable user interface. A user can activate the interview question generator 225 by any suitable mechanism, such as by pressing a schedule button on a touchscreen of the user interface 220. Alternatively, or in addition, the controller 210 may activate the interview question generator 225 on its own, such as when it believes additional scheduling information is needed or might otherwise be desired. In response to questions posed by the interview question generator 225, the user can enter one or more user responses into the user interface 220. The response acceptor 240 accepts the user responses and provides the response to the programmable schedule 250. In some embodiments, the programmable schedule 250 has a number of time and temperature set points that can be entered or modified by the response acceptor 240. Once the schedule is built and/or modified, a control signal 260 is generated by the control module 210 based on the programmable schedule 250.
In some embodiments, the interview scheduling block 325 includes interview questions that require an affirmative (e.g., “yes”) or negative (e.g., “no”) user response. In addition, the interview questions can solicit information from the user regarding the grouping of the controller set points entered or the temporal relationship of the controller set points. For example, the interview question may ask “Do you want the schedule to apply to every day of the week?”, requiring the user to respond with a “YES” or “NO” answer. The interview scheduling block 325 can include questions that are natural language questions such as, for example, phrases that can have one, two, three, four, five, six, or seven or more words.
In an illustrative embodiment, interview scheduling block 325 may also provide interview questions that require a numerical user response. These interview questions can solicit information from the user regarding the specific time and temperature set points for each grouping of controller set points solicited by the interview block 325 described above. The interview block 325 can provide a question such as, for example, “What is a comfortable sleeping temperature in the winter?”, requiring the user to respond with a numerical temperature answer. The interview scheduling block 325 can include questions that are natural language questions such as, for example, phrases that can have one, two, three, four, five, six, or seven or more words.
In the illustrative embodiment, the interview scheduling block 325 can also provide one or more interview questions related to, for example, which weekdays will have the same schedule?, when a first person wakes up?, when a last person goes to sleep?, when a last person leaves during the day?, when a first person arrives home?, what a comfortable temperature is when heat is on?, what a comfortable temperature is when air conditioning is on?, what a comfortable sleeping temperature is in the summer?, or what a comfortable sleeping temperature is in the winter?
The response translator 360 can translate the user responses to create appropriate schedule parameters 370 that help define the schedule of the controller. That is, the response translator 360 applies the user responses to one or more interview questions to establish the controller schedule. For example, the response translator 360 can take an affirmative user response to the interview question, “Do you want the same schedule for Saturday and Sunday?” and correlate with the interview question, “What temperature do you like when the heat is on?” to establish the schedule parameters for the heating temperature during at least selected periods on Saturday and Sunday.
Alternatively, or in addition, the interview scheduling block 325 may provide one or more interview questions that provide a plurality of predetermined answers or responses (e.g., multiple choice format) where the user selects an answer or response. For example, the interview question may provide a question such as, “What type of schedule do you desire?” In this illustrative embodiment, a series of predetermined responses or answers can be provided such as, “Every day of the week is the same,” “Weekdays are the same and Saturday/Sunday is the same,” “Weekday are the same and Saturday/Sunday is different,” “Each Weekday is different and Saturday/Sunday is the same,” and “Each day of the week is different.”
In the illustrative embodiment, the interview question generator 435 provides interview questions, such as those described above, to the user interface 420. The user interface 420 can be any form of user interface such as, for example, a physical interface including a touchscreen, an LCD with buttons, and/or an aural interface including a speaker and microphone, or any other suitable user interface. A user can activate the interview question generator 435 by any suitable mechanism, such as by pressing a mechanical schedule button on the controller, touching an appropriate region of a touchscreen, voice activation, etc. Alternatively, or in addition, the controller 410 may activate the interview question generator 425 on its own, such as when it believes additional scheduling information is needed or might otherwise be desired. In response to questions posed by the interview question generator 425, the user can enter one or more user responses into the user interface 420. The response acceptor 440 accepts the user responses and provides the response to the response translator 460. The response translator 460 provides a translated response to a programmable schedule 470. In some embodiments, the programmable schedule 470 has a number of time and temperature set points that can be entered or modified by the response translator 470. Once the schedule is built and/or modified a control signal 465 is generated by the control module 410 based on the programmable schedule 470.
Interview questions 425 are posed to the user. As shown in the illustrative example: an interview question 425 of “Same schedule for Saturday and Sunday?” elicits an user response 440 of “YES”; an interview question 425 of “For the weekend, is someone home all day?” elicits an user response 440 of “YES”; an interview question 425 of “What time does the first person wake up?” elicits an user response 440 of “7:00 a.m.”; an interview question 425 of “What time does the last person go to sleep?” elicits an user response 440 of “10:00 p.m.”; an interview question 425 of “What temperature is comfortable when the heat is on?” elicits an user response 440 of “72° F.”; an interview question 425 of “What temperature is comfortable when the air conditioning is on?” elicits an user response 440 of “68° F.”; an interview question 425 of “What is a comfortable sleeping temperature in summer?” elicits an user response 440 of “67° F.”; and an interview question 425 of “What is a comfortable sleeping temperature in winter?” elicits an user response 440 of “65° F.”.
In the illustrative embodiment, the response translator 460 accepts the user responses provided in block 440. The response translator 460 then builds and/or modifies the programmable schedule 470. In the illustrative embodiment, each cell 471, 472, 473, 474 includes a start time, a heat temperature and a cool temperature. The Saturday wake cell 471 and the Sunday wake cell 472 has a start time of 7:00 a.m., a heat temperature of 72° F., and a cool temperature of 68° F., all of the times and temperatures are provided by the response translator. The Saturday sleep cell 473 and the Sunday sleep cell 474 has a start time of 10:00 p.m., a heat temperature of 65° F., and a cool temperature of 67° F., all of the times and temperatures are provided by the response translator.
In this illustrative embodiment, the response translator 460 takes a plurality of user responses 440 to the interview questions 425 and builds and/or modifies a plurality of schedule parameters. The Saturday and Sunday Leave and Return cells 475, 476, 477, and 478 are ignored and/or zeroed out by the response translator 460 since they are not required based on the user responses 425 for this example.
The sufficient information block 560 can, for example, help ensure that a sufficient number of schedule parameters are defined, such as, for example, a start time, a heating temperature and a cooling temperature for a particular time period such as, for example, a specific day or group of days wake period, leave period, return period and/or sleep period, as shown in
In some embodiments, the interview scheduling block 525 provides a number of predetermined interview questions in a predetermined sequential order. The number of questions or queries may be adapted to collect information from the user responses to generate at least a portion of the schedule parameters.
Like above, the interview scheduling block 525 can include interview questions that require an affirmative (e.g., “yes”) or negative (e.g., “no”) user response. For example, interview scheduling block 525 can provide interview questions solicit information from the user regarding the grouping of the controller set points entered or the temporal relationship of the controller set points such as, for example, “Do you want the schedule to apply to every day of the week?”, requiring the user to respond with a “YES” or “NO” answer. The interview scheduling block 525 can include questions that are natural language questions which can be phrases that have one, two, three, four, five, six, or seven or more words in length.
Alternatively or in addition, interview scheduling block 525 can provide interview questions that require a numerical user response. For example, these interview questions can solicit information from the user regarding the specific time and temperature set points for each grouping of controller set points solicited by the interview block 525 described above. The interview block 525 can provide a question such as, for example, “What is a comfortable sleeping temperature in the winter?”, requiring the user to respond with a numerical temperature answer. Again, the interview scheduling block 525 can include questions that are natural language questions that can be phrases which can be one, two, three, four, five, six, seven or more words, although this is not required in all embodiments.
The interview scheduling block 525 may also provide one or more interview questions about, which weekdays will have a same schedule?, when a first person wakes up?, when a last person goes to sleep?, when a last person leaves during the day?, when a first person arrives home?, what a comfortable temperature is when heat is on?, what a comfortable temperature is when air conditioning is on?, what a comfortable sleeping temperature is in the summer?, or what a comfortable sleeping temperature is in the winter?
Alternatively, or in addition, the interview scheduling block 525 may provide one or more interview questions that provide a plurality of predetermined answers or responses (e.g., multiple choice format) where the user selects an answer or response. For example, the interview question may provide a question such as, “What type of schedule do you desire?” In this illustrative embodiment, a series of predetermined responses or answers can be provided such as, “Every day of the week is the same,” “Weekdays are the same and Saturday/Sunday is the same,” “Weekday are the same and Saturday/Sunday is different,” “Each Weekday is different and Saturday/Sunday is the same,” and “Each day of the week is different.”
In the illustrative embodiment, the interview question generator 625 provides interview questions, such as those described above, to the user interface 620. The user interface 620 can be any form of user interface such as, for example, a physical interface including a touchscreen, an LCD with buttons, an aural interface including a speaker and microphone, or any other suitable user interface. A user can activate the interview question generator 625 by any suitable mechanism, such as by pressing a schedule button on a touchscreen of the user interface 620. Alternatively, or in addition, the controller 610 may activate the interview question generator 625 on its own, such as when it believes additional scheduling information is needed or might otherwise be desired. In response to the questions posed by the interview question generator 625, the user can enter one or more user responses into the user interface 620. The response acceptor 640 accepts the user responses and provides the responses to the programmable schedule 650 if it determines that sufficient information has been provided by the user responses to establish a program schedule. If not, the response acceptor 640 instructs the interview question generator 625 to provide another interview question to the user via the user interface 620. Once the response acceptor 640 determines that sufficient information has been provided by the user to establish a program schedule 650 the program schedule 650 is built and/or modified. In some embodiments, the programmable schedule 650 has a number of time and temperature set points that can be entered or modified by the response acceptor 640. Once the programmable schedule 650 is built and/or modified, a control signal 660 is generated by the control module 610 based on the programmable schedule 650.
The program can begin by asking whether the user wants the same schedule to be used for every day of the week, as shown at block 720. If the user responds with a “YES” response, then the program can move to ask context questions for that group of days, as shown at block 725, which may set the schedule for the week assuming the same schedule for every 24 hour period or day. If the user responds with a “NO” response, the program may ask the user if the same schedule applies to both weekend days, Saturday and Sunday, as shown at block 730. If the user responds with a “YES” response, then the program can ask if the user wants two schedules, one for weekdays and one for weekends, as shown at block 735. A “YES response to block 735 can move the program to asking context questions for a weekend group of days and a weekdays group of days, as shown at block 725, to set the schedule for the week assuming a first schedule for weekend days and a second schedule for weekdays. A “NO” response to block 730 can cause the program to ask whether the user wants three schedules including a weekday schedule, a Saturday schedule, and a Sunday schedule, as shown at block 740. A “YES” response to block 740 moves the program to asking context questions for a week day group of days schedule, a Saturday schedule and a Sunday schedule, as shown at block 725, to set the schedule for the week assuming a first schedule for weekdays, and a second schedule for Saturday and a third schedule for Sundays. A “NO” response to either block 740 or block 735 moves the program to asking the user to group each day of the seven days of the week into similar schedule groupings until all days are assigned to one group, as shown at block 750. The program can ask if all days are assigned at block 755, with a “NO” response returning the user to block 750 to assign a non-assigned day or days until all days have been assigned. Once all days have been assigned to a group, the program moves to asking context questions for each group of days schedule, as shown at block 725, to set the schedule for the each grouping of days assuming a first schedule for a first group, a second schedule for a second group, a third schedule for a third group and so on until all groupings of days are scheduled.
The program 700 can ask a variety of context sensitive question to determine the desired schedule for each grouping of days identified by the program 700 above. For example, and as shown in
The program 700 can then request information from the user regarding comfortable awake, sleeping and away temperatures. For example, and referring to
In some embodiments, the program 700 can allow the user to request a schedule review at block 795, which can allow the user to review the built or modified schedule, as shown at block 796. If the user does not wish to review the schedule or when the user is done reviewing the schedule, the program returns to normal thermostat operation block 710 under the newly built or modified schedule.
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
At
Referring now to
A ventilation unit 908 such as a fan or blower equipped with one or more dampers can be employed to regulate the volume of air delivered to various locations within the controlled space. A filtration unit 910, UV lamp unit 912, humidifier unit 914, and dehumidifier unit 916 can also be provided in some embodiments to regulate the air quality and moisture levels within the controlled space. One or more local and/or remote sensors 918 can be connected to the controller 902 to monitor temperature or humidity levels inside, and in some cases, outside of the space to be controlled. In some embodiments, the controller 902 can be connected to one or more other controllers 920 such as another HVAC controller for providing multi-zoned climate control. The system components can be directly connected to a corresponding I/O port or I/O pins on the controller 902, and/or can be connected to the controller 902 via a network or the like.
The controller 902 can include a user interface 922 to permit an installer or service technician to input commands for programming the controller 902 to operate with the various system components and any other connected controllers 922. The user interface 922 can include, for example, a touch screen, liquid crystal display (LCD) or dot matrix display, an aural interface including a speaker and microphone, a computer, or any other suitable device for sending and receiving signals to and from the controller 902. Depending on the configuration, the user interface 922 can also include buttons, knobs, slides, a keypad, or other suitable selector means for inputting commands into the controller 902.
During installation, the control module 924 communicates with the user interface 922 to provide the installer with interview questions relating to the configuration of one or more of the system components. In the illustrative embodiment of
Input commands received via the user interface 922 can be fed to a response acceptor 936, which accepts the user responses to the interview questions generated by the interview question generator 934. The response acceptor 936 can be configured to translate the user responses into operation parameters 938 that can be stored within the memory unit 926 along with other information such as prior usage, scheduling parameters, user preferences, etc. The operation parameters 938 can then be used by the controller 902 to generate control signals 940 to operate the various system components in a particular manner.
Once the desired language is chosen, the user interface can be configured to provide interview questions pertaining to the various system components to be installed. At block 1002, for example, the user interface can prompt the installer to select the type of equipment to be controlled by the controller. In certain embodiments, for example, the user interface can prompt the installer to select between a conventional heating/cooling unit, a heat pump, or heat only. Once the type of equipment has been selected, the user interface may then prompt the installer to enter the number of stages of heat and cool to be controlled by the controller, as indicated generally by blocks 1004 and 1006. In some embodiments, the answers provided to the interview question at block 1004 may affect whether the user interface displays a follow-up query at block 1006. For example, if the response to the interview question regarding the number of heat stages at block 1004 is “2”, the interview question generator may assume that there are 2 cooling stages, and thus skip the query at block 1006.
For each stage of heat and cool, the user interface can be configured to prompt the installer to select the number of cycles per hour to be provided by the equipment, as indicated generally by block 1008 and 1010, respectively. At block 1008, for example, the user interface may prompt the installer to select the cycles per hour to be provided by each stage of heating selected at block 1004. If, for example, the installer indicates at block 1004 that the equipment has 3 stages of heating, the user interface can be configured to repeat query block 1008 three separate times for each individual stage to be configured. A similar process can then be performed at block 1010 for each stage of cooling to be controlled by the controller. If at block 1004 the installer indicates that there are “0” stages of heat, the user interface can be configured to skip the query at block 1008. In addition, if at block 1006 the installer indicates that there are “0” stages of cool, or if at block 1002 the installer indicates that the equipment is “Heat Only”, the user interface can be configured to skip the query at block 1010.
In some embodiments, the user interface can be further configured to provide the installer with interview questions and answers that can be used to set other operational parameters within the controller. As indicated generally at block 1012, for example, the user interface can be configured to prompt the installer to select the minimum amount of on time that the equipment operates. The user interface can further prompt the installer to select a lower and/or upper temperature limit at which the system operates, as indicated generally at blocks 1014 and 1016, respectively. If desired, the temperature offset and proportional bandwidth of the system can be further set via query blocks 1018 and 1020, respectively.
Although several exemplary interview questions and answers are illustrated in
Once the installation mode has been initiated, the controller can then be configured to provide one or more interview questions to the installer via the user interface, as indicated generally by block 1104. The interview questions provided can be configured to solicit information from the installer regarding the type and configuration of the various system components to be controlled by the controller. In certain embodiments, for example, the interview questions can include a sequence of interview questions relating to the type of equipment to be controlled, the number of heat stages the equipment has, the number of cooling stages the equipment has, the number of cycles per hour each stage of heating requires, and the number of cycles per hour each stage of cooling requires.
In some embodiments, other interview questions pertaining to the type or configuration of the controller and/or any system components controlled by the controller can be further presented to the installer via the user interface. Examples of other interview questions can include, but are not limited to, the minimum operating time desired to operate the system, whether a pump exercise is to be enabled for any installed heat pumps, the upper temperature limit at which to operate the system, the lower temperature limit at which to operate the system, the temperature offset at which the controller operates, the proportional bandwidth of the equipment, the type and operating times of the ventilation fan employed, the type and rating of the UV lamp employed, and the type and rating of the humidifier or dehumidifier employed. Other interview questions relating to the user's preferences such as the date and time format, daylight savings options, schedule programming options, temperature display options, etc. can also be provided, if desired. It should be understood that the types of interview questions and their ordering will vary depending on the type of equipment to be controlled.
The interview questions may be provided to the installer in the form of natural language questions, which may be phrases having one or more words that prompt the installer to select between one or more answers from a predetermined list of answers. For example, the interview questions can include a question such as “What type of equipment is the thermostat controlling?” In some embodiments, one or more of the interview questions may elicit an affirmative “YES” or “NO” user response. Alternatively, or in addition, one or more of the interview questions can solicit information requiring a numeric or alphanumeric user response.
With certain interview questions, and in some embodiments, the controller can be configured to prompt the installer to select between at least two answers or responses displayed on the display screen of the user interface, as indicated generally by block 1106. For example, in response to the interview question “What type of equipment is the thermostat controlling?”, the user interface can be configured to display the answers “Conventional”, “Heat Pump”, and “Heat Only”, prompting the installer to select the appropriate type of equipment to be installed and/or configured. The user interface can then be configured to accept the user responses to each of the questions and then modify the operational parameters of the controller based on the user responses, as indicated generally by blocks 1108 and 1110, respectively.
In some embodiments, the user interface can be configured to display each of the answers simultaneously on the display screen of the user interface. In such configuration, the selection of a user response at block 1108 can be accomplished by the installer selecting an answer to the interview question from a list of multiple answers graphically displayed on the screen. In those embodiments in which the user interface includes a touchscreen, for example, the selection of a response can be accomplished directly by pressing the desired answer from a choice of answers provided on the screen, causing the controller to store that parameter and cycle to the next interview question in the queue. Alternatively, in those embodiments in which the user interface includes an LCD or dot matrix screen, the selection of the desired answer from the choice of answers can be accomplished via a button, knob, slide, keypad, or other suitable selector means on the user interface.
The user interface can vary the presentation of the interview questions based at least in part on the installer's previous responses to other interview questions. If, for example, the installer selects on the user interface that the type equipment being installed is “Heat Only”, the interview question generator can be configured to skip those questions pertaining to the stages and cycle times for cooling. The ordering of the interview questions can also be varied based on the particular piece of equipment being configured. If, for example, the installation mode at block 1102 is initiated in response to a new piece of equipment connected to the controller, the interview question generator can be configured to present to the installer only those questions pertaining to the new equipment.
The interview question generator can also be configured to suggest a default answer based on any previous responses, based on any previous controller settings, and/or based on settings which are commonly selected for that particular piece of equipment. For example, with respect to the selection of the number of stages for heating, the user interface can be configured to default to a common answer or response of “2” while providing the installer with the ability to select among other numbers of heating stages (e.g., “0”, “1”, “3”, “4”, “5”, “6”, etc.), if desired. The suggestion of a default answer can be accomplished, for example, by highlighting or flashing the answer on the display screen, by moving a selection indicator adjacent to the answer on the display screen, or by other suitable means.
The “FULL SET-UP” icon button 1206 can be selected on the display panel 1204 to permit the installer to fully configure the controller to work with the system components for the first time, or when the installer otherwise desires to cycle through each of the interview questions in sequence. The “COMPONENT BASED SET-UP” icon button 1208, in turn, can be selected to permit the installer to configure only certain system components or to configure the system in a different order than that normally provided by the interface 1200. The “MANUAL SET-UP” icon button 1210 can be selected to permit the installer to configure the controller manually using numeric or alphanumeric codes, if desired.
Once the installer has selected the desired equipment to be installed via the equipment type screen 1226, and as further shown in
Once the number of heat stages has been configured via screen 1236, and as further shown in
Once programming is complete, and as further shown in
Referring back to
The selection of the icon buttons on the component selection screen 1264 causes the interface 1200 to display one or more interview questions and answers on the display panel 1204 based on the type of equipment to be configured. If, for example, the installer desires to configure only the heating and cooling system components, the installer may select both the “HEATING” icon button 1266 and “COOLING” icon button 1268 on the screen 1264, causing the user interface 1200 to present only those interview questions that pertain to heating and cooling control. The process of providing the installer interview questions and answers in multiple-choice format can then be performed in a manner similar to that described above with respect to
The present invention should not be considered limited to the particular examples described above, but rather should be understood to cover all aspects of the invention as fairly set out in the attached claims. Various modifications, equivalent processes, as well as numerous structures to which the present invention can be applicable will be readily apparent to those of skill in the art to which the present invention is directed upon review of the instant specification.
This is a continuation of U.S. patent application Ser. No. 14/556,592, entitled “Interview Programming For an HVAC Controller”, filed Dec. 1, 2014, now U.S. Pat. No. 9,733,653, which is a continuation of U.S. patent application Ser. No. 13/413,604, entitled “Interview Programming For an HVAC Controller”, filed Mar. 6, 2012, now U.S. Pat. No. 8,903,552, which is a continuation of U.S. patent application Ser. No. 12/700,672, entitled “Interview Programming For an HVAC Controller”, filed Feb. 4, 2010, now U.S. Pat. No. 8,219,251, which is a continuation of U.S. patent application Ser. No. 12/424,931, entitled “HVAC Controller With Guided Schedule Programming”, filed Apr. 16, 2009, now U.S. Pat. No. 8,170,720, which is a continuation of U.S. patent application Ser. No. 11/421,833, entitled “Natural Language Installer Setup For Controller”, filed Jun. 2, 2006, now U.S. Pat. No. 7,634,504, which is a continuation-in-part of U.S. patent application Ser. No. 10/726,245, entitled “Controller Interface With Interview Programming”, filed on Dec. 2, 2003, now U.S. Pat. No. 7,181,317.
Number | Name | Date | Kind |
---|---|---|---|
3656112 | Paull | Apr 1972 | A |
3900842 | Calabro et al. | Aug 1975 | A |
4079366 | Wong | Mar 1978 | A |
4174807 | Smith et al. | Nov 1979 | A |
4206872 | Levine | Jun 1980 | A |
4224615 | Penz | Sep 1980 | A |
4264034 | Hyltin et al. | Apr 1981 | A |
4296334 | Wong | Oct 1981 | A |
4298946 | Hartsell et al. | Nov 1981 | A |
4308991 | Peinetti et al. | Jan 1982 | A |
4314665 | Levine | Feb 1982 | A |
4332352 | Jaeger | Jun 1982 | A |
4337822 | Hyltin et al. | Jul 1982 | A |
4337893 | Flanders et al. | Jul 1982 | A |
4357665 | Korff | Nov 1982 | A |
4373664 | Barker et al. | Feb 1983 | A |
4379483 | Farley | Apr 1983 | A |
4382544 | Stewart | May 1983 | A |
4386649 | Hines et al. | Jun 1983 | A |
4388692 | Jones et al. | Jun 1983 | A |
4399510 | Hicks | Aug 1983 | A |
4401262 | Adams et al. | Aug 1983 | A |
4429299 | Kabat et al. | Jan 1984 | A |
4431134 | Hendricks et al. | Feb 1984 | A |
4442972 | Sahay et al. | Apr 1984 | A |
4446913 | Krocker | May 1984 | A |
4479604 | Didner | Oct 1984 | A |
4506827 | Jamieson et al. | Mar 1985 | A |
4510398 | Culp et al. | Apr 1985 | A |
4511979 | Amirante | Apr 1985 | A |
4551812 | Gurr et al. | Nov 1985 | A |
4556169 | Zervos | Dec 1985 | A |
4556865 | Fukagawa et al. | Dec 1985 | A |
4591988 | Klima et al. | May 1986 | A |
4606401 | Levine et al. | Aug 1986 | A |
4608560 | Allgood | Aug 1986 | A |
4621336 | Brown | Nov 1986 | A |
4622544 | Bially et al. | Nov 1986 | A |
4628201 | Bially et al. | Dec 1986 | A |
4630670 | Wellman et al. | Dec 1986 | A |
4642607 | Strom et al. | Feb 1987 | A |
4646964 | Parker et al. | Mar 1987 | A |
4656835 | Kidder et al. | Apr 1987 | A |
4657179 | Aggers et al. | Apr 1987 | A |
4717333 | Carignan | Jan 1988 | A |
4725001 | Carney et al. | Feb 1988 | A |
4742475 | Kaiser et al. | May 1988 | A |
4771185 | Feron et al. | Sep 1988 | A |
4819714 | Otsuka et al. | Apr 1989 | A |
4837731 | Levine et al. | Jun 1989 | A |
4881686 | Mehta | Nov 1989 | A |
4909041 | Jones | Mar 1990 | A |
4914568 | Kodosky et al. | Apr 1990 | A |
4916328 | Culp, III | Apr 1990 | A |
4918439 | Wozniak et al. | Apr 1990 | A |
4924404 | Reinke, Jr. | May 1990 | A |
4948040 | Kobayashi et al. | Aug 1990 | A |
4992779 | Sugino et al. | Feb 1991 | A |
4997029 | Otsuka et al. | Mar 1991 | A |
5003457 | Ikei et al. | Mar 1991 | A |
5005365 | Lynch | Apr 1991 | A |
5012973 | Dick et al. | May 1991 | A |
5038851 | Mehta | Aug 1991 | A |
5053752 | Epstein et al. | Oct 1991 | A |
5065813 | Berkeley et al. | Nov 1991 | A |
5086385 | Launey et al. | Jan 1992 | A |
5088645 | Bell | Feb 1992 | A |
5140310 | DeLuca et al. | Aug 1992 | A |
5153837 | Shaffer et al. | Oct 1992 | A |
5161606 | Berkeley et al. | Nov 1992 | A |
5170935 | Federspiel et al. | Dec 1992 | A |
5172565 | Wruck et al. | Dec 1992 | A |
5181653 | Foster et al. | Jan 1993 | A |
5187797 | Nielsen et al. | Feb 1993 | A |
5230482 | Ratz et al. | Jul 1993 | A |
5238184 | Adams | Aug 1993 | A |
5251813 | Kniepkamp | Oct 1993 | A |
5259445 | Pratt et al. | Nov 1993 | A |
5270952 | Adams et al. | Dec 1993 | A |
5289362 | Liebl et al. | Feb 1994 | A |
5329991 | Mehta et al. | Jul 1994 | A |
5348078 | Dushane et al. | Sep 1994 | A |
5386577 | Zenda | Jan 1995 | A |
5392042 | Pellon | Feb 1995 | A |
5395042 | Riley et al. | Mar 1995 | A |
5404934 | Carlson et al. | Apr 1995 | A |
5482209 | Cochran et al. | Jan 1996 | A |
5526422 | Keen | Jun 1996 | A |
5537106 | Mitsuhashi | Jul 1996 | A |
5544036 | Brown et al. | Aug 1996 | A |
5566879 | Longtin | Oct 1996 | A |
5570837 | Brown et al. | Nov 1996 | A |
5644173 | Elliason et al. | Jul 1997 | A |
5673850 | Uptegraph | Oct 1997 | A |
5682206 | Wehmeyer et al. | Oct 1997 | A |
5706191 | Bassett et al. | Jan 1998 | A |
5732691 | Maiello et al. | Mar 1998 | A |
5761083 | Brown et al. | Jun 1998 | A |
5782296 | Mehta | Jul 1998 | A |
5802467 | Salazar et al. | Sep 1998 | A |
5818428 | Eisenbrandt et al. | Oct 1998 | A |
5845259 | West et al. | Dec 1998 | A |
5873519 | Beilfuss | Feb 1999 | A |
5877957 | Bennett | Mar 1999 | A |
5886697 | Naughton et al. | Mar 1999 | A |
5901183 | Garin et al. | May 1999 | A |
5902183 | D'Souza | May 1999 | A |
5915473 | Ganesh | Jun 1999 | A |
5937942 | Bias et al. | Aug 1999 | A |
5947372 | Tiernan | Sep 1999 | A |
5950709 | Krueger et al. | Sep 1999 | A |
5982445 | Eyer et al. | Nov 1999 | A |
6020881 | Naughton et al. | Feb 2000 | A |
6032867 | Dushane et al. | Mar 2000 | A |
6059195 | Adams et al. | May 2000 | A |
6081197 | Garrick et al. | Jun 2000 | A |
6088029 | Guiberson et al. | Jul 2000 | A |
6098893 | Berglund et al. | Aug 2000 | A |
6101824 | Meyer et al. | Aug 2000 | A |
6104963 | Cebasek et al. | Aug 2000 | A |
6119125 | Gloudeman et al. | Sep 2000 | A |
6121875 | Hamm et al. | Sep 2000 | A |
6140987 | Stein et al. | Oct 2000 | A |
6141595 | Gloudeman et al. | Oct 2000 | A |
6149065 | White et al. | Nov 2000 | A |
6154681 | Drees et al. | Nov 2000 | A |
6167316 | Gloudeman et al. | Dec 2000 | A |
6192282 | Smith et al. | Feb 2001 | B1 |
6196467 | Dushane et al. | Mar 2001 | B1 |
6208331 | Singh et al. | Mar 2001 | B1 |
6216956 | Ehlers et al. | Apr 2001 | B1 |
6236326 | Murphy | May 2001 | B1 |
6259074 | Brunner et al. | Jul 2001 | B1 |
6285912 | Ellison et al. | Sep 2001 | B1 |
6290140 | Pesko et al. | Sep 2001 | B1 |
6315211 | Sartain et al. | Nov 2001 | B1 |
6318639 | Toth | Nov 2001 | B1 |
6320577 | Alexander | Nov 2001 | B1 |
6330806 | Beaverson et al. | Dec 2001 | B1 |
6344861 | Naughton et al. | Feb 2002 | B1 |
6351693 | Monie et al. | Feb 2002 | B1 |
6398118 | Rosen et al. | Jun 2002 | B1 |
6453687 | Sharood et al. | Sep 2002 | B2 |
6466132 | Caronna et al. | Oct 2002 | B1 |
6478233 | Shah | Nov 2002 | B1 |
6483906 | Iggulden et al. | Nov 2002 | B1 |
6502758 | Cottrell | Jan 2003 | B2 |
6518953 | Armstrong | Feb 2003 | B1 |
6518957 | Lehtinen et al. | Feb 2003 | B1 |
6546419 | Humpleman et al. | Apr 2003 | B1 |
6556899 | Harvey et al. | Apr 2003 | B1 |
6578770 | Rosen | Jun 2003 | B1 |
6580950 | Johnson et al. | Jun 2003 | B1 |
6581846 | Rosen | Jun 2003 | B1 |
6595430 | Shah | Jul 2003 | B1 |
6608560 | Abrams | Aug 2003 | B2 |
6619555 | Rosen | Sep 2003 | B2 |
6621507 | Shah | Sep 2003 | B1 |
6692349 | Brinkerhoff et al. | Feb 2004 | B1 |
6726112 | Ho | Apr 2004 | B1 |
6783079 | Carey et al. | Aug 2004 | B2 |
6786421 | Rosen | Sep 2004 | B2 |
6789739 | Rosen | Sep 2004 | B2 |
6824069 | Rosen | Nov 2004 | B2 |
6833990 | LaCroix et al. | Dec 2004 | B2 |
6851621 | Wacker et al. | Feb 2005 | B1 |
6868293 | Schurr et al. | Mar 2005 | B1 |
6891838 | Petite et al. | May 2005 | B1 |
6967565 | Lingemann | Nov 2005 | B2 |
6975958 | Bohrer et al. | Dec 2005 | B2 |
7001495 | Essalik et al. | Feb 2006 | B2 |
7050026 | Rosen | May 2006 | B1 |
7146253 | Hoog et al. | Dec 2006 | B2 |
7152806 | Rosen | Dec 2006 | B1 |
7156318 | Rosen | Jan 2007 | B1 |
7181317 | Amundson | Feb 2007 | B2 |
7240289 | Naughton et al. | Jul 2007 | B2 |
7246087 | Ruppelt et al. | Jul 2007 | B1 |
7302642 | Smith et al. | Nov 2007 | B2 |
7360717 | Shah | Apr 2008 | B2 |
7634504 | Amundson | Dec 2009 | B2 |
7942387 | Forkosh | May 2011 | B2 |
8170720 | Amundson et al. | May 2012 | B2 |
8219251 | Amundson | Jul 2012 | B2 |
8219258 | Amundson et al. | Jul 2012 | B1 |
8606409 | Amundson et al. | Dec 2013 | B2 |
8903552 | Amundson | Dec 2014 | B2 |
9256230 | Matsuoka | Feb 2016 | B2 |
9470720 | Dean | Oct 2016 | B2 |
9471069 | Amundson et al. | Oct 2016 | B2 |
9733653 | Amundson | Aug 2017 | B2 |
20010029585 | Simon et al. | Oct 2001 | A1 |
20010042684 | Essalik et al. | Nov 2001 | A1 |
20010052459 | Essalik et al. | Dec 2001 | A1 |
20020005435 | Cottrell | Jan 2002 | A1 |
20020011923 | Cunningham et al. | Jan 2002 | A1 |
20020022991 | Sharood et al. | Feb 2002 | A1 |
20020060701 | Naughton et al. | May 2002 | A1 |
20020092779 | Essalik et al. | Jul 2002 | A1 |
20020096752 | Huang | Jul 2002 | A1 |
20020138184 | Kipersztok et al. | Sep 2002 | A1 |
20020173929 | Siegel | Nov 2002 | A1 |
20030014179 | Szukala et al. | Jan 2003 | A1 |
20030033156 | McCall | Feb 2003 | A1 |
20030033230 | McCall | Feb 2003 | A1 |
20030034897 | Shamoon et al. | Feb 2003 | A1 |
20030034898 | Shamoon et al. | Feb 2003 | A1 |
20030056946 | Breeden | Mar 2003 | A1 |
20030074489 | Steger et al. | Apr 2003 | A1 |
20030121652 | Carey et al. | Jul 2003 | A1 |
20030123224 | LaCroix et al. | Jul 2003 | A1 |
20030136135 | Kim et al. | Jul 2003 | A1 |
20030142121 | Rosen | Jul 2003 | A1 |
20030150926 | Rosen | Aug 2003 | A1 |
20030150927 | Rosen | Aug 2003 | A1 |
20030208282 | Shah | Nov 2003 | A1 |
20040074978 | Rosen | Apr 2004 | A1 |
20040193324 | Hoog et al. | Sep 2004 | A1 |
20040245352 | Smith | Dec 2004 | A1 |
20040262410 | Hull | Dec 2004 | A1 |
20070045441 | Ashworth et al. | Mar 2007 | A1 |
20100131112 | Amundson et al. | May 2010 | A1 |
20100131884 | Shah | May 2010 | A1 |
20120239203 | Amundson et al. | Sep 2012 | A1 |
Number | Date | Country |
---|---|---|
3334117 | Apr 1985 | DE |
29600654 | Apr 1996 | DE |
198405522 | Mar 2000 | DE |
0070414 | Jan 1983 | EP |
0332957 | Sep 1989 | EP |
0434926 | Jul 1991 | EP |
0978692 | Feb 2000 | EP |
0678204 | Mar 2000 | EP |
0985994 | Mar 2000 | EP |
1033641 | Sep 2000 | EP |
1074009 | Feb 2001 | EP |
2711230 | Apr 1995 | FR |
20556 | Oct 2001 | SI |
WO 9711448 | Mar 1997 | WO |
WO 9739392 | Oct 1997 | WO |
WO 0043870 | Jul 2000 | WO |
WO 0152515 | Jul 2001 | WO |
WO 0179952 | Oct 2001 | WO |
WO 0193779 | Dec 2001 | WO |
Entry |
---|
“Honeywell, Magic Stat Programming and Installation Instructions,” 14 pages, 1993. |
“A Full Range of Alternative User Interfaces for Building Occupants and Operators,” http://www.automatedbuildings.com/news/jan00/articles/andover/andover.htm, 5 pages, dated Jan. 2000, printed Sep. 20, 2004. |
“CorAccess Systems/In Home,” http://web.archive.org/web20011212084427/www.coraccess.com/home.html, 1 page, copyright 2001, printed Aug. 19, 2004. |
“HAI Company Background,” http://www.homeauto.com/AboutHAI/abouthai_main.htm, 2 pages, printed Aug. 19, 2004. |
“High-Tech Options Take Hold in New Homes—Aug. 28, 200—Dallas Business Journal,” http://bizjournals.com/dallas/stories/2000/08/28/focus4., 3 pages, dated Aug. 28, 2008, printed Aug. 19, 2004. |
“Home Toys Review—TouchLinc,” http://www.hometoys.com/htinews/aug99/reviews/touchlinc.htm, 3 pages, dated Aug. 1999, printed Aug. 20, 2004. |
“Mark of Excellence Award Finalist Announced,” http://64.233.167.104/search?Q=cache: ciOA2YtYaBIJ:www.hometoys.com/releases/mar . . . , 6 pages, Leopard Touchscreen on p. 2, dated prior to Mar. 4, 2000, printed Aug. 20, 2004. |
“Product Review—Philips Pronto Remote Control,” http://hometheaterhifi.com/volume_6_2/philipsprontoremotecontrol.html, 5 pages, dated May 1999, printed Aug. 20, 2004. |
“RC X10 Automation Forum: Control Your Heating and Cooling System with Pronto (1/1),” http://www.remotecentral.com/cgi-bin/mboard/rc-x10/thread.cgi?12, 2 pages, dated Apr. 23, 1999, printed Aug. 20, 2004. |
“Spotlight on Integrated Systems,” Custom Builder, V8, N2, p. 66(6), Mar.-Apr. 1993. |
“Vantage Expands Controls for Audio/Video, HVAC and Security,” http://www.Hometoys.com/htinews/aug99/realease/vantage03.htm, 2 pages, dated Aug. 3, 1999, printed Aug. 20, 2004. |
Action Closing Prosection for Reexam Control No. 95/002,041, Mailed Jul. 5, 2013. |
ADI, “Leopard User Manual,” 93 pages, 2001. |
Adicon 2500, “The Automator,” 4 pages, Oct.-Dec. 2000. |
ADT Security Services, “iCenter Advanced User Interface 8142ADT,” Installation and Setup Guide, 5 pages, May 2001; First Sale Feb. 2001. |
ADT Security Systems, “iCenter Advanced User Interface 8142ADT User Guide,” pp. 1-136, 2001. |
Aprilaire Electronic Thremostats Models 8344, 8346, 8348, 8363, 8365, 8366 Operating Instructions, 8 pages, prior to Dec. 2, 2003. |
Aube Technologies, Electronic Thermostat for Heating System Model TH135-01, 5 pages, Aug. 14, 2001. |
Aube Technologies, TH140-28 Electronic Programmable Thermostat, Installation Instructions and User Guide, pp. 1-4, Jan. 22, 2004. |
AutomatedBuildings.com Article—“Thin Client” Solutions, “Pressure, Air Flow, Temperature, Humidity & Valves,” Dwyer Instruments, Inc., 5 pages, printed Sep. 20, 2004. |
Blake et al., “Seng 310 Final Project Demo Program,” Illustration, 3 pages, Apr. 6, 2001. |
Blake et al., “Seng 310 Final Project,” Report, dated Apr. 6, 2001. |
Blister Pack Insert from a Ritetemp 8082 Touch Screen Thermostat Product, 2 pages, 2002. |
Braeburn Model 3000 Owner's Manual, pp. 1-13, 2001. |
Braeburn Model 5000 Owner's Manual, pp. 1-17, 2001. |
BRK Electronics Maximum Protection Plus Ultimate Convenience Smoke Alarm, 24 pages, prior to Dec. 2, 2003. |
BRK First Alert, User's Manual, Smoke and Fire Alarms, pp. 1-7, Nov. 2002. |
Bryant, “Installation and Start-Up Instructions Evolution Control SYSTXBBUID01,” 12 pages, 2004. |
Business Wire, “MicroTouch Specialty Products Group to Capitalize on Growing Market for Low-Cost Digital Matrix Touchscreens,”pp. 1174 (2 pages), Jan. 6, 1999. |
Cardio Manual, available at http://www.secant.ca/en/documentation/cardio2é-Manual.pdf, Cardio Home Automation Inc., 55 pages, printed Sep. 28, 2004. |
Cardio, by Secant; http://www.hometoys.com/htinews/apr98/reviews/cardio.htm, “HTINews Review,” Feb. 1998, 5 pages, printed Sep. 14, 2004. |
Carrier Microelectronic Programmable Thermostat Owner's Manual, pp. 1-24, May 1994. |
Carrier TSTATCCRF01 Programmable Digital Thermostat, pp. 1-21, prior to Dec. 2, 2003. |
Carrier, “Programmable Dual Fuel Thermostat,” Installation, Start-Up & Operating Instructions, pp. 1-12, Oct. 1998. |
Carrier, “Programmable Thermostats,” Installation, Start-Up & Operating Instructions, pp. 1-16, Sep. 1998. |
Carrier, “Standard Programmable Thermostat,” Homeowner's Manual, pp. 1-8, 1998. |
Carrier, “Thermidistat Control,” Installation, Start-Up, and Operating Instructions, pp. 1-12, Aug. 1999. |
Climatouch, User Manual, Climatouch CT03TSB Thermostat, Climatouch CT03TSHB Thermostat with Humididty Control, Outdoor UHF Temperature Transmitter 217S31, 19 pages, Printed Sep. 15, 2004. |
File History for ReExam Control No. 95/002,041, U.S. Pat. No. 7,634,504, ReExamination Filed Jul. 18, 2012. |
CorAccess, “Companion 6,” User Guide, pp. 1-20, Jun. 17, 2002. |
Danfoss RT51/51 RF & RT52/52RF User Instructions, 2 pages, Jun. 2004. |
DeKoven et al., “Designing Collaboration in Consumer Products,” 2 pages, 2001. |
DeKoven et al., “Measuring Task Models in Designing Intelligent Products,” pp. 188-189, 2002. |
Domotique Secant Home Automation—Web Page, available at http://www.secant.ca/en/company/default.asp, 1 page, printed Sep. 28, 2004. |
Firex Smoke Alarm, Ionization Models AD, ADC Photoelectric Model Pad, 4 pages, prior to Dec. 2, 2003. |
Freudenthal et al., “Communicating Extensive Smart Home Functionality to Users of All Ages: The Design of a Mixed-Initiative Multimodal Thermostat-Interface,” pp. 34-39, Mar. 12-13, 2001. |
Gentex Corporation, 9000 Series, Photoelectric Type Single Station/Multi-Station Smoke Alarms AC Powered with Battery Backup, Installation Instructions—Owner's Information, pp. 9-1 to 9-6, Jan. 1, 1993. |
Gentex Corporation, HD135, 135° Fixed Temperature Heat Detector AC Powered, 120V, 60Hz with Battery Backup, Installation Instructions—Owner's Information, pp. 1-5, Jun. 1, 1998. |
Honeywell Brivis Deluxe Programmable Thermostat, pp. 1-20, 2002. |
Honeywell Brivis T8602C Chronotherm IV Deluxe Programmable Thermostats, Installation Instructions, pp. 1-12, 2002. |
Honeywell CT8602C Professional Fuel Saver Thermostat, pp. 1-6, 1995. |
Honeywell Electronic Programmable Thermostat, Owner's Guide, pp. 1-20, 2003. |
Honeywell Electronic Programmable Thermostats, Installation Instructions, pp. 1-8, 2003. |
Honeywell News Release, “Honeywell's New Sysnet Facilities Integration System for Boiler Plant and Combustion Safety Processes,” 4 pages, Dec. 15, 1995. |
Honeywell T8002 Programmable Thermostat, Installation Instructions, pp. 1-8, 2002. |
Honeywell T8602 A, B, C, D and TS8602 A, C Chronotherm III Fuel Saver Thermostats, Installation Instructions, pp. 1-12, 1995. |
Honeywell T8602D Chronotherm IV Deluxe Programmable Thermostats, Installation Instructions, pp. 1-12, 2002. |
Honeywell TH8000 Series Programmable Thermostats, Owner's Guide, pp. 1-44, 2004. |
Honeywell, “Electromechanical Thermostats,” 2 pages, 2002. |
Honeywell, “Excel Building Supervisor—Integrated R7044 and F S90 Ver. 2.0,” Operator Manual, 70 pages, Apr. 1995. |
Honeywell, “Introduction of the 57350A Honeywell WebPAD Information Appliance,” Home and Building Control Bulletin, 2 pages, Ausust 29, 2000; Picture of Web Pad Device with touch Screen, 1 page; and screen shots of WebPad Device, 4 pages. |
Honeywell, “Vision Pro 8000 Touchscreen Programmable Thermostat,” Honeywell International Inc., 40 pages, 2004. |
Honeywell, “W7006A Home Controller Gateway User Guide,” 31 pages, Jul. 2001. |
Honeywell, MagicStat® CT3200 Programmable Thermostat, Installation and Programming Instructions, pp. 1-24, 2001. |
http://hometheaterhifi.com/volume_6 2/philipsprontoremotecontrol.html, 5 pages, dated May 1999. printed Aug. 20, 2004. |
http://www.cc.gatech.edu/computing/classes/cs6751_94_fall/groupc/climate-2/node1.html, “Contents,” 53 pages, printed Sep. 20, 2004. |
http://www.hometoys.com/htinews/apr99/releases/hal01.htm, HTI News Release, pp. 1-3. |
http://www.ritetemp.info/rtMenu_13.html, RiteTemp 8082, 6 pages, printed Jun. 20, 2003. |
http://www.thermostatsales.com, Robershaw, “9610 Digital Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
http://www.thermostatsales.com, Robershaw, “9700 Digital Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
http://www.thermostatsales.com, Robershaw, “9710 Digital Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
http://www.thermostatsales.com, Robershaw, “9720 Digital Programmable Thermostat,” 3 pages, printed Jun. 17, 2004. |
Hunter, “44200/44250,” Owner's Manual, 32 pages, printed prior to Dec. 2, 2003. |
Hunter, “44300/44350,” Owner's Manual, 35 pages, printed prior to Dec. 2, 2003. |
Hunter, “Auto Saver 550,” Owner's Manual Model 44550, 44 pages, printed prior to Dec. 2, 2003. |
Install Guide for Ritetemp Thermostat 8082, 6 pages, 2002. |
Invensys Deluxe Programmable Thermostats 9700, 9701, 9715, 9720, User's Manual, 21 pages, prior to Dec. 2, 2003. |
Lennox, “Network Control Panel (NCP),” User's Manual, 18 pages, Nov. 1999. |
Lnvensys™, “9700i 970 I i 9715i 9720i Deluxe Programmbale Thermostats,” User's Manual, pp. 1-28, printed prior to Dec. 2, 2003. |
Lux TX9000 Installation, 3 pages, prior to Dec. 2, 2003. |
Lux, “511 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
Lux, “600 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
Lux, “602 Series Multi-Stage Programmable Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
Lux, “605/2110 Series Programmable Heat Pump Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
Lux, “700/9000 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
Lux, “ELV1 Programmable Line Voltage Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
Lux, “PSPH521 Series Programmable Heat Pump Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
Lux, “TX1500 Series Smart Temp Electronic Thermostat,” Owner's Manual, 6 pages, printed prior to Dec. 2, 2003. |
Lux, “TX500 Series Smart Temp Electronic Thermostat,” Owner's Manual, 3 pages, printed prior to Dec. 2, 2003. |
MagicStat, “Electronic, Programmable Thermostat, Owner's Manual,” 23 pages. 1986. |
Matty, “Advanced Energy Management for Home Use,” IEEE Transactions on Consumer Electronics, vol. 35, No. 3, pp. 584-588, 1989. |
Metasys, “HVAC PRO for Window's User's Manual,” 308 pages, 1998. |
Mounting Template for Ritetemp Thermostat 8082, 1 page, 2002. |
Operation manual for Ritetemp Touch Screen Thermostat 8082, 8 pages, 2002. |
Proliphix Inc., “Web Enabled IP Thermostats,” 2 pages, prior to Dec. 2, 2003. |
Quick Start Guide for Ritetemp Thermostat 8082, 1 page, 2002. |
Raji, “Smart Networks for Control,” IEEE Spectrum, pp. 49-55, 1994. |
Remote Control Power Requirement for Ritetemp Thermostat 8082, 1 page, 2002. |
Ritetemp Operation 8029, 3 pages, Jun. 19, 2002. |
Ritetemp Operation 8050, 5 pages, Jun. 26, 2002. |
Ritetemp Operation 8085, pp. 1-6, prior to Dec. 2, 2003. |
Sealed Unit Parts Co., Inc., Supco & CTC Thermostats . . . Loaded with Features, Designed for Value!, 6 pages, prior to Dec. 2, 2003. |
Totaline Model P474-1035 Owner's Manual Programmable 5-2 Day Digital Thermostat, pp. 1-21, prior to Dec. 2, 2003. |
Totaline Star CPE230RF, Commercial Programmable Thermostat Wireless Transmitter, Owner's Manual, pp. 1-16, Oct. 1998. |
Totaline Star P/N P474-0130 Non-Programmable Digital Thermostat Owner's Manual, pp. 1-22, prior to Dec. 2, 2003. |
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N P374-1100FM, 23 pages, Nov. 1998. |
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N P474-1050, 21 pages, Nov. 1998. |
Totaline, “1 for All Programmable Digital Thermostat,” Owner's Manual P/N P374-1100, 24 pages, Apr. 2001. |
Totaline, “Instructions P/N P474-1010,” Manual, 2 pages, Dec. 1998. |
Totaline, “Intellistat Combination Temperature and Humidity Control,” Owner's Manual P/N P374-1600, 25 pages, Jun. 2001. |
Totaline, “Programmable Thermostat Configurable for Advanced Heat Pump or Dual Fuel Operation,” Owner's Manual P/N P374-1500, 24 pages, Jun. 1999. |
Totaline, “Programmable Thermostat,” Homeowner's Guide, 27 pages, Dec. 1998. |
Totaline, “Wireless Programmable Digital Thermostat,” Owner's Manual 474-1100RF, 21 pages, 2000. |
Trane, “System Programming, Tracer Summit Version 14, BMTW-SVP01D-EN,” 623 pages, 2002. |
Trouble Shooting Guide for Ritetemp Thermostat 8082, 1 page, 2002. |
Visor Handheld User Guide, Copyright 1999-2000. |
Warmly Yours, “Model TH111GFCI-P (120 VAC),” Manual, pp. 1-4, printed prior to Dec. 2, 2003. |
White-Rodgers 1F80-224 Programmable Electronic Digital Thermostat, Installation and Operation Instructions, 8 pages, prior to Dec. 2, 2003. |
White-Rodgers Installation Instructions for Heating & Air Conditioning IF78 Non-Programmable Thermostat, 6 pages, prior to Dec. 2, 2003. |
White-Rodgers, “Comfort-Set 90 Series Thermostat,” Manual, pp. 1-44, printed prior to Dec. 2, 2003. |
White-Rodgers, “Comfort-Set III Thermostat,” Manual, pp. 1-44, printed prior to Dec. 2, 2003. |
White-Rodgers, “Installation Instructions for Heating & Air Conditioning IF72 5/2 Day Programmable Heat Pump Thermostat,” 8 pages, printed prior to Dec. 2, 2003. |
White-Rodgers, “Installation Instructions for Heating & Air Conditioning IF78 5/2 Day Programmable Thermostat,” 7 pages, printed prior to Dec. 2, 2003. |
White-Rodgers, Comfort-Set 90 Series Premium, 4 pages, prior to Dec. 2, 2003. |
White-Rodgers, IF80-240 “(for Heating Only systems) Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 8 pages, printed prior to Dec. 2, 2003. |
White-Rodgers, IF80-241, “Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 6 pages, printed prior to filing date. |
White-Rodgers, IF80-261, “Programmable Electronic Digital Thermostat,” Installation and Operation Instructions, 8 pages, printed prior to Dec. 2, 2003. |
White-Rodgers, IF81-261, “Programmable Electronic Digital Multi-Stage Thermostat,” Installation and Operation Instructions, 8 pages, printed prior to Dec. 2, 2003. |
White-Rodgers, IF82-261, “Programmable Electronic Digital Heat Pump Thermostat,” Installation and Operation Instructions, 8 pages, prior to Dec. 2, 2003. |
www.icmcontrols.com, Simplecomfort, SC3000 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, printed prior to Dec. 2, 2003. |
www.icmcontrols.com, Simplecomfort, SC3001 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, printed prior to Dec. 2, 2003. |
www.icmcontrols.com, Simplecomfort, SC3006 Single Stage Heat/Single Stage Cool or Single Stage Heat Pump/Manual Changeover, 1 page, printed prior to Dec. 2, 2003. |
www.icmcontrols.com, Simplecomfort, SC3201 2 Stage Heat Pump Manual Changeover, 1 page, printed prior to Dec. 2, 2003. |
www.icmcontrols.com, Simplecomfort, SC3801 2 Stage Heat/2 Stage Cool 2 Stage Heat Pump/Audio Changeover, 1 page, printed prior to Dec. 2, 2003. |
Prosecution History from U.S. Appl. No. 10/726,245, dated Dec. 29, 2005 through Dec. 14, 2006, 102 pp. |
Prosecution History from U.S. Appl. No. 11/421,833 and U.S. Appl. No. 95/200,041, dated Mar. 24, 2008 through Apr. 20, 2010, 80 pp. |
Prosecution History from U.S. Appl. No. 12/424,931, dated Dec. 9, 2010 through Mar. 2, 2012, 115 pp. |
Prosecution History from U.S. Appl. No. 12/700,672, dated Mar. 30, 2011 through Mar. 7, 2012, 92 pp. |
Prosecution History from U.S. Appl. No. 13/413,604, dated May 22, 2012 through Oct. 23, 2014, 206 pp. |
Prosecution History from U.S. Appl. No. 13/434,806, dated Aug. 30, 2012 through Nov. 1, 2013, 108 pp. |
Prosecution History from U.S. Appl. No. 14/556,592, dated Mar. 22, 2017 through Jul. 20, 2017, 22 pp. |
Prosecution History from U.S. Appl. No. 14/671,964, dated Sep. 4, 2015 through Sep. 2, 2016, 97 pp. |
Examination Report from counterpart European Application No. 04812760.9, dated Jun. 3, 2008, 4 pp. |
Response to Examination Report dated Jun. 3, 2008, from counterpart European Application No. 04812760.9, filed Sep. 24, 2008, 5 pp. |
Examination Report from counterpart European Application No. 04812760.9, dated Jul. 13, 2009, 3 pp. |
Response to Examination Report dated Jul. 13, 2009, from counterpart European Application No. 04812760.9, filed Nov. 12, 2009, 5 pp. |
Response to Summons to Attend Oral Proceedings from counterpart European Patent Application No. 04812760.9, dated Aug. 25, 2010, filed Nov. 3, 2010, 23 pp. |
Notice of Intent to Grant and Text Intended to Grant from counterpart European Application No. 04812760.9, dated Apr. 6, 2011, 53 pp. |
International Preliminary Report on Patentability from International Application No. PCT/US2004/040316, dated Jun. 7, 2006, 6 pp. |
Second Office Action and translation thereof, from counterpart Chinese Application No. 200480041233.0 dated Jul. 11, 2008, 13 pp. |
Decision of Rejection, and translation thereof, from counterpart Chinese Application No. 200480041233.0, dated Nov. 7, 2008, 17 pp. |
Number | Date | Country | |
---|---|---|---|
20170300073 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14556592 | Dec 2014 | US |
Child | 15640051 | US | |
Parent | 13413604 | Mar 2012 | US |
Child | 14556592 | US | |
Parent | 12700672 | Feb 2010 | US |
Child | 13413604 | US | |
Parent | 12424931 | Apr 2009 | US |
Child | 12700672 | US | |
Parent | 11421833 | Jun 2006 | US |
Child | 12424931 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10726245 | Dec 2003 | US |
Child | 11421833 | US |