Intra-extra oral shock-sensing and indicating systems and other shock-sensing and indicating systems

Information

  • Patent Grant
  • 9814391
  • Patent Number
    9,814,391
  • Date Filed
    Thursday, April 17, 2014
    10 years ago
  • Date Issued
    Tuesday, November 14, 2017
    7 years ago
Abstract
A mouth guard comprises a base member configured to fit inside the mouth of a user, and at least one shock-sensing and indicating device coupled to the base member. In one exemplary embodiment, the shock-sensing and indicating device is a passive shock-sensing and indicating device that detects a shock substantially along a selected axis with respect to the base member. In another exemplary embodiment, the at least one shock-sensing and indicating device detects a shock substantially along a plurality of selected axes with respect to the base member, each selected axis being substantially orthogonal from another selected axis. The shock-sensing and indicating devices can be configured to detect different levels of shock. In one exemplary embodiment, the shock-sensing and indicating device comprises a multi-component chemical-reaction system, such as a chemi-luminescent reaction system.
Description
BACKGROUND

Shock sensing technologies incorporated into helmets or headgear does not accurately reflect shock experienced by a wearer of the helmet.





BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter disclosed herein is illustrated by way of example and not by limitation in the accompanying figures in which like reference numerals indicate similar elements and in which:



FIG. 1 depicts a top view of one exemplary embodiment of a mouth-guard device according to the subject matter disclosed herein that, in use, is positioned in the mouth of a user for sensing and recording shock experienced by the user;



FIGS. 2A-2C respectively depict top, front and side views of an exemplary embodiment of a mouth-guard device that comprises three shock-sensing and indicating devices that, in use, is positioned in the mouth of a user for sensing and recording shock experienced by the user;



FIGS. 3A-3C respectively depict top, front and side view of an exemplary embodiment of a mouth-guard device that comprises six shock-sensing and indicating devices that, in use, is positioned in the mouth of a user for sensing and recording shock experienced by the user;



FIGS. 4A-4C respectively depict top, front and side view of an exemplary embodiment of a mouth-guard device that comprises one shock-sensing and indicating device that, in use, is positioned in the mouth of a user for sensing and recording shock experienced by the user;



FIGS. 5A-5C respective depict front, right-side and bottom views of an exemplary embodiment of a shock-sensing unit comprising four passive-shock-sensing and indicating devices, such as passive-tube-type sensor/detector/indicators, that are suitable for use with the subject matter disclosed herein;



FIGS. 6A-6C respectively depict front, right-side and bottom views of an exemplary embodiment of a shock-sensing unit comprising two passive-shock-sensing devices, such as passive-tube-type sensor/detector/indicators, that are suitable for use with the subject matter disclosed herein;



FIGS. 7A-7C respectively depict front, right-side and bottom views of an exemplary embodiment of a shock-sensing unit comprising one passive-shock-sensing device, such as a passive-tube-type sensor/detector/indicator, that are suitable for use with the subject matter disclosed herein;



FIGS. 8A-8C respectively depict front, right-side and bottom views of an exemplary embodiment of a shock-sensing unit comprising two passive-shock-sensing devices, such as passive-tube-type sensor/detector/indicators, that are suitable for use with the subject matter disclosed herein;



FIGS. 9A-9C respectively depict top, front and left-side views of an exemplary embodiment of an eye-protection device comprising one passive-shock-sensing device, such as a passive-tube-type sensor/detector/indicator;



FIGS. 10A-10C respectively depict top, front and left-side views of an exemplary embodiment of an eye-protection device comprising two passive-shock-sensing devices, such as passive-tube-type sensor/detector/indicators;



FIGS. 11A-11C respectively depict top, front and left-side views of an exemplary embodiment of an eye-protection device comprising four passive-shock-sensing devices, such as passive-tube-type sensor/detector/indicators;



FIGS. 12A-12C respectively depict top, front and left-side views of an exemplary embodiment of an eye-protection device comprising six passive-shock-sensing devices, such as passive-tube-type sensor/detector/indicators;



FIGS. 13A-13C respectively depict front, right-side and bottom views of an exemplary embodiment of a shock-sensing unit comprising three passive-shock-sensing devices, such as passive-tube-type sensor/detector/indicators;



FIGS. 14A-14C respectively depict front, side and end views of an exemplary embodiment of a shock-sensing unit comprising two shock-sensing devices attached in a well-known manner to a substrate having an adhesive coating that is used for attaching shocking-sensing unit to the body of a user, or to a piece of equipment or clothing worn by the user.



FIG. 14D depicts the shock-sensing device depicted in FIGS. 14A-14C being worn as an adhesive nasal strip by a user;



FIGS. 15A-15C respectively depict front, side and bottom views of an exemplary embodiment of a shock-sensing unit comprising six shock-sensing devices attached in a well-known manner to a substrate having an adhesive coating that is used for attaching shocking-sensing unit to the body of a user, or to a piece of equipment or clothing worn by the user.



FIG. 15D depicts shock-sensing device depicted in FIGS. 15A-15C being worn as an adhesive nasal strip by a user;



FIGS. 16A and 16B respectively depict front and side views of an exemplary embodiment of a shock-sensing unit configured to fit into the ear of a user and comprising one shock-sensing device;



FIG. 16C is a cross-sectional view of the exemplary embodiment of the shock-sensing unit depicted in FIG. 16A taken along line A-A;



FIGS. 17A and 17B respectively depict a cross-sectional view and an assembly view of one exemplary embodiment of a shock-sensing and indicating device that comprises a two-component chemical reaction that results in a simple color change, chemi-luminescent output, or electro-chemical output when a shock of a certain level is sensed by a shock-sensing and indicating device according to the subject matter disclosed herein;



FIGS. 18A and 18B respectively depict a cross-sectional view and an assembly view of another exemplary embodiment of a shock-sensing and indicating device that comprises a two-component chemical reaction that results in a simple color change, chemi-luminescent output, or electro-chemical output when a shock of a certain level is sensed by shock-sensing and indicating device according to the subject matter disclosed herein;



FIGS. 19A and 19B respectively depict a cross-sectional view and an assembly view of another exemplary embodiment of a shock-sensing and indicating device that comprises a two-component chemical reaction that results in a simple color change, chemi-luminescent output, or electro-chemical output when a shock of a certain level is sensed by shock-sensing and indicating device according to the subject matter disclosed herein;



FIGS. 20A and 20B respectively depict a cross-sectional view and an assembly view of another exemplary embodiment of a shock-sensing and indicating device that comprises a two-component chemical reaction that results in a simple color change, chemi-luminescent output, or electro-chemical output when a shock of a certain level is sensed by shock-sensing and indicating device according to the subject matter disclosed herein;



FIG. 21 depicts the three basic components for an exemplary embodiment of a shock-sensing and indicating system according to the subject matter disclosed herein;



FIG. 22 depicts another exemplary embodiment of a shock detecting system according to the subject matter disclosed herein;



FIGS. 23A and 23B respectively depict a front and a sectional view of an exemplary embodiment of a two-axis, omni-directional shock-detection device according to the subject matter disclosed herein;



FIG. 24 depicts a sectional view of an exemplary embodiment of a one-axis, mono-directional shock-detecting device according to the subject matter disclosed herein;



FIG. 25 depicts a sectional view of an exemplary embodiment of a one-axis, bi-directional shock-detecting device according to the subject matter disclosed herein;



FIGS. 26A and 26B respectively depict a front and a sectional view of another exemplary embodiment of a two-axis, omni-directional shock-detection device according to the subject matter disclosed herein;



FIG. 27 depicts an alternative exemplary non-limiting embodiment of a shock-sensing device adaptor that can be coupled to a mouth guard strap according to the subject matter disclosed herein;



FIGS. 28A and 28B respectively depict front and side views of an exemplary non-limiting embodiment of a shock-sensing device that can be mounted into a hole on a mouth guard according to the subject matter disclosed herein;



FIG. 28C depicts a side view of a non-limiting exemplary embodiment comprising a single post bottom according to the subject matter disclosed herein;



FIG. 28D depicts a side view of a non-limiting exemplary embodiment comprising two post bottoms according to the subject matter disclosed herein;



FIGS. 29A and 29B respectively depict front and side views of another exemplary non-limiting embodiment of a shock-sensing device that can be mounted into a hole on a mouth guard according to the subject matter disclosed herein;



FIG. 29C depicts a side view of a non-limiting exemplary embodiment comprising two post bottoms according to the subject matter disclosed herein;



FIGS. 30A and 30B respectively depict front and side views of yet another exemplary non-limiting embodiment of a shock-sensing device that can be mounted into a hole on a mouth guard according to the subject matter disclosed herein;



FIG. 30C depicts a side view of a non-limiting exemplary embodiment comprising a single post bottom according to the subject matter disclosed herein;



FIG. 30D depicts a side view of a non-limiting exemplary embodiment comprising two post bottoms according to the subject matter disclosed herein;



FIGS. 31A-31C respectively depict front, side and bottom views of an exemplary non-limiting embodiment of a shock-sensing device that can be mounted to the strap of a mouth guard according to the subject matter disclosed herein;



FIG. 31D depicts a side view of a non-limiting exemplary embodiment of a strap that has been modified to receive the exemplary device of FIGS. 31A-31C according to the subject matter disclosed herein; and



FIG. 31E depicts a shock-sensing device mounted on the strap of a mouth guard according to the subject matter disclosed herein.





DETAILED DESCRIPTION

The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any embodiment described herein as “exemplary” is not to be construed as necessarily preferred or advantageous over other embodiments. Additionally, it will be appreciated that for simplicity and/or clarity of illustration, elements illustrated in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, in some figures only one or two of a plurality of similar components or items are indicated by reference characters for clarity of the figure. Additionally, as used herein, the term “spill-type-technology” shock-detecting device generally refers to a shock-detecting device in which shock is sensed by a spillage of a component. Similarly, the term “crush-type-technology” shock-detecting device generally refers to a shock-detecting device in which shock is sensed by a component being crushed in some manner.


The subject matter disclosed herein relates to devices that comprise passive (i.e., shock-sensing and indicating) and active (i.e., shock-sensing or detecting and indicating/recording and/or transmitting to separate monitoring devices) shock-sensing and recording or indicating devices. As used herein, the term “shock” means a short-term high-level acceleration and/or deceleration condition. “Intra” or “extra” positioning of active sensing devices provides better correlation to potential injury than conventional techniques or devices. Additionally, as used herein, the terms “shock-sensing device or unit” or “shock-sensing and indicating device or unit” means a passive and/or active shock-sensing and indicating device. Alternatively for convenience, as used herein, the terms “shock-sensing device or unit” or “shock-sensing and indicating device or unit” also means a passive and/or active shock-sensing device with a separate corresponding indicating device.


One exemplary embodiment of a passive shock-sensing and indicating device comprises a passive tube-type sensor/detector/indicator, such as a passive tube-type sensor/detector/indicator commonly known as a ShockWatch® Impact Indicator manufactured by and available from ShockWatch of Dallas, Tex. Further, other passive and/or active shock-sensing and indicating device could comprise non-powered piezoelectric shock-sensing and indicating devices, powered piezoelectric shock-sensing and indicating devices, powered shock-sensing and indicating devices, powered shock-sensing and indicating devices with storage capability and/or RFID-type communication capabilities, and/or powered microaccelerometers. In some exemplary embodiments, both passive and active shock-sensing and indicating devices could be used together. In some exemplary embodiments, one or more shock-sensing and indicating devices could include a close-coupled electromagnetic communications capability. In some exemplary embodiments, the shock-sensing device is separate from a corresponding shock-indicating device.


It should also be understood that the particular exemplary embodiments and configurations of the subject matter disclosed herein, such as particular number, types, orientations of shock-sensing and indicating devices and shock-sensing units, could be combined in ways not specifically disclosed herein. That is, it should also be understood that the particular exemplary embodiments and configurations of the subject matter discloses herein could be combined and/or used together although not specifically disclosed herein as being combined and/or used together. It should be understood that in cases in which components forming the devices and the devices disclosed herein are referred to in the singular, a plurality of such components could also be intended and meant. Similarly, it should be understood that in cases in which components forming the devices and the devices disclosed herein are referred to as a plurality, a singular component could also be intended and meant.


In one exemplary embodiment, a mouth-guard device is configured as a “boil and bite” mouth guard used by, for example, an athlete that participates in contact and/or collision sports, although such exemplary configurations, users and/or uses are not limited by the disclosure herein. In some exemplary embodiments, the shock-sensing and indicating devices, or components, are mounted in conjunction with conventional “tooth guard” devices that provide intimate mechanical connection to the cranial structures. Intimate mechanical connection of a mouth-guard device to the cranial bone mass of a user is achieved by intra-oral positioning and by dental and mandibular contact, thereby allowing the shock-sensing and indicating components of the subject matter disclosed herein to more accurately reflect potential shock-associated injuries (concussive brain injury and other) that could be caused by shocks experienced by the user. In one exemplary embodiment, extra-oral positioning of visually indicating passive and/or active shock-sensing and indicating components provides others, such as other players, referees, coaches, on-site medical personnel and/or parents, “real-time evidence” that the user has experienced a potential injury-level shock without the mouth-guard device being removed from the user's mouth. In another exemplary embodiment, the mouth-guard device is removed from the mouth of a user to view the shock-sensing and indicating components. In yet another exemplary embodiment, the extra-oral positioning of visually indicating passive and/or active shock-sensing and indicating components provide an indication of progressive levels of shock exposure and a corresponding probability of potential injury.


In one exemplary embodiment of the subject matter disclosed herein, the passive mechanical shock-sensing and indicating devices could be “replace-after-tripped” devices. In another exemplary embodiment, the passive mechanical shock-sensing and indicating devices are re-settable. In still another exemplary embodiment, the passive shock-sensing and indicating devices are not re-settable or replaceable. In one exemplary embodiment, the shock-sensing and indicating devices are oriented along substantially orthogonal axes. In another exemplary embodiment, each shock-sensing and indicating device of a pair of shock-sensing devices is oriented in substantially opposite directions along a given axis. In still another exemplary embodiment, one or more shock-sensing and indicating devices could be positioned at selected locations on and/or in a mouth guard with a selected location being dependent upon the particular application for which the mouth guard is intended.



FIG. 1 depicts a top view of one exemplary embodiment of a mouth-guard device 100 that, in use, is positioned in the mouth of a user, or wearer, for sensing and recording shock experienced by the user. Mouth-guard device 100 comprises a base member 101 comprising a generally arcuate shape or U-shape. Base member 101 comprises a first biting surface 102 and a second biting surface 103 that, in use, are positioned between occlusal tooth surfaces (not shown) of a user's upper and lower teeth (not shown). Base member 101 also comprises an anterior portion 104, a posterior portion 105, a labial-buccal side 106, and a lingual side 107, and at least one flange 108 extending from either the labial-buccal side 106 or the lingual side 108 of base member 101. When mouth-guard device 100 is inserted into the user's mouth, anterior portion 104 is proximate to the opening of the user's mouth and posterior portion is proximate to the user's molars. The labial-buccal side 106 is proximate to a user's inner cheeks, while the lingual side 107 is proximate to the user's tongue when mouth-guard device 100 is inserted into the user's mouth. Flanges 108 can extend in a superior (upper) and/or inferior (lower) direction and are respectively shaped to form a barrier between a user's upper and lower teeth (not shown) and a user's soft oral tissue (not shown).


A handle (or tongue) 110 is affixed to anterior portion 104 of mouth-guard device 100. Handle 100 has a distal end 111 and a proximate end 112. In one exemplary embodiment, proximate end 112 of handle 110 is affixed to the anterior portion 104 of mouth-guard device 100. Handle 100 can be shaped and sized so that the distal end 111 extends out of the user's mouth. In one exemplary embodiment, a central planar axis (not shown) with which the handle 110 is aligned is substantially co-planar with a central planar axis (not shown) upon which base member 101 is substantially aligned. In another exemplary embodiment, the central planar axis (not shown) of handle 110 is substantially not co-planar with respect to the central planar axis (not shown) of the base member 101.


In one exemplary embodiment, at least one shock-sensing and indicating device 120 is affixed to handle 110 in a well-known manner. The specific exemplary embodiment depicted in FIG. 1 comprises three shock-sensing and indicating devices 120a-120c that are affixed to handle 110 in a well-known manner. In one exemplary embodiment, the shock-sensing and indicating devices of the mechanical system shown in FIG. 1 (and for other shock-sensing devices and/or shock-sensing and indicating devices disclosed herein) could be selected to indicate whether one or more specific levels of shock have been experienced by the shock-sensing and indicating device. In another exemplary embodiment, the one or more specific levels of shock detected by the shock-sensing and indicating devices is selected from a range of about 50 g of shock to about 100 g of shock. In still another exemplary embodiment, the one or more specific levels of shock detected by the shock-sensing and indicating devices is/are selected from the range of about 50 g of shock to about 250 g of shock. In still other exemplary embodiments, the shock level detected by a shock-sensing and indicating device could be greater than about 250 gs of shock. In yet another exemplary embodiment, the specific levels of shock indication could be selected to be standard graduated levels, such as, about 50 g, about 75 g, and about 100 g. It should be understood that the shock-sensing and indicating devices of the subject matter disclosed herein could sense and indicate shock levels outside the range of about 50 g of shock to about 100 g of shock. In another exemplary embodiment, one or more selected levels of shock indication could be custom selected for a particular application. Additionally, it should be understood that particular exemplary embodiments of the mechanical system depicted in FIG. 1 and elsewhere herein could comprise more or fewer shock-sensing and indicating devices than what is depicted in a given figure.


In one exemplary embodiment, mouth-guard device 100, as well as other exemplary embodiments of mouth-guard devices disclosed herein, is made of a thermoplastic that becomes moldable at a glass transition temperature that is greater than the temperature in the user's mouth. In one exemplary embodiment, mouth-guard device 100 is made from a thermoplastic having a glass transition temperature greater than about 95 degrees Fahrenheit. In another exemplary embodiment, the thermoplastic becomes suitable for molding mouth-guard device 100 to a user's upper and lower teeth at a temperature less than about 180 degrees Fahrenheit. A thermoplastic with a glass transition temperature greater than about 180 degrees Fahrenheit could be used to form the mouth-guard device of the subject matter disclosed herein, provided that the mouth-guard device is fitted to dental models of a person's teeth while the thermoplastic is in the moldable state and allowed to cool prior to use as a protective device. Exemplary thermoplastics suitable for a mouth-guard device include, but are not limited to, ethylene vinyl alcohol, ethylene vinyl acetate, urethane, styrene block copolymer, rubber, polystyrene, polybutadiene, polyisoprene, polyolefin, organopolysiloxane, alicyclic saturated hydrocarbon resin, polycaprolactone, polyethylene, unfilled polycarbonate, ester gum, polyethylenetetraphthalate, terpolymer, nylon, nylon copolymer, polyester, copolyester, or any combination of one or more thereof.



FIGS. 2A-2C depict an exemplary embodiment of a mouth-guard device 200 that comprises three shock-sensing and indicating devices (or shock-detecting devices) 201a-201c that, in use, is positioned in the mouth of a user for sensing and recording shock experienced by the user. In particular, FIG. 2A depicts a top view of the exemplary embodiment of mouth-guard device 200. FIG. 2B depicts a front view of the exemplary embodiment of mouth-guard device 200, and FIG. 2C depicts a side view of the exemplary embodiment of mouth-guard device 200. For the exemplary embodiment depicted in FIGS. 2A-2C, mouth-guard device 200 comprises three (3) shock-sensing and indicating devices 201a-201c that are attached to mouth-guard device 200, and respectively positioned and oriented along substantially orthogonal axes. It should be understood that mouth-guard device 200 is depicted using dashed lines because the exact configuration of mouth-guard device 200 could vary for the particular application for mouth-guard device 200 is intended. It should also be understood that shock-sensing and indicating devices 201a-201c could be positioned internally to mouth-guard device 200, in which case, the material forming mouth-guard device 200 would be permit viewing of shock-sensing and indicating devices 201a-201c, and/or could be attached to a surface of device 200 in a well-known manner. Further still, it should be understood that the particular orientation of a shock-sensing and indicating device 201 along an axis could be in either direction along the axis, and that each shock-sensing device 201 could have the same or substantially the same shock-level sensing capability, or could have a different selected shock-level sensing capability than another shock-sensing and indicating device 201.



FIGS. 3A-3C depict an exemplary embodiment of a mouth-guard device 300 that comprises six shock-sensing and indicating devices (or shock-detecting devices) 301a-301f that, in use, is positioned in the mouth of a user for sensing and recording shock experienced by the user. In particular, FIG. 3A depicts a top view of the exemplary embodiment of mouth-guard device 300. FIG. 3B depicts a front view of the exemplary embodiment of mouth-guard device 300, and FIG. 3C depicts a side view of the exemplary embodiment of mouth-guard device 300. For the exemplary embodiment depicted in FIGS. 3A-3C, mouth-guard device 300 comprises six (6) shock-sensing devices 301a-301f that are attached to mouth-guard device 300, and respectively positioned and oriented along substantially orthogonal axes. More specifically, a pair of shock-sensing and indicating devices 301 is bi-directionally oriented along each respective substantially orthogonal axis. It should be understood that mouth-guard device 300 is depicted using dashed lines because the particular configuration of mouth-guard device 300 could vary for the particular application for mouth-guard device 300 is intended. It should also be understood that shock-sensing and indicating devices 301a-301f could be positioned internally to mouth-guard device 300, in which case, the material forming device mouth-guard 300 would be permit viewing of shock-sensing and indicating devices 301a-301c, and/or could be attached to a surface of mouth-guard device 300 in a well-known manner. Further still, it should be understood that the particular orientation of a shock-sensing device 301 along an axis could be in either direction along the axis, and that each shock-sensing and indicating device 301 could have the same or substantially the same shock-level sensing capability, or could have a different selected shock-level sensing capability than another shock-sensing and indicating device 301.



FIGS. 4A-4C depict an exemplary embodiment of a mouth-guard device 400 that comprises one shock-sensing and indicating device (or shock-detecting device) 401 that, in use, is positioned in the mouth of a user for sensing and recording shock experienced by the user. In particular, FIG. 4A depicts a top view of the exemplary embodiment of mouth-guard device 400. FIG. 4B depicts a front view of the exemplary embodiment of mouth-guard device 400, and FIG. 4C depicts a side view of the exemplary embodiment of mouth-guard device 400. For the exemplary embodiment depicted in FIGS. 4A-4C, mouth-guard device 400 comprises one shock-sensing device 401 that is attached to the mouth-guard device and positioned and oriented along a selected axis. It should be understood that mouth-guard device 400 is depicted using dashed lines because the particular configuration of mouth-guard device 400 could vary for the particular application for mouth-guard device 400 is intended. It should also be understood that shock-sensing device and indicating 401 could be positioned internally to mouth-guard device 400, in which case, the material forming mouth-guard device 400 would be permit viewing of shock-sensing and indicating device 401, or could be attached to a surface of mouth-guard device 400 in a well-known manner. Further still, it should be understood that the particular orientation of a shock-sensing and indicating device 401 along an axis could be in either direction along the axis. Moreover, it should be understood that the particular axis and orientation of shock-sensing device and indicating 401 depicted in FIGS. 4A-4C is only exemplary and is not limiting.



FIGS. 5A-5C respective depict front, right-side and bottom views of an exemplary embodiment of a shock-sensing unit 500 comprising four passive-shock-sensing devices 501, such as passive-tube-type sensor/detector/indicators, that are suitable for use with the subject matter disclosed herein. For the shock-sensing unit 500 depicted in FIGS. 5A-5C, shock-sensing devices 501 are encapsulated, such as by clear molded or a translucent plastic 502, such as polycarbonate or copolyester, on a suitable substrate 503, such as a silicone, a potting compound or an epoxy. It should be understood that other suitable materials could be used to for molded plastic 502 and for substrate 503. While shock-sensing unit 500 is depicted as comprising a disk shape, it should be understood that other suitable shapes could be used.



FIGS. 6A-6C respectively depict front, right-side and bottom views of an exemplary embodiment of a shock-sensing unit 600 comprising two passive-shock-sensing devices 601, such as passive-tube-type sensor/detector/indicators, that are suitable for use with the subject matter disclosed herein. For the shock-sensing unit 600 depicted in FIGS. 6A-6C, shock-sensing devices 601 are encapsulated, such as by clear or a translucent molded plastic 602, such as polycarbonate or copolyester, on a suitable substrate 603, such as a silicone, a potting compound or an epoxy. It should be understood that other suitable materials could be used for molded plastic 602 and for substrate 603. While shock-sensing unit 600 is depicted as comprising a disk shape, it should be understood that other suitable shapes could be used.



FIGS. 7A-7C respectively depict front, right-side and bottom views of an exemplary embodiment of a shock-sensing unit 700 comprising one passive-shock-sensing device 701, such as a passive-tube-type sensor/detector/indicator, that are suitable for use with the subject matter disclosed herein. For the shock-sensing unit 700 depicted in FIGS. 7A-7C, shock-sensing device 701 is encapsulated, such as by a bubble of clear or a translucent plastic 702, such as polycarbonate or copolyester, on a suitable substrate 703, such as a silicone, a potting compound or an epoxy. It should be understood that other suitable materials could be used for molded plastic 702 and for substrate 703. While shock-sensing unit 700 is depicted as comprising a disk shape, it should be understood that other suitable shapes could be used.



FIGS. 8A-8C respectively depict front, right-side and bottom views of an exemplary embodiment of a shock-sensing unit 800 comprising two passive-shock-sensing devices 801, such as passive-tube-type sensor/detector/indicators, that are suitable for use with the subject matter disclosed herein. For the shock-sensing unit 800 depicted in FIGS. 8A-8C, shock-sensing device 801 is encapsulated, such as by a bubble of clear or a translucent plastic 802, such as polycarbonate or copolyester, on a suitable substrate 803, such as a silicone, a potting compound or an epoxy. It should be understood that other suitable materials could be used for molded plastic 802 and for substrate 803. While shock-sensing unit 800 is depicted as comprising a disk shape, it should be understood that other suitable shapes could be used.


One exemplary embodiment of the subject matter disclosed herein comprises one or more passive and/or active shock-sensing devices that are integrally formed into a shock-sensing unit that could be attached to the body of a user using, for example, an adhesive coating on a surface of the shock-sensing unit. In another exemplary embodiment, the shock-sensing unit could be attached to a piece of equipment, such as a helmet, an eye-protection device, or clothing worn by a user.



FIGS. 9A-9C respectively depict top, front and left-side views of an exemplary embodiment of an eye-protection device 900 comprising one passive-shock-sensing device 901, such as a passive-tube-type sensor/detector/indicator. As depicted, shock-sensing device 901 is attached to eye-protection device 900 at the bridge of eye-protection device 900. While device 900 is referred to as an eye-protection device, it should be understood that device 900 is not so limited and could, in one exemplary embodiment, be a pair of corrective-lens glasses and in another exemplary embodiment be a pair of sunglasses. It should also be understood that the orientation and/or position of shock-sensing device 901 is only exemplary and could be different than that depicted in FIGS. 9A-9C. Moreover, it should be understood that device 900 could be configured in one exemplary embodiment as a pair of goggles.



FIGS. 10A-10C respectively depict top, front and left-side views of an exemplary embodiment of an eye-protection device 1000 comprising two passive-shock-sensing devices 1001, such as passive-tube-type sensor/detector/indicators. As depicted, shock-sensing device 1001 is attached to eye-protection device 1000 at the bridge of eye-protection device 1000. While device 1000 is referred to as an eye-protection device, it should be understood that device 1000 is not so limited and could, in one exemplary embodiment, be a pair of corrective-lens glasses and in another exemplary embodiment be a pair of sunglasses. It should also be understood that the orientation and/or position of shock-sensing devices 1001 is only exemplary and could be different than that depicted in FIGS. 10A-10C. Moreover, it should be understood that device 1000 could be configured in one exemplary embodiment as a pair of goggles.



FIGS. 11A-11C respectively depict top, front and left-side views of an exemplary embodiment of an eye-protection device 1100 comprising four passive-shock-sensing devices 1101, such as passive-tube-type sensor/detector/indicators. As depicted, shock-sensing devices 1101 are attached to eye-protection device 1100 at the bridge of eye-protection device 1100 so that each shock-sensing device 1101 of a pair of shock-sensing devices is oriented in different directions along a selected axis. While device 1100 is referred to as an eye-protection device, it should be understood that device 1100 is not so limited and could, in one exemplary embodiment, be a pair of corrective-lens glasses and in another exemplary embodiment be a pair of sunglasses. It should also be understood that the orientation and/or position of pairs of shock-sensing devices 1101 is only exemplary and could be different than that depicted in FIGS. 11A-11C. Moreover, it should be understood that device 1100 could be configured in one exemplary embodiment as a pair of goggles.



FIGS. 12A-12C respectively depict top, front and left-side views of an exemplary embodiment of an eye-protection device 1200 comprising six passive-shock-sensing devices 1201, such as passive-tube-type sensor/detector/indicators. As depicted, four shock-sensing devices 1201 are attached to eye-protection device 1200 at the bridge of eye-protection device 1200 and one on each ear piece of device 1200. The particular orientation of each shock-sensing device 1201 is selected so that there is another shock-sensing device 1201 oriented in a direction that opposite to shock-sensing device. While device 1200 is referred to as an eye-protection device, it should be understood that device 1200 is not so limited and could, in one exemplary embodiment, be a pair of corrective-lens glasses and in another exemplary embodiment be a pair of sunglasses. It should also be understood that the orientation and/or position of pairs of shock-sensing devices 1201 is only exemplary and could be different than that depicted in FIGS. 12A-12C. Moreover, it should be understood that device 1200 could be configured in one exemplary embodiment as a pair of goggles.



FIGS. 13A-13C respectively depict front, right-side and bottom views of an exemplary embodiment of a shock-sensing unit 1300 comprising three passive-shock-sensing devices 1301, such as passive-tube-type sensor/detector/indicators. For the shock-sensing unit 1300 depicted in FIGS. 13A-13C, shock-sensing devices 1301 are encapsulated, such as by clear or a translucent molded plastic 1302, such as polycarbonate or copolyester, on a suitable substrate 1303, such as a silicone, a potting compound or an epoxy. It should be understood that other suitable materials could be used for molded plastic 1302 and for substrate 1303. In one exemplary embodiment, shock-sensing devices 1301 could be selected to indicate whether one or more specific levels of shock, selected from a range of about 50 g of shock to about 100 g of shock, have been experienced by the shock-sensing device. In another exemplary embodiment, the specific levels of shock indication could be selected to be standard graduated levels, such as, about 50 g, about 75 g, and about 100 g. In another exemplary embodiment, one or more selected levels of shock indication could be custom selected for a particular application. It should be understood that shock-sensing devices 1301 could sense/detect/indicate shock levels outside the range of about 50 g of shock to about 100 g of shock. Additionally, it should be understood that another exemplary embodiment could comprise more or fewer shock-sensing devices than what is depicted in FIGS. 13A-13C. While shock-sensing unit 1300 is depicted as comprising a disk shape, it should be understood that other suitable shapes could be used.


One exemplary embodiment of the subject matter disclosed herein comprises one or more passive and/or active shock-sensing devices that are attached to and/or integrally formed with an adhesive strip, similar to a nasal strip or an adhesive bandage, that could be worn by a user by affixing the adhesive surface of the adhesive strip to the skin of the user, such as, but not limited to, across the bridge of a nose, a forehead or a side of a face.



FIGS. 14A-14C respectively depict front, side and end views of an exemplary embodiment of a shock-sensing unit 1400 comprising two shock-sensing devices 1401 attached in a well-known manner to a substrate 1402 having an adhesive coating that is used for attaching shocking-sensing unit 1400 to the body of a user, or to a piece of equipment or clothing worn by the user. The particular exemplary embodiment of shock-sensing device 1400 depicted in FIGS. 14A-14C comprises an adhesive nasal strip 1402. FIG. 14D depicts shock-sensing device 1400 being worn as an adhesive nasal strip by a user. It should also be understood that the particular orientation of shock-sensing devices 1401 is only exemplary and could be different than that depicted in FIGS. 14A-14C. Additionally, it should be understood that another exemplary embodiment could comprise more or fewer shock-sensing devices than what is depicted in FIGS. 14A-14C. While shock-sensing unit 1400 is depicted as comprising an adhesive strip, it should be understood that other suitable shapes could be used.



FIGS. 15A-15C respectively depict front, side and bottom views of an exemplary embodiment of a shock-sensing unit 1500 comprising six shock-sensing devices 1501 attached in a well-known manner to a substrate 1502 having an adhesive coating that is used for attaching shocking-sensing unit 1500 to the body of a user, or to a piece of equipment or clothing worn by the user. The particular exemplary embodiment of shock-sensing device 1500 depicted in FIGS. 15A-15C comprises an adhesive nasal strip 1502 so that, in use, the orientation of the pairs of shock-sensing devices 1501 provide bi-directional shock-detecting capability along substantially orthogonal axis. FIG. 15D depicts shock-sensing device 1500 being worn as an adhesive nasal strip by a user. It should also be understood that the particular orientation of shock-sensing devices 1501 is only exemplary and could be different than that depicted in FIGS. 15A-15C. Additionally, it should be understood that another exemplary embodiment could comprise more or fewer shock-sensing devices than what is depicted in FIGS. 15A-15C. While shock-sensing unit 1500 is depicted as comprising a generally triangularly shaped adhesive strip, it should be understood that other suitable shapes could be used.


One exemplary embodiment of the subject matter disclosed herein comprises one or more passive and/or active shock-sensing devices that are attached to and/or integrally formed with an ear-plug device could be worn by a user by placing the ear-plug device in the ear of the user. Still another exemplary embodiment of the subject matter discloses herein comprises one or more passive and/or active shock-sensing devices that are configured in an ear-mounted device that does not occlude the ear canal of the ear.



FIGS. 16A and 16B respectively depict front and side views of an exemplary embodiment of a shock-sensing unit configured to fit into the ear of a user and comprising one shock-sensing device. FIG. 16C is a cross-sectional view of the exemplary embodiment of the shock-sensing unit depicted in FIG. 16A taken along line A-A. The particular exemplary embodiment of shock-sensing unit 1600 depicted in FIGS. 16A-16C can be worn in the ear canal of a user and can be formed from silicone. It should be understood that other suitable materials could be used to form shock-sensing unit. In another exemplary embodiment, two or more shock-sensing devices could be used for shock-sensing unit 1600.


One exemplary embodiment of a passive shock-sensing and indicating device according to the subject matter disclosed herein comprises a two-component chemical reaction that results in a simple color change, chemi-luminescent output, or electro-chemical output when a shock of a certain level is sensed by the shock-sensing and indicating device. For this approach, one component (or compound) is held a reservoir-type tube through capillary, vacuum, and/or thixotropic properties. A first component (or compound) is released into an enclosure containing a second component (or compound) that could be solid or liquid, and unrestrained, or a substrate or carrier that is impregnated, surface coated or bonded with the second component (or compound) that is inserted into the enclosure, or impregnated into a carrier capable of being inserted into the enclosure. It should be understood that, although a two-component chemical reaction system is described, more than two components, i.e., multiple components, could actually comprise the chemical reaction system.


Two-component chemi-luminescent reactions that are suitable for use with the subject matter disclosed herein include a luminol reaction and an oxalate reactions, which are also commonly used for light sticks and glow sticks. In one exemplary embodiment, a two-component chemi-luminescent reaction is based on bis(2,4,5-trichlorophenyl-6-carbopentoxyphenyl)oxalate (CPPO) reacting with hydrogen peroxide include fluorophors (FLR) that are the chemicals that provide the color for the chemi-luminescent reaction. In another exemplary embodiment, a two-component chemi-luminescent reaction is based on bis(2,4,6-trichlorophenyl)oxlate (TCPO) reacting with hydrogen peroxide: Exemplary fluorescent dyes that may be added to a chemi-luminescent chemical reaction to release different colors of light include, but are not limited to, Blue 9,10-diphenylanthracene; Green 9,10-bis(phenylethynyl)anthracene, Yellow 1-chloro-9,10-bis(phenylethynyl)anthracene, and Orange 5,12-bis(phenylethynyl)-naphthacene. Red fluorophors, such as Rhodamine B could also be used as a fluorescent dye, however, such red-emitting dyes are not typically used in an oxalate reaction because the red fluorophors are not stable when stored with the other chemicals that are part of the chemi-luminescent reaction. Instead, in one exemplary embodiment, a fluorescent red pigment could be molded into the plastic tube that encases the chemi-luminescent components. The red-emitting pigment absorbs the light from, for example, a high-yield (bright) yellow reaction and re-emits the light as red, thereby resulting in an apparent red chemi-luminescent reaction that is approximately twice as bright as it would have been had the chemi-luminescent used a red fluorophor in the two-compound solution. It should be understood that the subject matter disclosed herein is not limited to a two-component chemical reaction system, but could be a multi-component chemical reaction system comprising, but not limited to, components disclosed herein as bring suitable.



FIGS. 17A and 17B respectively depict a cross-sectional view and an assembly view of one exemplary embodiment of a shock-sensing and indicating device 1700 that comprises a two-component chemical reaction that results in a simple color change, chemi-luminescent output, or electro-chemical output when a shock of a certain level is sensed by shock-sensing and indicating device 1700. Device 1700 comprises a main body 1701 and a reservoir/cap end 1702. Reservoir/cap end 1702 comprises a hollow-stem reservoir portion 1703 that contains a first component 1704. A wadding material 1705 impregnated with a second component 1706 is inserted into a reservoir 1707 formed internally to main body 1701. Reservoir/cap end 1702 is press fit into main body 1701 in a well-known manner. Main body 1701, reservoir/cap end 1702 and reservoir portion 1703 are formed from a clear or a translucent molded plastic, such as polycarbonate or copolyester. It should be understood that other suitable materials could be used to form main body 1701, reservoir/cap end 1702 and reservoir portion 1703. Wadding material 1705 comprises any wettable, hydrophilic fibrous material. In an exemplary alternative embodiment, the reservoir portion (portion 1703) could be formed as part of main body 1701. In yet another exemplary alternative embodiment, the reservoir portion could be a separate component that is, for example, press fit into either main body 1701 or cap end 1702. In yet another exemplary embodiment, the reservoir portion could comprise a plurality of reservoir tubes or portions. Different g-detection levels can be obtained through selection of materials used for the different components (body, reservoir and chemical components) of shock-sensing and indicating device 1700, and through selection of design dimensions and section contours of the main body and reservoir portions.



FIGS. 18A and 18B respectively depict a cross-sectional view and an assembly view of another exemplary embodiment of a shock-sensing and indicating device 1800 that comprises a two-component chemical reaction that results in a simple color change, chemi-luminescent output, or electro-chemical output when a shock of a certain level is sensed by shock-sensing and indicating device 1800. Device 1800 comprises a main body 1801 and a reservoir/cap end 1802. Reservoir/cap end 1802 comprises a hollow-stem reservoir portion 1803 that contains a first component 1804. A second component 1806 is inserted into a reservoir 1807 formed internally to main body 1801. Reservoir/cap end 1802 is press fit into main body 1801 in a well-known manner. Main body 1801, reservoir/cap end 1802 and reservoir portion 1803 are formed from a clear or a translucent molded plastic, such as polycarbonate or copolyester. It should be understood that other suitable materials could be used to form main body 1801, reservoir/cap end 1802 and reservoir portion 1803. In an exemplary alternative embodiment, the reservoir portion (portion 1803) could be formed as part of main body 1801. In yet another exemplary alternative embodiment, the reservoir portion could be a separate component that is, for example, press fit into either main body 1801 or cap end 1802. In yet another exemplary embodiment, the reservoir portion could comprise a plurality of reservoir tubes or portions. Different g-detection levels can be obtained through selection of materials used for the different components (body, reservoir and chemical components) of shock-sensing and indicating device 1800, and through selection of design dimensions and section contours of the main body and reservoir portions.



FIGS. 19A and 19B respectively depict a cross-sectional view and an assembly view of another exemplary embodiment of a shock-sensing and indicating device 1900 that comprises a two-component chemical reaction that results in a simple color change, chemi-luminescent output, or electro-chemical output when a shock of a certain level is sensed by shock-sensing and indicating device 1900. Device 1900 comprises a main body 1901 and a reservoir/cap end 1902. Reservoir/cap end 1902 comprises a hollow-stem reservoir portion 1903 that contains a first component 1904. A second liquid component 1906 is inserted into a reservoir 1907 formed internally to main body 1901. Reservoir/cap end 1902 is press fit into main body 1901 in a well-known manner. Main body 1901, reservoir/cap end 1902 and reservoir portion 1903 are formed from a clear or a translucent molded plastic, such as polycarbonate or copolyester. It should be understood that other suitable materials could be used to form main body 1901, reservoir/cap end 1902 and reservoir portion 1903. In an alternative embodiment, the reservoir portion (portion 1903) could be formed as part of main body 1901. In yet another exemplary alternative embodiment, the reservoir portion could be a separate component that is, for example, press fit into either main body 1901 or cap end 1902. In yet another exemplary embodiment, the reservoir portion could comprise a plurality of reservoir tubes or portions. Different g-detection levels can be obtained through selection of materials used for the different components (body, reservoir and chemical components) of shock-sensing and indicating device 1900, and through selection of design dimensions and section contours of the main body and reservoir portions.



FIGS. 20A and 20B respectively depict a cross-sectional view and an assembly view of another exemplary embodiment of a shock-sensing and indicating device 2000 that comprises a two-component chemical reaction that results in a simple color change, chemi-luminescent output, or electro-chemical output when a shock of a certain level is sensed by shock-sensing and indicating device 2000. Device 2000 comprises a main body 2001 and a reservoir/cap end 2002. Reservoir/cap end 2002 comprises a hollow-stem reservoir portion 2003 that contains a first component 2004. A media material 2005 impregnated with a second component 2006 is inserted into a reservoir 2007 formed internally to main body 2001. Reservoir/cap end 2002 is press fit into main body 2001 in a well-known manner. Main body 2001, reservoir/cap end 2002 and reservoir portion 2003 are formed from a clear or a translucent molded plastic, such as polycarbonate or copolyester. It should be understood that other suitable materials could be used to form main body 2001, reservoir/cap end 2002 and reservoir portion 2003. In an alternative embodiment, the reservoir portion (portion 2003) could be formed as part of main body 2001. In yet another exemplary alternative embodiment, the reservoir portion could be a separate component that is, for example, press fit into either main body 2001 or cap end 2002. In yet another exemplary embodiment, the reservoir portion could comprise a plurality of reservoir tubes or portions. Different g-detection levels can be obtained through selection of materials used for the different components (body, reservoir and chemical components) of shock-sensing and indicating device 2000, and through selection of design dimensions and section contours of the main body and reservoir portions.


One exemplary embodiment of a shock-sensing and indicating system that is suitable for use with, but not limited to, any of the exemplary embodiments disclosed herein includes three basic components. Other exemplary applications include, but are not limited to, shock-sensing and indicating for human and/or animal users for sporting events, military and tactical operations, aeronautical, and test- and space-flight operations, and industrial and vocational environments having a potential of exposure to high g forces or events. FIG. 21 depicts the three basic components for an exemplary embodiment of a shock-sensing and indicating system 2100. In particular, the three basic components include a power source 2101, such as a battery, piezoelectric device, Seebeck effect device, photovoltaic device, or coil and sliding magnet; a shock detector 2102, such as an accelerometer or strain gauge; and a shock-indicating device 2103, such as an indicating light, light emitting diode, dye projecting thermal drop-on-demand (DOD) inkjet, piezoelectric DOD inkjet, or electroluminescent device. Power source 2101 powers shock detector 2102. When shock detector 2102 senses a shock of a predetermined level, shock detector 2102 causes shock-indicating device 2103 to indicate that a shock of the predetermined level has been sensed. In one exemplary embodiment, the components forming shock-sensing and indicating system 2100 are contained within a suitable containing device 2104.


Another exemplary embodiment provides that a shock detection system, such as shown as system 2200 in FIG. 22, is inserted in or incorporated into an article of sporting equipment or apparel. Shock detection system 2100 comprises a power source/shock detector 2201, such as a piezoelectric device or a coil and sliding magnet, and a shock indicator device, 2202, such as an indicating light.


According to the subject matter disclosed herein, one or more active shock-sensing devices could be used in place of or in conjunction with the passive shock-sensing devices disclosed herein for the various exemplary embodiments of the subject matter disclosed herein. Suitable active shock-sensing devices include powered devices and non-powered shock-sensing devices.


One exemplary embodiment of an active shock-sensing device could comprise a non-powered piezoelectric sensor device configured to provide a piezoelectric voltage in response to a sensed shock that is sensed and recorded. In one exemplary embodiment, a piezoelectric sensor generates an electric potential in response to a strain on the piezoelectric sensor device causes by a shock applied to the sensor. In another exemplary embodiment, the voltage potential generated by the piezoelectric sensor device is used to trigger an electrochromic reaction that is visable and indicates that a shock greater than a predetermined magnitude has been experienced by the shock-sensing device. In another exemplary embodiment, the electric potential generated by the piezoelectric sensor device is sensed and recorded by, for example, to setting of an electronic register. For this exemplary embodiment, the shock-sensing device could be electronically scanned, such as by an RFID (RF Identification) device for determining whether the shock-sensing device has experienced a shock greater than a predetermined magnitude.


In another exemplary embodiment, such as a powered sensor having storage that can be queried by, for example, and RFID scanner. For this exemplary embodiment, the storage medium, such as an electronic register is powered and an electric potential provided by a piezoelectric sensor device when a shock is experienced is recorded in a well-known manner in the storage medium, by an electrical circuit that could then be queried using well-known RFID techniques to determine whether the shock-sensing device experienced a shock of a predetermined magnitude. Other powered shock-sensing devices could also be used, such as micro-accelerometers.


One exemplary embodiment comprises an active shock-sensing device that provides active continuous monitoring reporting of sensed shock by transmitting, for example, using an RFID-type communication technique, to a locally positioned receiver device that displays when a shock-sensor device experiences a predetermined level of shock. The shock-sensing and reporting capability could be continuous or could be recorded for later review. In one exemplary, the transmitter functionality provides sufficient range to transmit to a receiver that may be located, for example, on the sidelines of a football field.


Yet another exemplary embodiment comprises an Application Specific Integrated Circuit (ASIC) comprising microelectromechanical systems (MEMS) configured to sense, record and indicate shocks.


In one exemplary embodiment, energy for powering an active shock-sensing device comprises a Parametric Frequency Increased Generator (PFIGs), which is an energy-harvesting device that was developed by K. Najafi and T. Galchev at the University of Michigan Engineering Research Center for Wireless Integrated Microsystems. Such PFIGs are known to be highly efficient at providing renewable electrical power from arbitrary, non-periodic vibrations, such as the type of vibration that is a byproduct of humans when moving.


One exemplary embodiment of the subject matter disclosed herein comprises a shock-sensing unit comprising one or more passive and/or active shock-sensing devices that are attached to the chin strap of a helmet, such as a football helmet, the chin-strap cup of a chin strap of a helmet, the chin strap connection to a chin-strap cup. Still another exemplary embodiment provides that a shock-sensing unit be attached to a suitable surface of a helmet, such as, but not limited to, a football helmet, lacrosse helmet, or a motorcycle helmet.


One exemplary embodiment of the subject matter disclosed herein comprises a shock-sensing and indicating device that is subcutaneously or subdural inserted into a user for sensing and detecting shocks for indicating whether a user has experienced a level of shock in cranial and/or thoracic and abdominal regions of the user. For example, the subject matter disclosed herein is applicable for, but not limited to, shock-sensing and indicating for chest and cranial applications; applications in which high gs may be experienced by a user that are caused by explosions or crashes; applications in which a user may experience high levers of acceleration and/or deceleration, thereby indicating in situations in which the user is unconscious and that the user requires immediate critical medical attention.



FIGS. 23A and 23B respectively depict a front and a sectional view of an exemplary embodiment of a two-axis, omni-directional shock-detection device 2300 according to the subject matter disclosed herein. The shock-detecting device 2300 depicted in FIGS. 23A and 23B comprises an assembly/housing 2301, a weighted striker device 2302, and a plurality of crushable reservoirs 2303, of which only one crushable reservoir is indicated in each of FIGS. 23A and 23B for clarity. Each crushable reservoir 2303 contains either a component A or a component B of a two-component chemical reaction system. In one exemplary embodiment, assembly/housing 2301 is formed from a transparent and/or translucent material, and contains weighted striker device 2302, the plurality of reservoirs 2303, which surround weighted striker device 2302 along an inside wall 2301a of assembly/housing 2301, and a component B, which fills substantially all remaining available space in assembly/housing 2301.


When shock-detecting device 2300 depicted in FIGS. 23A and 23B receives a shock or impact (i.e., assembly/housing 2301 is acted upon by an outside force), weighted striker device 2302 tends to stay in place until the force is transmitted through crushable reservoirs 2303 with sufficient force to move weighted striker device 2302. If the force is high enough, one or more crushable reservoirs 2303 will not be able to transmit the force without damage to itself, i.e., is crushed, and component A will be released into component B, thereby causing a chemical reaction or a state change of component B that provides an indication of the level of shock, such as, but not limited to, a change in conductivity of component B, a color change of component B, and/or a chemi-luminescent change of component B. In one exemplary embodiment, the indication provided by the mixing of components A and B is visible through assembly/housing 2301. Suitable materials for components A and B are described elsewhere herein. In another exemplary embodiment, a change in conductivity of component B can be detected and indicated using a Radio Frequency ID (RFID) device. In one exemplary embodiment, weighted striker device 2302 is textured to allow improved visibility and/or visual indication of a detected shock.



FIG. 24 depicts a sectional view of an exemplary embodiment of a one-axis mono-directional shock-detecting device 2400 according to the subject matter disclosed herein. The exemplary embodiment of shock-detecting device 2400 depicted in FIG. 24 comprises an assembly/housing 2401, a weighted striker device 2402, and one or more crushable reservoirs 2403 that contain a component A, and a component B of a two-component chemical reaction system. In one exemplary embodiment, assembly/housing 2401 is formed from a transparent and/or translucent material, and contains weighted striker device 2402, the plurality of reservoirs 2403, which are positioned between weighted striker device 2402 and an inside wall 2401a of assembly/housing 2401, and the component B, which fills substantially all remaining available space in assembly/housing 2401. In another exemplary embodiment, each reservoir 2403 contains either a component A or a component B. Crushable reservoirs 2403 are positioned within assembly housing 2401 along one side of weighted striker device 2402 between weighted striker device 2402 and an inside wall 2401a.


When shock-detecting device 2400 depicted in FIG. 24 receives a shock or impact (i.e., assembly/housing 2401 is acted upon by an outside force), weighted striker device 2402 tends to stay in place until the force is transmitted through crushable reservoirs 2403 with sufficient force to move weighted striker device 2402. If the force is high enough, one or more crushable reservoirs 2403 will not be able to transmit the force without damage to itself, i.e., is crushed, and component A will be released into component B, thereby causing a chemical reaction or a state change of component B that provides an indication of the level of shock, such as, but not limited to, a change in conductivity of component B, a color change of component B, and/or a chemi-luminescent change of component B. In one exemplary embodiment, the indication provided by the mixing of components A and B is visible through assembly/housing 2401. Suitable materials for components A and B are described elsewhere herein. In another exemplary embodiment, a change in conductivity of component B can be detected and indicated using a Radio Frequency ID (RFID) device. In use, the one-axis mono-directional shock-detecting device 2400 depicted in FIG. 24 can be oriented along an axis that a shock is desired to be detected.



FIG. 25 depicts a sectional view of an exemplary embodiment of a one-axis bi-directional shock-detecting device 2500 according to the subject matter disclosed herein. The exemplary embodiment of shock-detecting device 2500 depicted in FIG. 25 comprises an assembly/housing 2500, a weighted striker device 2502, and one or more crushable reservoirs 2503 that contain a component A, and a component B of a two-component chemical reaction system. In one exemplary embodiment, assembly/housing 2501 is formed from a transparent and/or translucent material, and contains weighted striker device 2502, the plurality of reservoirs 2503, which are positioned on opposite sides of weighted striker device 2502 between an inside wall 2501a of assembly/housing 2501 and striker device 2502. Component B fills substantially all remaining available space in assembly/housing 2501. In another exemplary embodiment, each reservoir 2503 contains either a component A or a component B. Crushable reservoirs 2503 are positioned within assembly/housing 2503 along opposite sides of weighted striker device 2502. In one exemplary embodiment, crushable reservoirs 2503 are positioned within assembly/housing 2501 with respect to weighted striker device 2502 along axes in which shock is desired to be detected.


When the shock-detecting device 2500 depicted in FIG. 25 receives a shock or impact (i.e., assembly/housing is acted upon by an outside force), weighted striker device 2502 tends to stay in place until the force is transmitted through crushable reservoirs 2503 with sufficient force to move weighted striker device 2503. If the force is high enough, one or more crushable reservoirs 2503 will not be able to transmit the force without damage to itself, i.e., is crushed, and component A will be released into component B, thereby causing a chemical reaction or a state change of component B that provides an indication of the level of shock, such as, but not limited to, a change in conductivity of component B, a color change of component B, and/or a chemi-luminescent change of component B. In one exemplary embodiment, the indication provided by the mixing of components A and B is visible through the assembly/housing. Suitable materials for components A and B are disclosed by, but are not limited to, U.S. Provisional Patent Application Ser. No. 61/309,818, U.S. Provisional Patent Application Ser. No. 61/320,724, and U.S. Non-Provisional patent application Ser. No. 12/831,860, the disclosures of which have been incorporated by reference herein. In another exemplary embodiment, a change in conductivity of component B can be detected and indicated using a Radio Frequency ID (RFID) device. FIGS. 26A and 26B respectively depict a front and a sectional view of another exemplary embodiment of a two-axis, omni-directional shock-detection device 2600 according to the subject matter disclosed herein. The shock-detecting device 2600 depicted in FIGS. 26A and 26B comprises an assembly/housing 2601, an outer weighted striker device 2602, and a plurality of crushable reservoirs 2603 that contain a component A, a component B, a plurality of crushable reservoirs 2604 that contain a component C, and an inner weighted striker device 2605. In another exemplary embodiment, each reservoir 2603 and 2604 contains a component A, a component B or a component C of a multi-component chemical reaction system. In one exemplary embodiment, the assembly/housing 2601 is formed from a transparent and/or translucent material, and contains weighted striker devices 2602 and 2605, the plurality of reservoirs 2603 and 2604, which surround weighted striker devices 2602 and 2605, and the component B, which fills substantially all remaining available space in the assembly/housing 2601. Outer weighted striker device 2602 is configured to include an inner cavity or space 2606 that contains the plurality of crushable reservoirs 2604 that contain component C and inner weighted striker device 2605. Assembly/housing 2601 is formed from a transparent and/or translucent material so that it is visible when the shock-detecting device senses a shock as described below.


In one exemplary embodiment, component A and component C are the same and provide the same type of visual indication when shock-detecting device 2600 senses a shock. In another exemplary embodiment, component A and component C are different, but both provide a different visual indication when the shock-detecting device 2600 senses a shock. In another exemplary embodiment, the crushable reservoirs that contain component A are similar to the crushable reservoirs that contain component C in that both reservoirs crush in response to substantially the same force. In yet another exemplary embodiment, the crushable reservoirs that contain component A are different to the crushable reservoirs that contain component C in that the respective reservoirs crush in response to substantially different forces. In still other exemplary embodiments, the respective weights of the outer and inner weighted striker devices can be selected so that they can be the same or be different.


When the shock-detecting device 2600 depicted in FIGS. 26A and 26B receives a shock or impact (i.e., assembly/housing 2601 is acted upon by an outside force), outer weighted striker device 2602 tends to stay in place until the force is transmitted through the crushable reservoirs 2603 (containing component A) with sufficient force to move outer weighted striker device 2602. If the force is high enough, one or more crushable reservoirs 2603 (containing component A) will not be able to transmit the force without damage to itself (i.e., being crushed), and component A will be released into component B, thereby causing a chemical reaction or a state change of component B that provides an indication of the level of shock, such as, but not limited to, a change in conductivity of component B, a color change of component B, and/or a chemi-luminescent change of component B. Similarly, when outer weighted striker device 2602 moves, inner weighted striker device 2605 tends to stay in place until the force is transmitted through the crushable reservoirs 2604 (containing component C) with sufficient force to move inner weighted striker device 2605. If the force is high enough, one or more crushable reservoirs 2604 (containing component C) will not be able to transmit the force without damage to itself (i.e., is crushed), and component C will be released into component B, thereby causing a chemical reaction or a state change of component B that provides an indication of the level of shock, such as, but not limited to, a change in conductivity of component B, a color change of component B, and/or a chemi-luminescent change of component B.


In one exemplary embodiment, the indication provided by the mixing of components A, B and C is visible through assembly/housing 2601. Suitable materials for components A and B are described elsewhere herein. In another exemplary embodiment, a change in conductivity of component B can be detected and indicated using a Radio Frequency ID (RFID) device.


In another exemplary embodiment of the subject matter disclosed herein, the exemplary embodiments of the shock-detecting device depicted in FIGS. 23-26 could comprise an assembly/housing, a weighted striker device and a photonic crystal material having a physical structure or chemical solution that changes optical properties when exposed to a force that destroys at least a portion of the lattice structure of the photonic crystal material. The photonic crystal material has certain optical properties that are based on the lattice structure of the material. The term “optical properties,” as used herein, may include one or more wavelengths within the electromagnetic spectrum transmitted or reflected by the material (for example, a wavelength of 530 nm corresponds to green light within the visible spectrum), a color profile across the material, a color or absence of color, luminance, radiance, brightness, or any other visual property observable or measurable on the material. Additionally, the term “color profile,” as used herein, is intended to mean the range of particular colors exhibited by the material across its surface and the effect on the viewed color at the various regions of the material. The color profile may change as a function of a viewing angle, described further below. Luminance may be defined as an indicator of how bright the material appears and may be measured in candela per square meter (cd/m2). Further, radiance may be an indicator of how bright the material appears and may be measured in watts per steradian per square meter (W/sr·m2). It is recognized that any suitable visual or measurable technique may be used to determine optical properties of the material.


Suitable photonic crystal materials may comprise, but are not limited to, a polymer, such as a negative-tone photoresist polymer. In one exemplary embodiment, Epon SU-8, a commercially available negative-tone photoresist based on a multifunctional glycidyl ether derivative of bisphenol-A novolac epoxy resin may be used. Other materials of interest may include, but are not limited to, suitable materials in the categories of thermoplastics, elastomers, and thermoelastomers, such as polystyrene, methacrylates, acrylates, polyimide, polyurethane, epoxy and silicones chosen by one skilled in the art. It is understood that any suitable polymer capable of being formed into a photonic crystal material may be used. The use of the SU-8 photoresist ensures that the photonic crystal material is thermochemically stable. Accordingly, the material may be durable even under extreme motion, moisture, and temperature parameters, which often occur in combat situations. Specifically, exposed SU-8 resist is thermally stable (up to 300° C.) and chemically stable due to its aromatic functionality and high cross-link density. Additional details regarding suitable photonic crystal materials are disclosed by U.S. Published Patent Application Serial No. 2010/0073678 A1 to Smith et al., the disclosure of which is incorporated by reference herein. The shock-detecting device of this exemplary embodiment is configured similarly to, but not limited to, the exemplary embodiments of FIGS. 23-26 with the photonic crystal material surrounding the weighed striker device within the assembly/housing. In one exemplary embodiment, the photonic crystal material is selectively positioned on one or more sides of the weighted striker device within the assembly/housing to detect a shock along one or more selected axes.


When the shock-detecting device of this exemplary embedment receives a shock or impact (i.e., assembly/housing is acted upon by an outside force), the weighted striker device tends to stay in place until the force is transmitted through the photonic crystal material with sufficient force to move the weighted striker device. If the force is high enough, the photonic crystal material will not be able to transmit the force without damage to it, i.e., will be crushed, and thereby destroying at least a portion of the lattice structure of the photonic crystal material.


It should be understood that the shapes of the various objects depicted in FIGS. 23-26 are not limited to the shapes shown. Additionally, while relatively large crushable reservoirs are depicted, relatively smaller crushable reservoirs could alternatively be used. Further, while the exemplary embodiments depicted in FIGS. 23-26 generally detect a shock along one or more planar axes, one or more exemplary embodiments of the subject matter disclosed herein could comprise crushable reservoirs and/or a photonic crystal material that completely surrounds a weighted striker device for omni-directional shock sensing (i.e., three directions). Additionally, the weight of the weighted striker device can be selected so that the shock-detecting device detects and indicates a shock at a particular level of shock. In one exemplary embodiment, a plurality of shock-detecting devices according to the subject matter disclosed herein each having different selected weights for the weighted striker device can be used together to detect and indicate a range of shocks.


It should be understood that the two-weighted striker device concept can be applied to the exemplary embodiments depicted in FIGS. 24 and 25. That is, two striker devices, each having selectably different weights, and two sets of crushable reservoirs could be used for detecting and indicating different levels of shock received by a shock-detecting device according to the subject matter disclosed herein. Moreover, it should be understood that a shock-detecting device could be configured to comprise more than two weighted striker devices and thereby detect and indicate a number of different levels of shock received by a shock-detecting device according to the subject matter disclosed herein. In one exemplary embodiment, a shock level received by a shock-detecting device according to the subject matter disclosed herein could comprise a weighted striker device having factory aligned pins, or contacts, that is immersed in a viscous, non-conductive media. When the shock-detecting device receives a shock or impact (i.e., assembly/housing is acted upon by an outside force), the weighted striker device contained in the housing/assembly tends to stay in place until the force is transmitted through the viscous media with sufficient force to deform or move the pins, or contact, on the weighted striker device, thereby making contact with each other and forming an electrical circuit. In another exemplary embodiment, factory aligned pins, or contacts, could be positioned on the inside surface of the housing/assembly, in which case the detecting circuit would be formed as part of the housing/assembly. In yet another exemplary embodiment, the pins, or terminals, could be selected so that different levels of force are needed to deform different pairs of pins, thereby sensing different levels of shock depending on the particular pins that have been deformed to complete an electrical circuit.


In another exemplary embodiment, a shock-detecting device comprises a housing/assembly containing a cavity comprising a viscous medium in which a plurality of pin-like elements is suspended in the viscous medium. The pin-like elements are configured to have one end that is heavier than the other end, such as by being a “ball” end. When assembled, the pin-like elements have a generally random arrangement was they are suspended in the viscous medium. The viscosity and the weights of the pin-like elements are selected so that when the shock-detecting device receives a shock, the “ball” ends of the pin-like elements tend to align, thereby indicating a level of shock received by the shock-detecting device. In another exemplary embodiment, the pin-like elements, when assembled in the housing/assembly, are generally aligned. The viscosity and the weights of the pin-like elements are selected so that when the shock-detecting device receives a shock, the “ball” ends of the pin-like elements tend to randomized, thereby indicating a visual level of shock received by the shock-detecting device. In another exemplary embodiment, the pin-like elements are conductive, when assembled in the housing/assembly, are generally aligned so that the pin-like elements are collectively non-conductive. The viscosity and the weights of the pin-like elements are selected so that when the shock-detecting device receives a shock, the “ball” ends of the pin-like elements tend to randomized so that the pin-like elements collectively become more conductive, thereby indicating with the level of collective conductivity of the pin-like elements a level of shock received by the shock-detecting device.



FIG. 27 depicts an alternative exemplary non-limiting embodiment of a shock-sensing device adaptor 2700 that can be coupled to a mouth guard strap according to the subject matter disclosed herein. More particularly, the exemplary shock-sensing device adaptor 2700 depicted in FIG. 27 is capable of being coupled to a strap (not shown) of a mouth guard that attaches the mouth guard to, for example, the facemask of a football helmet. In FIG. 27, shock-sensing device adaptor 2700 comprises an aperture 2701 that receives the mouth-guard strap the mouth guard. Any of the exemplary embodiments of a shock-detecting device disclosed herein is received by an aperture 2702. Each aperture 2702 is configured to receive the specific embodiment of the shock-detecting device. In one exemplary embodiment, the shock-detecting devices are replaceable. In another exemplary embodiment, the shock-detecting devices are not replaceable because apertures 2702 are sealed after the shock-detecting devices are inserted. FIGS. 28-31 depict alternative exemplary embodiments of a shock-sensing device that can be mounted into a strap hole of a mouth guard according to the subject matter disclosed herein. FIGS. 28A and 28B respectively depict front and side views of an exemplary non-limiting embodiment of a shock-sensing device 2800 that can be mounted into a hole on a mouth guard. The hole could be an existing hole on an existing mouth guard, such as a strap hole, or could be a hole that is specially fabricated for the subject matter disclosed herein. FIG. 28C depicts a side view of a non-limiting exemplary embodiment 2800 comprising a single post bottom 2801. FIG. 28D depicts a side view of a non-limiting exemplary embodiment comprising two post bottoms 2801. While the shock-sensing elements depicted in FIGS. 28A-28D represent spill-type-technology shock-sensing devices, the shock-sensing elements could alternatively be any of the different shock-sensing elements and/or devices disclosed herein.



FIGS. 29A and 29B respectively depict front and side views of another exemplary non-limiting embodiment of a shock-sensing device 2900 that can be mounted into a hole on a mouth guard. The hole could be an existing hole on an existing mouth guard, such as a strap hole, or could be a hole that is specially fabricated for the subject matter disclosed herein. FIG. 29B, in particular, depicts a side view of a non-limiting exemplary embodiment 2900 comprising a single post bottom 2901. FIG. 29C depicts a side view of a non-limiting exemplary embodiment comprising two post bottoms 2901. While the shock-sensing elements depicted in FIGS. 29A-29C represent crush-type-technology shock-sensing devices, the shock-sensing elements could alternatively be any of the different shock-sensing elements and/or devices disclosed herein.



FIGS. 30A and 30B respectively depict front and side views of yet another exemplary non-limiting embodiment of a shock-sensing device 3000 that can be mounted into a hole on a mouth guard. The hole could be an existing hole on an existing mouth guard, such as a strap hole, or could be a hole that is specially fabricated for the subject matter disclosed herein. FIG. 30C, in particular, depicts a side view of a non-limiting exemplary embodiment 3000 comprising a single post bottom 3001. FIG. 30D depicts a side view of a non-limiting exemplary embodiment 3000 comprising two post bottoms 3001. While the shock-sensing elements depicted in FIGS. 30A-30D represent crush-type-technology shock-sensing devices, the shock-sensing elements could alternatively be any of the different shock-sensing elements and/or devices disclosed herein.



FIGS. 31A-31C respectively depict front, side and bottom views of an exemplary non-limiting embodiment of a shock-sensing device 3100 that can be mounted to the strap of a mouth guard. FIG. 31D depicts a side view of a non-limiting exemplary embodiment of a strap 3110 that has been modified to receive the exemplary device of FIGS. 31A-31C. FIG. 31E depicts a shock-sensing device mounted on the strap of a mouth guard. While the shock-sensing elements depicted in FIGS. 31A-31C represent spill-type-technology shock-sensing devices, the shock-sensing elements could alternatively be any of the different shock-sensing elements and/or devices disclosed herein.


Although the foregoing disclosed subject matter has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced that are within the scope of the appended claims. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the subject matter disclosed herein is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.

Claims
  • 1. A mouth guard, comprising: a base member configured to fit inside a mouth of a user;at least one shock-sensing device directly attached to the base member, the at least one shock-sensing device to detect a level of shock applied to the base member that exceeds a predetermined level of shock; andan indicating device directly attached to the base member and coupled to the at one shock-sensing device to indicate that the shock-sensing device has detected a level of shock that has been applied to the base member that exceeds the predetermined level of shock, the indicating device comprising a light or a light emitting diode.
  • 2. The mouth guard according to claim 1, wherein the at least one shock-sensing and indicating device detects a shock substantially along a selected axis with respect to the base member.
  • 3. The mouth guard according to claim 1, wherein the at least one shock-sensing and indicating device detects a shock substantially along a plurality of selected axes with respect to the base member, each selected axis being substantially orthogonal from another selected axis.
  • 4. The mouth guard according to claim 1, wherein the at least one shock-sensing device comprises at least one accelerometer to detect a level of shock applied to the base member that exceeds a predetermined shock level.
CROSS-REFERENCES TO RELATED PATENT APPLICATIONS

The present patent application is a continuation patent application of U.S. patent application Ser. No. 13/038,726, entitled “Intra-Extra Oral Shock-Sensing And Indicating Systems And Other Shock-Sensing And Indicating Systems,” invented by Don B. Hennig et al., and filed Mar. 2, 2011, now U.S. Pat. No. 8,739,599 B2, issued Jun. 3, 2014, which is a continuation-in-part patent application of and claims priority to U.S. Non-Provisional Patent Application Ser. No. 12/831,860, entitled “Intra-Extra Oral Shock-Sensing And Indicating Systems And Other Shock-Sensing And Indicating Systems,” invented by Don B. Hennig et al., filed Jul. 7, 2010, now U.S. Pat. No. 8,104,324, issued Jan. 31, 2012, and the present patent application is related to and claims priority to each of U.S. Provisional Patent Application Ser. No. 61/412,062, entitled “Shock-Detecting Device,” invented by Don B. Hennig et al., filed Nov. 10, 2010, U.S. Provisional Patent Application Ser. No. 61/382,881, entitled “Shock-Detecting Device,” invented by Don B. Hennig et al., filed Sep. 14, 2010; U.S. Provisional Patent Application Ser. No. 61/380,480, entitled “Shock-Detecting Device,” invented by Jeffry L. VanElverdinghe et al., filed Sep. 7, 2010; U.S. Provisional Patent Application Ser. No. 61/309,818, entitled “Intra-Extra Oral Shock Sensing And Indicating System (IOSSIS),” invented by Don B. Hennig, filed Mar. 2, 2010; and U.S. Provisional Patent Application Ser. No. 61/320,724, entitled “Intra-Extra Oral Shock Sensing And Indicating System (IOSSIS),” invented by Don B. Hennig et al., filed Apr. 3, 2010. The disclosures of each are incorporated by reference herein.

US Referenced Citations (561)
Number Name Date Kind
257038 McMann Apr 1882 A
1060220 White Apr 1913 A
1117928 Thurmond Nov 1914 A
1323832 Chige Dec 1919 A
1461209 Bridges Jul 1923 A
1470888 Smedley Oct 1923 A
1487392 Lee Mar 1924 A
1505978 Stetson Aug 1924 A
1674336 King Jun 1928 A
2118980 Montgomery et al. May 1938 A
2250275 Riddell Jul 1941 A
2257709 Anderson Sep 1941 A
2296335 Brady Sep 1942 A
2423005 Chaiken Jun 1947 A
2521039 Carpenter Sep 1950 A
2590118 Oddo, Jr. Mar 1952 A
2616081 Weaver et al. Nov 1952 A
2630117 Coleman Mar 1953 A
2643652 Cathcart Jun 1953 A
2659366 Savarese Nov 1953 A
2678043 Stark May 1954 A
2669988 Carpenter Sep 1954 A
2694397 Herms Nov 1954 A
2702032 Freedland Feb 1955 A
2708931 Freedland May 1955 A
2750941 Cathcart Jun 1956 A
2825297 Harrison Mar 1958 A
2833278 Ross May 1958 A
2847003 Helmer et al. Aug 1958 A
2850740 Adams Sep 1958 A
2867811 Jones Jan 1959 A
2867812 Roth et al. Jan 1959 A
2898596 Keen Aug 1959 A
2908911 Sowle Oct 1959 A
2933811 Lifton Apr 1960 A
2966908 Cathcart et al. Jan 1961 A
2985883 Marietta May 1961 A
2986739 Rozzi, Sr Jun 1961 A
3009158 Comeau et al. Nov 1961 A
3016052 Zubren Jan 1962 A
3020875 Browning Feb 1962 A
3021813 Rips Feb 1962 A
3041623 Glahe Jul 1962 A
3058462 Greenblum Oct 1962 A
3073300 Berghash Jan 1963 A
3082765 Helmer Mar 1963 A
3087166 Howard Apr 1963 A
3106716 Beebe Oct 1963 A
3107667 Moore Oct 1963 A
3113318 Marietta Dec 1963 A
3124129 Grossberg Mar 1964 A
3126002 Owens Mar 1964 A
3139624 Humphrey Jul 1964 A
3149606 Falkner Sep 1964 A
3166761 Strohm Jan 1965 A
3167783 Wolfe Feb 1965 A
3174155 Pitman Mar 1965 A
3186004 Carlini Jun 1965 A
3187342 Aileo Jun 1965 A
3189917 Sims Jun 1965 A
3203417 Helmer Aug 1965 A
3207153 Goldstein Sep 1965 A
3216023 Morgan Nov 1965 A
3223085 Gores et al. Dec 1965 A
3230544 Mager Jan 1966 A
3239842 Marchello Mar 1966 A
3242500 Derr Mar 1966 A
3247844 Berghash Apr 1966 A
3274612 Merriam Sep 1966 A
3310811 Iacono, Jr. Mar 1967 A
3312218 Jacobs Apr 1967 A
3314077 Marchello Apr 1967 A
3319626 Lindsay May 1967 A
3323134 Swyers Jun 1967 A
3339207 Perry Sep 1967 A
3373443 Marietta Mar 1968 A
3380294 Redmond Apr 1968 A
3407809 Ross Oct 1968 A
3411501 Greenberg Nov 1968 A
D212848 Westlund Dec 1968 S
3416527 Hoef Dec 1968 A
3448738 Berghash Jun 1969 A
3457916 Wolicki Jul 1969 A
3462763 Schneider et al. Aug 1969 A
D215685 Helmer Oct 1969 S
3478365 Varga Nov 1969 A
3485242 Greenberg Dec 1969 A
3496936 Gores Feb 1970 A
3505995 Greenberg Apr 1970 A
3518988 Gores Jul 1970 A
3532091 Lerman Oct 1970 A
3548410 Parker Dec 1970 A
3591863 Rickard Jul 1971 A
3608089 Abatelli Sep 1971 A
3619813 Marchello Nov 1971 A
3629864 Latina Dec 1971 A
3682164 Miller Aug 1972 A
3692025 Greenberg Sep 1972 A
3707722 Itoh Dec 1972 A
3729744 Rappleyea May 1973 A
D228048 Miller Aug 1973 S
3751728 Thompkins Aug 1973 A
3768465 Helmer Oct 1973 A
3787895 Belvedere Jan 1974 A
3806951 Halteman Apr 1974 A
3815152 Bednarczuk et al. Jun 1974 A
3818509 Romo et al. Jun 1974 A
3864832 Carlson Feb 1975 A
3873997 Gooding Apr 1975 A
3889296 Martin Jun 1975 A
3897597 Kasper Aug 1975 A
3897598 Bednarczuk et al. Aug 1975 A
3916446 Gooding Nov 1975 A
3916527 Linkow Nov 1975 A
3924638 Mann Dec 1975 A
3925821 Lewicki Dec 1975 A
3943924 Kallestad et al. Mar 1976 A
4004450 Yakshin et al. Jan 1977 A
4021858 Neeld et al. May 1977 A
4023396 Yakshin et al. May 1977 A
4030339 Yakshin et al. Jun 1977 A
4030493 Walters et al. Jun 1977 A
4044400 Lewicki et al. Aug 1977 A
4044762 Jacobs Aug 1977 A
4051556 Davenport et al. Oct 1977 A
4055842 Yakshin et al. Oct 1977 A
4062068 Davenport et al. Dec 1977 A
4063552 Going et al. Dec 1977 A
4068613 Rubey Jan 1978 A
4103640 Feder Aug 1978 A
4114614 Kesling Sep 1978 A
4125085 Rubey Nov 1978 A
3513838 Foderick et al. May 1979 A
4161874 Specker et al. Jul 1979 A
4185817 Peterson Jan 1980 A
4211008 Lerman Jul 1980 A
4239014 Rubey Dec 1980 A
4271537 Bowlus et al. Jun 1981 A
4330272 Bergersen May 1982 A
4335472 Rappleyea Jun 1982 A
4337765 Zimmerman Jul 1982 A
4346205 Hiles Aug 1982 A
4348178 Kurz Sep 1982 A
4361106 Eklof Nov 1982 A
4370129 Huge Jan 1983 A
4376628 Aardse Mar 1983 A
4398306 Gooding Aug 1983 A
4446576 Hisataka May 1984 A
4452066 Klochko et al. Jun 1984 A
4457708 Dufour Jul 1984 A
4470302 Carte Sep 1984 A
4490112 Tanaka et al. Dec 1984 A
4492121 Lehto Jan 1985 A
4495945 Liegner Jan 1985 A
4519386 Sullivan May 1985 A
4519867 Rubey May 1985 A
4568280 Ahlin Feb 1986 A
4591341 Andrews May 1986 A
4640273 Greene et al. Feb 1987 A
4646368 Infusino et al. Mar 1987 A
4651356 Zide Mar 1987 A
4663785 Comparetto May 1987 A
4671766 Norton Jun 1987 A
4672959 May et al. Jun 1987 A
4691556 Mellander et al. Sep 1987 A
4692947 Black et al. Sep 1987 A
4727867 Knoderer Mar 1988 A
4741054 Mattes May 1988 A
4755139 Abbatte et al. Jul 1988 A
4763275 Carlin Aug 1988 A
4763791 Halverson et al. Aug 1988 A
4765324 Lake, Jr. Aug 1988 A
4791941 Schaefer Dec 1988 A
4793803 Martz Dec 1988 A
4799500 Newbury Jan 1989 A
4810192 Williams Mar 1989 A
4829812 Parks et al. May 1989 A
4848365 Guarlotti et al. Jul 1989 A
4867147 Davis Sep 1989 A
4873867 McPherson et al. Oct 1989 A
4944947 Newman Jul 1990 A
4955393 Adell Sep 1990 A
4977905 Kittelsen et al. Dec 1990 A
4979516 Abraham, II Dec 1990 A
4989462 Davis et al. Feb 1991 A
5031611 Moles Jul 1991 A
5031638 Castaldi Jul 1991 A
5063940 Adell et al. Nov 1991 A
5076785 Tsai Dec 1991 A
5078153 Nordlander et al. Jan 1992 A
5082007 Adell Jan 1992 A
5092346 Hays et al. Mar 1992 A
5103838 Yousif Apr 1992 A
5112225 Diesso May 1992 A
5117816 Shapiro et al. Jun 1992 A
D328494 Schwendeman et al. Aug 1992 S
5152301 Kittelsen et al. Oct 1992 A
5154609 George Oct 1992 A
5165424 Silverman Nov 1992 A
5174284 Jackson Dec 1992 A
5194003 Garay et al. Mar 1993 A
5194004 Bergersen Mar 1993 A
5203351 Adell Apr 1993 A
5234005 Kittelsen et al. Aug 1993 A
5235991 Minneman Aug 1993 A
5242830 Argy et al. Sep 1993 A
5245706 Moschetti et al. Sep 1993 A
5259762 Farrell Nov 1993 A
5269252 Nagai Dec 1993 A
5277202 Hays Jan 1994 A
5277203 Hays Jan 1994 A
D343928 Kittelsen Feb 1994 S
5293880 Levitt Mar 1994 A
5297960 Burns Mar 1994 A
5299936 Ueno Apr 1994 A
5313960 Tomasi May 1994 A
5316474 Robertson May 1994 A
5320114 Kittelsen et al. Jun 1994 A
5323787 Pratt Jun 1994 A
5326945 Gotoh et al. Jul 1994 A
5328362 Watson et al. Jul 1994 A
5336086 Simmen et al. Aug 1994 A
5339832 Kittelsen et al. Aug 1994 A
5343569 Asare Sep 1994 A
5347660 Zide et al. Sep 1994 A
5353810 Kittelsen et al. Oct 1994 A
5365946 McMillan Nov 1994 A
5385155 Kittelsen et al. Jan 1995 A
5386821 Poterack Feb 1995 A
D356188 Kittelsen Mar 1995 S
5401234 Libin Mar 1995 A
5406963 Adell Apr 1995 A
5447168 Bancroft Sep 1995 A
5460527 Kittelsen et al. Oct 1995 A
5462066 Snyder Oct 1995 A
5469865 Minneman Nov 1995 A
5490411 Hogan Feb 1996 A
5490520 Schaefer et al. Feb 1996 A
5511562 Hancock Apr 1996 A
5513656 Boyd, Sr. May 1996 A
5533524 Minneman Jul 1996 A
5539935 Rush, III Jul 1996 A
D373421 Brown Sep 1996 S
5551279 Quick Sep 1996 A
5566684 Wagner Oct 1996 A
5584687 Sullivan et al. Dec 1996 A
5590643 Flam Jan 1997 A
5592951 Castagnaro et al. Jan 1997 A
5621922 Rush, III Apr 1997 A
5624257 Farrell Apr 1997 A
5636379 Williams Jun 1997 A
5646216 Watson et al. Jul 1997 A
D382965 Wagner Aug 1997 S
5655227 Sundberg et al. Aug 1997 A
5666973 Walter Sep 1997 A
5692523 Croll et al. Dec 1997 A
5718243 Weatherford et al. Feb 1998 A
5718575 Cross, III Feb 1998 A
5724681 Sykes Mar 1998 A
5730599 Pak Mar 1998 A
5732414 Monica Mar 1998 A
5741970 Rubin Apr 1998 A
5746221 Jones et al. May 1998 A
5770792 Nakada et al. Jun 1998 A
D397442 Kittelsen Aug 1998 S
5794274 Kraemer Aug 1998 A
5799337 Brown Sep 1998 A
5816255 Fishman et al. Oct 1998 A
5819744 Stoyka, Jr. Oct 1998 A
5823193 Singer et al. Oct 1998 A
5823194 Lampert Oct 1998 A
5826281 Rush, III Oct 1998 A
5826581 Yoshida Oct 1998 A
5836761 Belvedere et al. Nov 1998 A
5865619 Cross, III et al. Feb 1999 A
5873365 Brown Feb 1999 A
D406405 Yoshida Mar 1999 S
5879155 Kittelsen Mar 1999 A
5884628 Hilsen Mar 1999 A
D408919 Cooley Apr 1999 S
5893174 Primeau Apr 1999 A
5915385 Hakimi Jun 1999 A
5915538 Basson et al. Jun 1999 A
5921240 Gall Jul 1999 A
5931164 Kiely et al. Aug 1999 A
5946735 Bayes Sep 1999 A
5947918 Jones et al. Sep 1999 A
5950624 Hart Sep 1999 A
5970981 Ochel Oct 1999 A
5978972 Stewart et al. Nov 1999 A
6012919 Cross, III et al. Jan 2000 A
6036487 Westerman Mar 2000 A
6039046 Swartz et al. Mar 2000 A
6065158 Rush, III May 2000 A
6068475 Stoyka, Jr. May 2000 A
6073272 Ball Jun 2000 A
6081932 Kraemer Jul 2000 A
6082363 Washburn Jul 2000 A
6089864 Buckner et al. Jul 2000 A
6092524 Barnes, Sr. Jul 2000 A
6098627 Kellner et al. Aug 2000 A
6109266 Turchetti Aug 2000 A
D434501 Redhage Nov 2000 S
6152138 Brown et al. Nov 2000 A
6189156 Loiars Feb 2001 B1
6200133 Kittelsen Mar 2001 B1
6222524 Salem et al. Apr 2001 B1
6237601 Kittelsen et al. May 2001 B1
6257239 Kittelsen et al. Jul 2001 B1
6298483 Schiebl et al. Oct 2001 B1
6299441 Novak Oct 2001 B1
6301718 Rigal Oct 2001 B1
D452011 Redhage Dec 2001 S
6324701 Alexander Dec 2001 B1
6332226 Rush, III Dec 2001 B1
6371758 Kittelsen Apr 2002 B1
6381757 Rush, III May 2002 B2
6393892 Ohbayashi et al. May 2002 B1
6415794 Kittelsen et al. Jul 2002 B1
6481024 Grant Nov 2002 B1
6491036 Cook Dec 2002 B2
6491037 Mortenson Dec 2002 B1
6494210 Mams Dec 2002 B1
6499139 Brown et al. Dec 2002 B1
6505626 Kittelsen et al. Jan 2003 B2
6505627 Kittelsen et al. Jan 2003 B2
6505628 Kittelsen et al. Jan 2003 B2
6508251 Kittelsen et al. Jan 2003 B2
6510853 Kittelsen et al. Jan 2003 B1
6532602 Watters et al. Mar 2003 B2
D473976 Wilkens Apr 2003 S
6539943 Kittelsen et al. Apr 2003 B1
6553996 Kittelsen et al. Apr 2003 B2
6581604 Cook Jun 2003 B2
6584978 Brett et al. Jul 2003 B1
6588430 Kittelsen et al. Jul 2003 B2
6598605 Kittelsen et al. Jul 2003 B1
6602633 Ohbayashi et al. Aug 2003 B1
6613001 Dworkin Sep 2003 B1
6626180 Kittelsen et al. Sep 2003 B1
6633454 Martin et al. Oct 2003 B1
6675806 Kittelsen et al. Jan 2004 B2
6675807 Kittelsen et al. Jan 2004 B2
6691710 Kittelsen et al. Feb 2004 B2
6698272 Almirante Mar 2004 B1
6711751 Muskovitz Mar 2004 B1
D493578 Manzo et al. Jul 2004 S
6769286 Biermann et al. Aug 2004 B2
6782558 Keen, Sr. et al. Aug 2004 B1
D496154 Herman et al. Sep 2004 S
D496498 Kittelsen et al. Sep 2004 S
D496499 Kittelsen et al. Sep 2004 S
6804829 Crye et al. Oct 2004 B2
6820623 Cook Nov 2004 B2
D500895 Manzo et al. Jan 2005 S
D500897 Herman et al. Jan 2005 S
D500898 Herman et al. Jan 2005 S
D501062 Herman et al. Jan 2005 S
6848389 Elsasser et al. Feb 2005 B1
6854133 Lee et al. Feb 2005 B2
6858810 Zerbini et al. Feb 2005 B2
D502787 Liu Mar 2005 S
D502995 Cook et al. Mar 2005 S
D504744 Hidalgo et al. May 2005 S
D509028 Farrell Aug 2005 S
6934971 Ide et al. Aug 2005 B2
6941952 Rush, III Sep 2005 B1
D523994 Manzo Jun 2006 S
D525749 Manzo et al. Jul 2006 S
7069601 Jacobson Jul 2006 B1
D526093 Manzo et al. Aug 2006 S
D526095 Manzo et al. Aug 2006 S
D527848 Manzo et al. Sep 2006 S
D529615 Atz Oct 2006 S
D530863 Manzo et al. Oct 2006 S
D532559 Manzo et al. Nov 2006 S
7152253 Abelman et al. Dec 2006 B2
7159442 Jean Jan 2007 B1
7178175 Rogers et al. Feb 2007 B2
D537986 Manzo et al. Mar 2007 S
D537987 Manzo et al. Mar 2007 S
D539484 Hillman Mar 2007 S
7194889 Jean et al. Mar 2007 B1
D541481 Farrell Apr 2007 S
7210483 Lesniak et al. May 2007 B1
7216371 Wong May 2007 B2
7246384 Bentz Jul 2007 B2
7246385 Dennis et al. Jul 2007 B2
D548402 Trodick Aug 2007 S
D548403 Manzo et al. Aug 2007 S
7266988 Kranz et al. Sep 2007 B2
D554259 Diacopoulos et al. Oct 2007 S
7290437 Tanaka et al. Nov 2007 B1
7299804 Kittelsen et al. Nov 2007 B2
D570549 Essig Jun 2008 S
D570724 Kittelsen et al. Jun 2008 S
7383728 Noble et al. Jun 2008 B2
7386401 Vock et al. Jun 2008 B2
D572430 Wong Jul 2008 S
7404403 Farrell Jul 2008 B2
D584002 Essig Dec 2008 S
7481773 Dorroh et al. Jan 2009 B1
D586252 Kittelsen Feb 2009 S
7509835 Beck Mar 2009 B2
7526389 Greenwald Apr 2009 B2
D593714 Hirshberg Jun 2009 S
7549423 Hirshberg Jun 2009 B1
D595857 Massad Jul 2009 S
D597675 Eli Aug 2009 S
D601265 Lin Sep 2009 S
D601711 Lin Oct 2009 S
D603101 Hirshberg Oct 2009 S
7607438 Pelerin Oct 2009 B2
D611658 Manzo Mar 2010 S
D615709 Manzo May 2010 S
D616152 Manzo May 2010 S
7708018 Hirshberg May 2010 B1
7770239 Goldman et al. Aug 2010 B1
7775214 Lesniak et al. Aug 2010 B1
D623357 Manzo Sep 2010 S
7798149 Haduong Sep 2010 B2
D625470 Willems Oct 2010 S
D626292 Farrell Oct 2010 S
7810502 Nguyen et al. Oct 2010 B1
D627107 Manzo et al. Nov 2010 S
7827991 Maher Nov 2010 B2
7832404 Jansheski Nov 2010 B2
D630382 Manzo et al. Jan 2011 S
7861722 Keropian Jan 2011 B2
7861724 Keropian Jan 2011 B2
7882839 Ambis, Jr. Feb 2011 B2
7886370 Winningham Feb 2011 B2
7890193 Tingey Feb 2011 B2
D634480 Manzo et al. Mar 2011 S
7895677 Schiebl Mar 2011 B1
7900279 Kraemer et al. Mar 2011 B2
7913695 Moore et al. Mar 2011 B1
D636074 Levine Apr 2011 S
7918228 Smernoff Apr 2011 B2
7950394 Elkin et al. May 2011 B2
7963286 Burdumy Jun 2011 B2
D642277 Farrell Jul 2011 S
7972024 DeLeeuw Jul 2011 B2
7975701 Bergersen Jul 2011 B2
7987854 Arni Aug 2011 B2
8006322 Schiebl Aug 2011 B1
8007277 Fischer et al. Aug 2011 B2
8091148 Ho Jan 2012 B2
8170242 Menzel et al. May 2012 B2
8196226 Schuh Jun 2012 B1
8235917 Joseph Aug 2012 B2
8316691 Jeftic-Stojanovski et al. Nov 2012 B2
8466794 Mack et al. Jun 2013 B2
8537017 Mack et al. Sep 2013 B2
8554495 Mack et al. Oct 2013 B2
8771149 Rahman et al. Jul 2014 B2
20010004772 Rush, III Jun 2001 A1
20020066454 Kittelsen et al. Jun 2002 A1
20020144686 Cook Oct 2002 A1
20020144687 Kittelsen et al. Oct 2002 A1
20020144688 Kittelsen et al. Oct 2002 A1
20020144689 Kittelsen et al. Oct 2002 A1
20020144690 Kittelsen et al. Oct 2002 A1
20020144691 Kittelsen et al. Oct 2002 A1
20020144692 Kittelsen et al. Oct 2002 A1
20020144693 Kittelsen et al. Oct 2002 A1
20020144694 Kittelsen et al. Oct 2002 A1
20020144695 Cook Oct 2002 A1
20030040679 Weber et al. Feb 2003 A1
20030075186 Florman Apr 2003 A1
20030101999 Kittelsen et al. Jun 2003 A1
20030126665 Brown et al. Jul 2003 A1
20030154990 Parker Aug 2003 A1
20040003452 Scheibl Jan 2004 A1
20040025231 Ide et al. Feb 2004 A1
20040040073 Morrow et al. Mar 2004 A1
20040103905 Farrell Jun 2004 A1
20040107970 Kittelsen et al. Jun 2004 A1
20040112389 Abraham Jun 2004 A1
20040244805 Cook et al. Dec 2004 A1
20040250817 Kittelsen et al. Dec 2004 A1
20050052724 Suzuki et al. Mar 2005 A1
20050113654 Weber et al. May 2005 A1
20050115571 Jacobs Jun 2005 A1
20050177929 Greenwald et al. Aug 2005 A1
20050247318 Mohindra Nov 2005 A1
20060117466 Abelman et al. Jun 2006 A1
20060150304 Bentz Jul 2006 A1
20060162421 Mess Jul 2006 A1
20070011796 Manzo Jan 2007 A1
20070084471 Napoli et al. Apr 2007 A1
20070089219 Trainor et al. Apr 2007 A1
20070089480 Beck Apr 2007 A1
20070151567 Maurello Jul 2007 A1
20070151568 Maurello Jul 2007 A1
20070235039 Gottsch Oct 2007 A1
20070251294 Tanaka et al. Nov 2007 A1
20080016605 Wong Jan 2008 A1
20080028500 Bentz Feb 2008 A1
20080043248 Ozcan Feb 2008 A1
20080092277 Kraemer et al. Apr 2008 A1
20090000377 Shipps et al. Jan 2009 A1
20090114232 Landi et al. May 2009 A1
20090122525 DeLeeuw May 2009 A1
20090265841 Ferrara Oct 2009 A1
20090307827 Aspray Dec 2009 A1
20090308403 Roettger et al. Dec 2009 A1
20100005571 Moss et al. Jan 2010 A1
20100006109 McGinnis et al. Jan 2010 A1
20100015808 Ozawa Jan 2010 A1
20100024833 Swann et al. Feb 2010 A1
20100051038 Quigless Mar 2010 A1
20100073678 Smith et al. Mar 2010 A1
20100083733 Russell et al. Apr 2010 A1
20100104998 Farrell et al. Apr 2010 A1
20100108078 Morgan et al. May 2010 A1
20100129763 Kuo May 2010 A1
20100212674 Navarrette, Jr. Aug 2010 A1
20100269836 Roettger et al. Oct 2010 A1
20100275930 Evans Nov 2010 A1
20100288290 Lee et al. Nov 2010 A1
20100318294 Rosing et al. Dec 2010 A1
20100326192 Petelenz et al. Dec 2010 A1
20100326451 Pelerin Dec 2010 A1
20110005531 Manzo Jan 2011 A1
20110009773 Hower et al. Jan 2011 A1
20110017221 Garner et al. Jan 2011 A1
20110030704 Hanna Feb 2011 A1
20110067710 Jansheski et al. Mar 2011 A1
20110067711 Jansheski et al. Mar 2011 A1
20110088703 Ambis, Jr. Apr 2011 A1
20110094522 Weisflog Apr 2011 A1
20110100379 Doctors et al. May 2011 A1
20110114100 Alvarez et al. May 2011 A1
20110132380 Goldsby Jun 2011 A1
20110139162 Chodorow Jun 2011 A1
20110139163 Hillila Jun 2011 A1
20110155146 Marsh Jun 2011 A1
20110168186 Halstrom Jul 2011 A1
20110174319 Busciglio Jul 2011 A1
20110179851 Mack Jul 2011 A1
20110181418 Mack et al. Jul 2011 A1
20110181419 Mack et al. Jul 2011 A1
20110181420 Mack et al. Jul 2011 A1
20110184319 Mack Jul 2011 A1
20110184663 Mack et al. Jul 2011 A1
20110186055 Makkar et al. Aug 2011 A1
20110186056 Smernoff Aug 2011 A1
20110203347 Hower et al. Aug 2011 A1
20110209714 Makkar et al. Sep 2011 A1
20110214478 Hennig et al. Sep 2011 A1
20110219852 Kasten Sep 2011 A1
20110277221 Ide et al. Nov 2011 A1
20120111090 Hennig et al. May 2012 A1
20120111091 Hennig et al. May 2012 A1
20120123225 Al-Tawil May 2012 A1
20120210498 Mack Aug 2012 A1
20120223833 Thomas et al. Sep 2012 A1
20120306438 Howard et al. Dec 2012 A1
20140039355 Crisco, III et al. Feb 2014 A1
20160018278 Jeter, II Jan 2016 A1
Foreign Referenced Citations (2)
Number Date Country
2011091347 Jul 2011 WO
2011091355 Jul 2011 WO
Non-Patent Literature Citations (9)
Entry
Concussion Monitoring “Intelligent Mouthguard” Project, Brain-Pad Blog, posted on Sep. 17, 2010, downloaded from http://webcache.googleusercontent.com/search?q=cache:M93BRGq-D0IJ . . . on Sep. 27, 2010, 5 pages.
Heads Up! Concussion Detector, Aug. 1. 2010, downloaded from http://www.aip.org/dbis/stories/2010/20094.html on Sep. 27, 2010, 2 pages.
Heads Up! Concussion Detector—full report, downloaded from http://www.aip.org/dbis/stories/2010/20094—full.html of Sep. 27, 2010, 1 page.
Mouth guard acts as concussion detector, last updated Aug. 11, 2010, downloaded from http://www.cfnews13.com/article/news/2010/august/134230/Mouth-guar . . . on Sep. 27, 2010, 2 pages.
Mouth guard for concussion protection, from HealthNewsDigest.com, May 17, 2010, downloaded from http://healthnewsdigest.com/news/Health—Tips—620/Mouth—Guard—for—C . . . on Sep. 28, 2010, 2 pages.
New Mouth Guard Could Prevent Football Injuries, Sep. 25, 2010, downloaded from http://www.10tv.com/live/content/onnnews/stories/2010/09/25/story-intel . . . on Sep. 27, 2010, 2 pages.
Sports Dentistry Online, downloaded from http://www.sportsdentistry.com/concussion.html on Sep. 27, 2010, 3 pages.
Higgins et al., “Measurement of Impact Acceleration: Mouthpiece Accelerometer Versus Helmet Accelerometer,” Journal of Athletic Training, Jan.-Mar. 2007, 42(1): 5-10, downloaded Aug. 29, 2011, 9 pages.
U.S. Appl. No. 12/831,860, Office Action dated Sep. 20, 2011, 9 pages.
Related Publications (1)
Number Date Country
20140288432 A1 Sep 2014 US
Provisional Applications (5)
Number Date Country
61309818 Mar 2010 US
61320724 Apr 2010 US
61380480 Sep 2010 US
61382881 Sep 2010 US
61412062 Nov 2010 US
Continuations (1)
Number Date Country
Parent 13038726 Mar 2011 US
Child 14255363 US
Continuation in Parts (1)
Number Date Country
Parent 12831860 Jul 2010 US
Child 13038726 US