The present disclosure relates to field sequential display systems projecting one or more color codes at different geometric positions over time for virtual content, and methods for generating a mixed reality experience content using the same.
Modern computing and display technologies have facilitated the development of “mixed reality” (MR) systems for so called “virtual reality” (VR) or “augmented reality” (AR) experiences, wherein digitally reproduced images or portions thereof are presented to a user in a manner wherein they seem to be, or may be perceived as, real. A VR scenario typically involves presentation of digital or virtual image information without transparency to actual real-world visual input. An AR scenario typically involves presentation of digital or virtual image information as an augmentation to visualization of the real world around the user (i.e., transparency to real-world visual input). Accordingly, AR scenarios involve presentation of digital or virtual image information with transparency to the real-world visual input.
MR systems typically generate and display color data, which increases the realism of MR scenarios. Many of these MR systems display color data by sequentially projecting sub-images in different (e.g., primary) colors or “fields” (e.g., Red, Green, and Blue) corresponding to a color image in rapid succession. Projecting color sub-images at sufficiently high rates (e.g., 60 Hz, 120 Hz, etc.) may deliver a smooth color MR scenarios in a user's mind.
Various optical systems generate images, including color images, at various depths for displaying MR (VR and AR) scenarios. Some such optical systems are described in U.S. Utility patent application Ser. No. 14/555,585 filed on Nov. 27, 2014, the contents of which are hereby expressly and fully incorporated by reference in their entirety, as though set forth in full.
MR systems typically employ wearable display devices (e.g., head-worn displays, helmet-mounted displays, or smart glasses) that are at least loosely coupled to a user's head, and thus move when the user's head moves. If the user's head motions are detected by the display device, the data being displayed can be updated to take the change in head pose (i.e., the orientation and/or location of user's head) into account. Changes in position present challenges to field sequential display technology.
Described herein are techniques and technologies to improve image quality of field sequential displays subject to motion that intend to project a stationary image.
As an example, if a user wearing a head-worn display device views a virtual representation of a virtual object on the display and walks around an area where the virtual object appears, the virtual object can be rendered for each viewpoint, giving the user the perception that they are walking around an object that shares a relationship with real space as opposed to a relationship with the display surface. A change in a user's head pose, however, changes and to maintain a stationary image projection from a dynamic display system requires adjusting the timing of field sequential projectors.
Conventional field sequential display may project colors for a single image frame in a designated time sequence, and any difference in time between fields is not noticed when viewed on a stationary display. For example, a red pixel displayed at a first time, and a blue pixel displayed 10 ms later will appear to overlap, as the geometric position of the pixels does not change in a discernible amount of time.
In a moving projector, however, such as a head-worn display, motion in that same 10 ms interval may correspond to a noticeable shift in the red and blue pixel that were intended to overlap.
In some embodiments, warping an individual image's color within the field sequence can improve the perception of the image, as each frame will be based on the field's appropriate perspective at a given time in a change in head pose. Such methods and systems to implement this solution are described in U.S. patent application Ser. No. 15/924,078.
In addition to the specific field warping that should occur to correct for general head pose changes in field sequential displays, a given field's sub codes themselves should be adjusted to appropriately convey rich imagery representing intended colors.
In one embodiment, a computer implemented method for warping multi-field color virtual content for sequential projection includes obtaining first and second color fields having different first and second colors. The method also includes determining a first time for projection of a warped first color field. The method further includes predicting a first pose corresponding to the first time. For each one color among the first colors in the first color field, the method includes (a) identifying an input representing the one color among the first colors in the first color field; (b) reconfiguring the input as a series of pulses creating a plurality of per-field inputs; and (c) warping each one of the series of pulses based on the first pose. The method also includes generating the warped first color field based on the warped series of pulses. In addition, the method includes activating pixels on a sequential display based on the warped series of pulses to display the warped first color field.
In one or more embodiments, the series of pulses includes a central pulse centered at the first time, a second pulse occurring before the central pulse and a third pulse occurring after the central pulse. An end of a decay phase of the second pulse is temporally aligned with a beginning of a growth phase of the central pulse, and a beginning of a growth phase of the third pulse is temporally aligned with an end of a decay phase of the central pulse. A centroid of the central pulse occurs at the first time, a centroid of the second pulse occurs at a second time before the first time, and a centroid of the third pulse occurs at a third time after the first time. In some embodiments, a difference between the first time and the second time is equal to a difference between the first time and the third time. In some embodiments, the central pulse includes a first set of time slots each having a first duration, the second pulse and the third pulse includes a second set of time slots each having a second duration greater than the first duration. The pixels on the sequential display are activated during a subset of the first set of time slots or the second set of time slots. In some embodiments, the pixels on the sequential display are activated during time slots of the central pulse depending on a color code associated with the one color among the first colors in the first color field. In various embodiments, the pixels on the sequential display are activated for a time slot in the second pulse and a corresponding time slot in the third pulse.
In one or more embodiments, the method may also include determining a second time for projection of a warped second color field. The method may further include predicting a second pose corresponding to the second time. For each one color among the second colors in the second color field, the method may include (a) identifying an input representing the one color among the second colors in the second color field; (b) reconfiguring the input as a series of pulses creating a plurality of per-field inputs; and (c) warping each one of the series of pulses based on the second pose. The method may also include generating the warped second color field based on the warped series of pulses. In addition, the method may include activating pixels on a sequential display based on the warped series of pulses to display the warped second color field based on the warped series of pulses.
In another embodiment, a system for warping multi-field color virtual content for sequential projection includes a warping unit to receive first and second color fields having different first and second colors for sequential projection. The warping unit includes a pose estimator to determine a first time for projection of a warped first color field and to predict a first pose corresponding to the first time. The warping unit also includes a transform unit to, for each one color among the first colors in the first color field, (a) identify an input representing the one color among the first colors in the first color field; (b) reconfigure the input as a series of pulses creating a plurality of per-field inputs; and (c) warp each one of the series of pulses based on the first pose. The transform unit is further configured to generate the warped first color field based on the warped series of pulses. The transform unit is also configured to activate pixels on a sequential display based on the warped series of pulses to display the warped first color field.
In still another embodiment, a computer program product is embodied in a non-transitory computer readable medium, the computer readable medium having stored thereon a sequence of instructions which, when executed by a processor causes the processor to execute a method for warping multi-field color virtual content for sequential projection. The method includes obtaining first and second color fields having different first and second colors. The method also includes determining a first time for projection of a warped first color field. The method further includes predicting a first pose corresponding to the first time. For each one color among the first colors in the first color field, the method includes (a) identifying an input representing the one color among the first colors in the first color field; (b) reconfiguring the input as a series of pulses creating a plurality of per-field inputs; and (c) warping each one of the series of pulses based on the first pose. The method also includes generating the warped first color field based on the warped series of pulses. In addition, the method includes activating pixels on a sequential display based on the warped series of pulses to display the warped first color field.
In one embodiment, a computer implemented method for warping multi-field color virtual content for sequential projection includes obtaining first and second color fields having different first and second colors. The method also includes determining a first time for projection of a warped first color field. The method further includes determining a second time for projection of a warped second color field. Moreover, the method includes predicting a first pose at the first time and predicting a second pose at the second time. In addition, the method includes generating the warped first color field by warping the first color field based on the first pose. The method also includes generating the warped second color field by warping the second color field based on the second pose.
In one or more embodiments, the first color field includes first color field information at an X, Y location. The first color field information may include a first brightness in the first color. The second color field may include second image information at the X, Y location. The second color field information may include a second brightness in the second color.
In one or more embodiments, the warped first color field includes warped first color field information at a first warped X, Y location. The warped second color field may include warped second color field information at a second warped X, Y location. Warping the first color field based on the first pose may include applying a first transformation to the first color field to generate the warped first color field. Warping the second color field based on the second pose may include applying a second transformation to the second color field to generate the warped second color field.
In one or more embodiments, the method also includes sending the warped first and second color fields to a sequential projector, and the sequential projector sequentially projecting the warped first color field and the warped second color field. The warped first color field may be projected at the first time, and the warped second color field may be projected at the second time.
In another embodiment, a system for warping multi-field color virtual content for sequential projection includes a warping unit to receive first and second color fields having different first and second colors for sequential projection. The warping unit includes a pose estimator to determine first and second times for projection of respective warped first and second color fields, and to predict first and second poses at respective first and second times. The warping unit also includes a transform unit to generate the warped first and second color fields by warping respective first and second color fields based on respective first and second poses.
In still another embodiment, a computer program product is embodied in a non-transitory computer readable medium, the computer readable medium having stored thereon a sequence of instructions which, when executed by a processor causes the processor to execute a method for warping multi-field color virtual content for sequential projection. The method includes obtaining first and second color fields having different first and second colors. The method also includes determining a first time for projection of a warped first color field. The method further includes determining a second time for projection of a warped second color field. Moreover, the method includes predicting a first pose at the first time and predicting a second pose at the second time. In addition, the method includes generating the warped first color field by warping the first color field based on the first pose. The method also includes generating the warped second color field by warping the second color field based on the second pose.
In yet another embodiment, a computer implemented method for warping multi-field color virtual content for sequential projection includes obtaining an application frame and an application pose. The method also includes estimating a first pose for a first warp of the application frame at a first estimated display time. The method further includes performing a first warp of the application frame using the application pose and the estimated first pose to generate a first warped frame. Moreover, the method includes estimating a second pose for a second warp of the first warped frame at a second estimated display time. In addition, the method includes performing a second warp of the first warp frame using the estimated second pose to generate a second warped frame.
In one or more embodiments, the method includes displaying the second warped frame at about the second estimated display time. The method may also include estimating a third pose for a third warp of the first warped frame at a third estimated display time, and performing a third warp of the first warp frame using the estimated third pose to generate a third warped frame. The third estimated display time may be later than the second estimated display time. The method may also include displaying the third warped frame at about the third estimated display time.
In another embodiment, a computer implemented method for minimizing Color Break Up (“CBU”) artifacts includes predicting a CBU artifact based on received eye or head tracking information, The method also includes increasing a color field rate based on the predicted CBU artifact.
In one or more embodiments, the method includes predicting a second CBU based on the received eye or head tracking information and the increased color field rate, and decreasing a bit depth based on the predicted second CBU artifact. The method may also include displaying an image using the increased color field rate and the decreased bit depth. The method may further include displaying an image using the increased color field rate.
Additional and other objects, features, and advantages of the disclosure are described in the detail description, figures and claims.
The drawings illustrate the design and utility of various embodiments of the present disclosure. It should be noted that the figures are not drawn to scale and that elements of similar structures or functions are represented by like reference numerals throughout the figures. In order to better appreciate how to obtain the above-recited and other advantages and objects of various embodiments of the disclosure, a more detailed description of the present disclosures briefly described above will be rendered by reference to specific embodiments thereof, which are illustrated in the accompanying drawings. Understanding that these drawings depict only typical embodiments of the disclosure and are not therefore to be considered limiting of its scope, the disclosure will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
Various embodiments of the disclosure are directed to systems, methods, and articles of manufacture for warping virtual content from him a source in a single embodiment or in multiple embodiments. Other objects, features, and advantages of the disclosure are described in the detailed description, figures, and claims.
Various embodiments will now be described in detail with reference to the drawings, which are provided as illustrative examples of the disclosure so as to enable those skilled in the art to practice the disclosure. Notably, the figures and the examples below are not meant to limit the scope of the present disclosure. Where certain elements of the present disclosure may be partially or fully implemented using known components (or methods or processes), only those portions of such known components (or methods or processes) that are necessary for an understanding of the present disclosure will be described, and the detailed descriptions of other portions of such known components (or methods or processes) will be omitted so as not to obscure the disclosure. Further, various embodiments encompass present and future known equivalents to the components referred to herein by way of illustration.
The virtual content warping systems may be implemented independently of mixed reality systems, but some embodiments below are described in relation to AR systems for illustrative purposes only. Further, the virtual content warping systems described herein may also be used in an identical manner with VR systems.
Illustrative Mixed Reality Scenario and System
The description that follows pertains to an illustrative augmented reality system with which the warping system may be practiced. However, it is to be understood that the embodiments also lends themselves to applications in other types of display systems (including other types of mixed reality systems), and therefore the embodiments are not to be limited to only the illustrative system disclosed herein.
Mixed reality (e.g., VR or AR) scenarios often include presentation of virtual content (e.g., color images and sound) corresponding to virtual objects in relationship to real-world objects. For example, referring to
Like AR scenarios, VR scenarios must also account for the poses used to generate/render the virtual content. Accurately warping the virtual content to the AR/VR display frame of reference and warping the warped virtual content can improve the AR/VR scenarios, or at least not detract from the AR/VR scenarios.
The description that follows pertains to an illustrative AR system with which the disclosure may be practiced. However, it is to be understood that the disclosure also lends itself to applications in other types of augmented reality and virtual reality systems, and therefore the disclosure is not to be limited to only the illustrative system disclosed herein.
Referring to
For AR applications, it may be desirable to spatially position various virtual objects relative to respective physical objects in a field of view of the user 250. The virtual objects may take any of a large variety of forms, having any variety of data, information, concept, or logical construct capable of being represented as an image. Non-limiting examples of virtual objects may include: a virtual text object, a virtual numeric object, a virtual alphanumeric object, a virtual tag object, a virtual field object, a virtual chart object, a virtual map object, a virtual instrumentation object, or a virtual visual representation of a physical object.
The AR system 200 comprises a frame structure 202 worn by the user 250, the display system 204 carried by the frame structure 202, such that the display system 204 is positioned in front of the eyes of the user 250, and a speaker 206 incorporated into or connected to the display system 204. In the illustrated embodiment, the speaker 206 is carried by the frame structure 202, such that the speaker 206 is positioned adjacent (in or around) the ear canal of the user 250, e.g., an earbud or headphone.
The display system 204 is designed to present the eyes of the user 250 with photo-based radiation patterns that can be comfortably perceived as augmentations to the ambient environment including both two-dimensional and three-dimensional content. The display system 204 presents a sequence of frames at high frequency that provides the perception of a single coherent scene. To this end, the display system 204 includes the projection subsystem 208 and a partially transparent display screen through which the projection subsystem 208 projects images. The display screen is positioned in a field of view of the user 250 between the eyes of the user 250 and the ambient environment.
In some embodiments, the projection subsystem 208 takes the form of a scan-based projection device and the display screen takes the form of a waveguide-based display into which the scanned light from the projection subsystem 208 is injected to produce, for example, images at single optical viewing distance closer than infinity (e.g., arm's length), images at multiple, discrete optical viewing distances or focal planes, and/or image layers stacked at multiple viewing distances or focal planes to represent volumetric 3D objects. These layers in the light field may be stacked closely enough together to appear continuous to the human visual subsystem (e.g., one layer is within the cone of confusion of an adjacent layer). Additionally or alternatively, picture elements may be blended across two or more layers to increase perceived continuity of transition between layers in the light field, even if those layers are more sparsely stacked (e.g., one layer is outside the cone of confusion of an adjacent layer). The display system 204 may be monocular or binocular. The scanning assembly includes one or more light sources that produce the light beam (e.g., emits light of different colors in defined patterns). The light source may take any of a large variety of forms, for instance, a set of RGB sources (e.g., laser diodes capable of outputting red, green, and blue light) operable to respectively produce red, green, and blue coherent collimated light according to defined pixel patterns specified in respective frames of pixel information or data. Laser light provides high color saturation and is highly energy efficient. The optical coupling subsystem includes an optical waveguide input apparatus, such as for instance, one or more reflective surfaces, diffraction gratings, mirrors, dichroic mirrors, or prisms to optically couple light into the end of the display screen. The optical coupling subsystem further includes a collimation element that collimates light from the optical fiber. Optionally, the optical coupling subsystem includes an optical modulation apparatus configured for converging the light from the collimation element towards a focal point in the center of the optical waveguide input apparatus, thereby allowing the size of the optical waveguide input apparatus to be minimized. Thus, the display subsystem 204 generates a series of synthetic image frames of pixel information that present an undistorted image of one or more virtual objects to the user. The display subsystem 204 may also generate a series of color synthetic sub-image frames of pixel information that present an undistorted color image of one or more virtual objects to the user. Further details describing display subsystems are provided in U.S. Utility patent application Ser. No. 14/212,961, entitled “Display System and Method”, and Ser. No. 14/331,218, entitled “Planar Waveguide Apparatus With Diffraction Element(s) and Subsystem Employing Same”, the contents of which are hereby expressly and fully incorporated by reference in their entirety, as though set forth in full.
The AR system 200 further includes one or more sensors mounted to the frame structure 202 for detecting the position (including orientation) and movement of the head of the user 250 and/or the eye position and inter-ocular distance of the user 250. Such sensor(s) may include image capture devices, microphones, inertial measurement units (IMUs), accelerometers, compasses, GPS units, radio devices, gyros and the like. For example, in one embodiment, the AR system 200 includes a head worn transducer subsystem that includes one or more inertial transducers to capture inertial measures indicative of movement of the head of the user 250. Such devices may be used to sense, measure, or collect information about the head movements of the user 250. For instance, these devices may be used to detect/measure movements, speeds, acceleration and/or positions of the head of the user 250. The position (including orientation) of the head of the user 250 is also known as a “head pose” of the user 250.
The AR system 200 of
The AR system 200 may further include rearward facing cameras to track angular position (the direction in which the eye or eyes are pointing), blinking, and depth of focus (by detecting eye convergence) of the eyes of the user 250. Such eye tracking information may, for example, be discerned by projecting light at the end user's eyes, and detecting the return or reflection of at least some of that projected light.
The augmented reality system 200 further includes a control subsystem 201 that may take any of a large variety of forms. The control subsystem 201 includes a number of controllers, for instance one or more microcontrollers, microprocessors or central processing units (CPUs), digital signal processors, graphics processing units (GPUs), other integrated circuit controllers, such as application specific integrated circuits (ASICs), programmable gate arrays (PGAs), for instance field PGAs (FPGAs), and/or programmable logic controllers (PLUs). The control subsystem 201 may include a digital signal processor (DSP), a central processing unit (CPU) 251, a graphics processing unit (GPU) 252, and one or more frame buffers 254. The CPU 251 controls overall operation of the system, while the GPU 252 renders frames (i.e., translating a three-dimensional scene into a two-dimensional image) and stores these frames in the frame buffer(s) 254. While not illustrated, one or more additional integrated circuits may control the reading into and/or reading out of frames from the frame buffer(s) 254 and operation of the display system 204. Reading into and/or out of the frame buffer(s) 254 may employ dynamic addressing, for instance, where frames are over-rendered. The control subsystem 201 further includes a read only memory (ROM) and a random access memory (RAM). The control subsystem 201 further includes a three-dimensional database 260 from which the GPU 252 can access three-dimensional data of one or more scenes for rendering frames, as well as synthetic sound data associated with virtual sound sources contained within the three-dimensional scenes.
The augmented reality system 200 further includes a user orientation detection module 248. The user orientation module 248 detects the instantaneous position of the head of the user 250 and may predict the position of the head of the user 250 based on position data received from the sensor(s). The user orientation module 248 also tracks the eyes of the user 250, and in particular the direction and/or distance at which the user 250 is focused based on the tracking data received from the sensor(s).
The difference between the control subsystem 201′, and thus the AR system 200′, depicted in
The various processing components of the AR systems 200, 200′ may be contained in a distributed subsystem. For example, the AR systems 200, 200′ include a local processing and data module (i.e., the control subsystem 201, 201′) operatively coupled, such as by a wired lead or wireless connectivity 207, to a portion of the display system 204. The local processing and data module may be mounted in a variety of configurations, such as fixedly attached to the frame structure 202, fixedly attached to a helmet or hat, embedded in headphones, removably attached to the torso of the user 250, or removably attached to the hip of the user 250 in a belt-coupling style configuration. The AR systems 200, 200′ may further include a remote processing module and remote data repository operatively coupled, such as by a wired lead or wireless connectivity to the local processing and data module, such that these remote modules are operatively coupled to each other and available as resources to the local processing and data module. The local processing and data module may include a power-efficient processor or controller, as well as digital memory, such as flash memory, both of which may be utilized to assist in the processing, caching, and storage of data captured from the sensors and/or acquired and/or processed using the remote processing module and/or remote data repository, possibly for passage to the display system 204 after such processing or retrieval. The remote processing module may comprise one or more relatively powerful processors or controllers configured to analyze and process data and/or image information. The remote data repository may comprise a relatively large-scale digital data storage facility, which may be available through the internet or other networking configuration in a “cloud” resource configuration. In some embodiments, all data is stored and all computation is performed in the local processing and data module, allowing fully autonomous use from any remote modules. The couplings between the various components described above may include one or more wired interfaces or ports for providing wires or optical communications, or one or more wireless interfaces or ports, such as via RF, microwave, and IR for providing wireless communications. In some implementations, all communications may be wired, while in other implementations all communications may be wireless, with the exception of the optical fiber(s).
Summary of Problems and Solutions
When an optical system generates/renders color virtual content, it may use a source frame of reference that may be related to a pose of the system when the virtual content is rendered. In AR systems, the rendered virtual content may have a predefined relationship with a real physical object. For instance,
However, if the AR system's frame of reference changes (e.g., with rapid user head movement) in a gap between the first time at which the virtual flower pot 310 is rendered and the second time at which the rendered virtual flower pot 310 is displayed/projected, the mismatch/difference between the source frame of reference and the output frame of reference may result in visual artifacts/anomalies/glitches. For instance,
Some optical systems may include a warping system that warps or transforms the frame of reference of source virtual content from the source frame of reference in which the virtual content was generated to the output frame of reference in which the virtual content will be displayed. In the example depicted in
Color Virtual Content Warping Systems and Methods
When the virtual content includes color, some warping systems warp all of color sub-images or fields corresponding to/forming a color image using a single X′, Y′ location in a single output frame of reference (e.g., a single estimated pose from a single estimated time of illumination). However, some projection display systems (e.g., sequential projection display systems), like those in some AR systems, do not project all of the color sub-images/fields at the same time. For example, there may be some lag between projection of each color sub-image/fields. This lag between the projection of each color sub-images/fields, that is the difference in time of illumination, may result in color fringing artifacts in the final image during rapid head movement.
For instance,
In order to address these limitations and others, the systems described herein warp color virtual content using a number of frames of reference corresponding to the number of color sub-images/fields. For example,
At steps 816R, 816G, and 816B, a pose estimator 282 estimates a pose at respective estimated times of illumination for R, G, B sub-images/fields using the base pose (e.g., current frame of reference) and information about the AR system 200, 200′. At steps 818R, 818G, and 818B, a transform unit 284 generates R, G, and B warped virtual content from the received virtual content sub-image/color field (R, G, B) using respective estimated R, G, and B poses and the render pose (e.g., source frame of reference). At step 820, the transform unit 284 combines the warped R, G, B sub-images/fields for sequential display.
The warping systems according to the embodiments herein warp the sub-images/fields 912R′, 912G″, 912B′″ using the corresponding frames of reference (e.g., estimated poses) that take into account the timing of projection/time of illumination, instead of using a single frame of reference. Consequently, the warping systems according to the embodiments herein warp color virtual content into separate sub-images of different colors/fields while minimizing warp related color artifacts such as CBU. More accurate warping of color virtual content contributes to more realistic and believable AR scenarios.
Illustrative Graphics Processing Unit
The GPU 252 includes a GPU core 1016, which has a number of parallel executable cores/units (“shader cores”) 1018 for processing the scheduling units in parallel. The command processor 1012 divides the color virtual content into a number equal to the number of shader cores 1018 (e.g., 32). The GPU 252 also includes a “First In First Out” (“FIFO”) memory 1020 to receive output from the GPU core 1016. From the FIFO memory 1020, the output may be routed back to the scheduler 1014 as “old work” for insertion into the rendering pipeline additional processing by the GPU core 1016.
The GPU 252 further includes a Raster Operations Unit (“ROP”) 1022 that receives output from the FIFO memory 1020 and rasterizes the output for display. For instance, the primitives of the color virtual content may be stored as the coordinates of the vertices of triangles. After processing by the GPU core 1016 (during which the three vertices 1110, 1112, 1114 of a triangle 1100 may be warped), the ROP 1022 determines which pixels 1116 are inside of the triangle 1100 defined by three vertices 1110, 1112, 1114 and fills in those pixels 1116 in the color virtual content. The ROP 1022 may also perform depth testing on the color virtual content. For processing of color virtual content, the GPU 252 may include one or more ROPs 1022R, 1022B, 1022G for parallel processing of sub-images of different primary colors.
The GPU 252 also includes a buffer memory 1024 for temporarily storing warped color virtual content from the ROP 1022. The warped color virtual content in the buffer memory 1024 may include brightness/color and depth information at one or more X, Y positions in a field of view in an output frame of reference. The output from the buffer memory 1024 may be routed back to the scheduler 1014 as “old work” for insertion into the rendering pipeline additional processing by the GPU core 1016, or for display in the corresponding pixels of the display system. Each fragment of color virtual content in the input memory 1010 is processed by the GPU core 1016 at least twice. The GPU cores 1016 first processes the vertices 1110, 1112, 1114 of the triangles 1100, then it processes the pixels 1116 inside of the triangles 1100. When all the fragments of color virtual content in the input memory 1010 have been warped and depth tested (if necessary), the buffer memory 1024 will include all of the brightness/color and depth information needed to display a field of view in an output frame of reference.
Color Virtual Content Warping Systems and Methods
In standard image processing without head pose changes, the results of the processing by the GPU 252 are color/brightness values and depth values at respective X, Y values (e.g., at each pixel). However with head pose changes, virtual content is warped to conform to the head pose changes. With color virtual content, each color sub-image is warped separately. In existing methods for warping color virtual content, color sub-images corresponding to a color image are warped using a single output frame of reference (e.g., corresponding to the green sub-image). As described above, this may result in color fringing and other visual artifacts such as CBU.
At step 1204, the warping system (e.g., the GPU core 1016 and/or the pose estimator 282 thereof) predicts poses/frames of reference corresponding to the projection times for the R, G, and B sub-images. This prediction uses various system input including current pose, system IMU velocity, and system IMU acceleration. In the example in
At step 1206, the warping system (e.g., the GPU core 1016, the ROP 1022, and/or the transformation unit 284 thereof) warps the R sub-image using the R pose/frame of reference predicted at step 1204. At step 1208, the warping system (e.g., the GPU core 1016, the ROP 1022, and/or the transformation unit 284 thereof) warps the G sub-image using the G pose/frame of reference predicted at step 1204. At step 1210, the warping system (e.g., the GPU core 1016, the ROP 1022, and/or the transformation unit 284 thereof) warps the B sub-image using the B pose/frame of reference predicted at step 1204. Warping the separate sub-images/fields using the respective poses/frames of reference distinguishes these embodiments from existing methods for warping color virtual content.
At step 1212, a projection system operatively coupled to the warping system projects the R, G, B sub-images at the projection times for the R, G, and B sub-images determined in step 1202.
As described above, the method 1000 depicted in
Warping color virtual content using predicted poses/frames of reference corresponding to each color sub-image/field reduces color fringe and other visual anomalies. Reducing these anomalies results in a more realistic and immersive mixed reality scenario.
System Architecture Overview
According to some embodiments, computer system 1300 performs specific operations by processor 1307 executing one or more sequences of one or more instructions contained in system memory 1308. Such instructions may be read into system memory 1308 from another computer readable/usable medium, such as static storage device 1309 or disk drive 1310. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions to implement the disclosure. Thus, embodiments are not limited to any specific combination of hardware circuitry and/or software. In one embodiment, the term “logic” shall mean any combination of software or hardware that is used to implement all or part of the disclosure.
The term “computer readable medium” or “computer usable medium” as used herein refers to any medium that participates in providing instructions to processor 1307 for execution. Such a medium may take many forms, including but not limited to, non-volatile media and volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as disk drive 1310. Volatile media includes dynamic memory, such as system memory 1308.
Common forms of computer readable media includes, for example, floppy disk, flexible disk, hard disk, magnetic tape, any other magnetic medium, CD-ROM, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, RAM, PROM, EPROM, FLASH-EPROM (e.g., NAND flash, NOR flash), any other memory chip or cartridge, or any other medium from which a computer can read.
In some embodiments, execution of the sequences of instructions to practice the disclosure is performed by a single computer system 1300. According to some embodiments, two or more computer systems 1300 coupled by communication link 1315 (e.g., LAN, PTSN, or wireless network) may perform the sequence of instructions required to practice the disclosure in coordination with one another.
Computer system 1300 may transmit and receive messages, data, and instructions, including program, i.e., application code, through communication link 1315 and communication interface 1314. Received program code may be executed by processor 1307 as it is received, and/or stored in disk drive 1310, or other non-volatile storage for later execution. Database 1332 in storage medium 1331 may be used to store data accessible by system 1300 via data interface 1333.
Alternative Warp/Render Pipeline
(1) Multiple-Stage/Decoupled Warping
The pipeline 1400 includes one or more warping stages. At 1412, an application CPU (“client”) generates virtual content, which is processed by an application GPU 252 to one or more (e.g., R, G, B) frames and poses 1414. At 1416, a warp/compositor CPU and its GPU 252 performs a first warp using a first estimated pose for each frame. Later in the pipeline 1400 (i.e., closer to illumination), a warp unit 1420 performs a second warp for each frame 1422R, 1422G, 1422B using a second estimated pose for each frame. The second estimated poses may be more accurate than the respective first estimated poses because the second estimated poses are determined closer to illumination. The twice warped frames 1422R, 1422G, 1422B are displayed at t0, t1, and t2.
The first warp may be a best guess that may be used to align the frames of virtual content for later warping. This may be a calculation intensive warp. The second warp may be a sequential corrective warp of respective once warped frames. The second warp may be a less calculation intensive warp to reduce the time between the second estimation of poses and display/illumination, thereby increasing accuracy.
(2) Cadence Variation
In some embodiments, cadences (i.e., frame rate) of the client or application and the display or illumination may not match. In some embodiments, an illumination frame rate may be twice an application frame rate. For instance, the illumination frame rate may be 60 Hz and the application frame rate may be 30 Hz.
In order to address warping issues with such a cadence mismatch, the pipeline 1400 generates two sets of twice warped frames 1422R, 1422G, 1422B (for projection at t0-t2) and 1424R, 1424G, 1424B (for projection at t3-t5) per frame 1414 from the application CPU 1412 and GPU 252. Using the same frame 1414 and first warped frame 1418, the warp unit 1420 sequentially generates first and second sets of twice warped frames 1422R, 1422G, 1422B and 1424R, 1424G, 1424B. This provides twice the number of warped frames 1422, 1424 per application frame 1414. The second warp may be a less calculation intensive warp to further reduce processor/power demand and heat generation.
While the pipeline 1400 depicts a 2:1 illumination/application ratio, that ratio may vary in other embodiments. For instance, the illumination/application ratio may be 3:1, 4:1, 2.5:1, and the like. In embodiments with fractional ratios, the most recently generated application frame 1414 may be used in the pipeline.
Alternative Color Break Up Minimizing Method
After increasing the color field rate at step 1518, the system re-analyzes the eye and/or head tracking information to predict a CBU artifact, at step 1520. At step 1522, if CBU is predicted, the method 1500 proceeds to step 1524 where the CPU decreases the bit depth (e.g., from 8 bit to 4 bit). After decreasing the bit depth, the image (e.g., split and warped field information) is displayed using the increased color field rate and the decreased bit depth (e.g., 360 Hz and 4 bits).
At step 1522, if CBU is not predicted, the method 1500 proceeds to step 1526, where the image (e.g., split and warped field information) is displayed using the increased color field rate and the system default bit depth (e.g., 180 Hz and 8 bits).
After the image (e.g., split and warped field information) is displayed using the adjusted or system default color field rate and bit depth, the CPU resets the color field rate and bit depth to the system default values at step 1528 before returning to step 1512 to repeat the method 1500.
By adjusting the color field rate and the bit depth in response to predicted CBU, the method 1500 depicted in
Color Virtual Content Warping using Intra-Field Sub Code Timing in Field Sequential Display Systems
Referring now to
In the red-green-blue (RGB) color system, various colors may be formed from the combination of the red, green and blue color fields. Each color may be represented using a code including an integer representing each one of red, green, and blue color fields. The red, green and blue colors may use 8 bits each, which have integer values from 0 to 255, corresponding to sub codes. For example, the red color may represented as (R=255, G=0, B=0), the green color may be represented as (0, 255, 0), and the blue color may be represented as (0, 0, 255). Various shades are formed by modifying the value of the integers representing the amount of the primary color fields (red, green, blue). This is discussed in greater detail below.
Given source input image 1610, as the user's head moves the color fields red, green, and blue should be displayed with appropriate warping corresponding to the given time that the respective field is located in the sequence. In some embodiments, for a given bit depth of a color field, timing is positioned at the centroid of that color field's display sequence allotted for that field. For example, the centroid of the red color field display sigmoid function 1620′ is aligned with the head pose position at a first time (t0), the centroid of the green color field display sigmoid function 1630′ is aligned with the head pose position at a second time (t1) later than the first time, and the centroid of the blue color field display sigmoid function 1640′ is aligned with the head pose position at a third time (t2) later than the first and second time.
It will be appreciated though, that colors are not simply created as a combination of equal constituent sub codes, and that various colors require different amounts of red, green and blue sub codes. For example, looking to the commission internationale de l'éclairage (CIE) 1931 color scheme, represented in gray scale by 1810 in
Specific colors may not share such uniform sub codes. For example, the color pink may have a combination of red 255, green 192, and blue 203 represented as (255, 192, 203); whereas the color orange may have a combination of red 255, green 165, and blue 0 represented as (255, 165, 0).
A constituent color's sub code will correspondingly have a varying sigmoid form. Using the color field red as an exemplary set, various sub codes of red color field are illustrated in
In conventional field sequential display systems, sub codes are initiated at common times, such that the centroids for the sub codes' sigmoids will offset from one another. As illustrated in
The different centroid times for sub codes within a single field (i.e., color) manifest as different positions when a user's head pose changes, which may result in intra-color separation despite any warping of that field that may otherwise occur as that warp will apply to an offset position for that sub code. In other words, a pixel that is intended to be pink may be geometrically offset from a pixel that is intended to be orange, because the timing of the head pose does not match the centroid pattern timing of the sub codes.
In some embodiments, this is corrected by having increasingly smaller head pose samples to permit any given color sub code having its sigmoid centroid timed for the given head pose. For example, a specific head pose for t0−n−m could be calculated and applied for the third sub code represented by the sigmoid function 1826, and a new specific head pose for t0−n could be calculated and applied for the second sub code represented by the sigmoid function 1824, and a specific head pose for t0 could be calculated and applied for the first sub code represented by the sigmoid function 1822. For believable augmented reality perception, projector frequency is ideally faster than 120 Hz. For a field sequential display having three fields, this permits only milliseconds for any single head pose calculation. Sampling additional head poses for each of the hundreds of sub codes within each field may be prohibitively costly for computing power and desired form factor.
According to some embodiments, the sigmoid function shape for a given sub code may be compounded. Various display systems and spatial light modulators employ mediums and components that do not instantly respond to inputs.
To alleviate these timing concerns without sacrificing excessive computing power, in some embodiments the centroid for each sigmoid representing a sub code is temporally modified to correspond at a common head pose time for all sub codes of a common field. As depicted in
In some embodiments, rather than creating a single sub code input (such as the second sub code represented by the single sigmoid function 1826 of
A second pulse 2304 (though occurring before than the central pulse 2302, this is referred to a second pulse as it is measured relative to the central pulse 2302, which may be referred to as the first pulse) is measured from the centroid of the center pulse 2302 at time t0, to temporally align an end of the decay phase of the second pulse 2304 with a beginning of the growth phase of the central pulse 2302 at time t0−p. A centroid of the second pulse 2304 is at time tc2, which occurs a predetermined amount of time (e.g., t0−tc2 in
A third pulse 2306 (occurring after the central pulse 2302) is measured from the centroid of the center pulse 2302 at time t0, to temporally align the beginning of the growth phase of the third pulse 2306 with an end of the decay phase of the central pulse 2302 at time t0+r. A centroid of the third pulse 2306 is at time tc3, which occurs a predetermined amount of time (e.g., tc3−t0 in
In some embodiments, the difference between time tc3 and time t0 may be equal to the difference between time t0 and time tc2. That is, the centroid of the second pulse 2304 occurs before a predetermined amount of time from the centroid of the central pulse 2302, and the centroid of the third pulse 2306 occurs after the same predetermined amount of time from the centroid of the central pulse 2302. Such symmetry of centroids creates selective bit depth throughout the field's sequence with more even distribution about the head pose sample. For example, a single pulse for sub code of desired bit depth requires precise timing for the specific bit depth about the head pose time; a bit depth that is spread out with lower pulses for a cumulative bit depth around the head pose timing is less susceptible to color separation by changes in direction or variable speeds of head pose changes as only one of the one or more pulses will be temporally aligned with the head pose sample (e.g., the central pulse 2302).
As depicted in
The pulses 2302, 2304, 2306 illustrated in
In some embodiments, the central pulse 2302 may include a series of short time slots (ts1-1, ts1-2, ts1-3, ts1-4, ts1-5, ts1-6), arranged from the center outward. That is, time slots ts1-1, ts1-2 are formed next to the centroid at time t0. Time slots ts1-3, ts1-4, ts1-5, ts1-6 are arranged with respect to the time slots ts1-1, ts1-2 to go outward from time t0. The pixel on the display device (e.g., LCoS pixel) may be activated or not activated during each time slot (ts1-1, ts1-2, ts1-3, ts1-4, ts1-5, ts1-6). That is, the pixels on the sequential display may be activated during a subset of the time slots of the central pulse 2302. The pixels on the sequential display may be activated depending on the sub code associated with the central pulse 2302. In some embodiments, only a subset of the time slots may be turned on. For example, for the lowest color codes, only the center time slots (e.g., ts1-1, ts1-2), may be turned on (i.e., only the center time slots may result in activated pixels on the display device). The higher the color code, the more time slots may be turned on from the center outward.
According to some embodiments, the second pulse 2304 and the third pulse 2306 may include larger time slots than the time slots (ts1-1, ts1-2, ts1-3, ts1-4, ts1-5, ts1-6) of the central pulse 2302. For example, the second pulse 2304 may include time slots (ts1-1, ts2-2, ts2-3, ts2-4) that are longer (i.e., greater) in duration than the time slots (ts1-1, ts1-2, ts1-3, ts1-4, ts1-5, ts1-6) of the central pulse 2302. The time slots (ts1-1, ts2-2, ts2-3, ts2-4) of the second pulse 2304 may be arranged from later to earlier. That is, the time slot ts2-1 occurs later in time with respect to time slots ts2-2, ts2-3, ts2-4 within the second pulse 2304. Similarly, the third pulse 2306 may include time slots (ts3-1, ts3-2, ts3-3, ts3-4) that are longer in duration than the time slots (ts1-1, ts1-2, ts1-3, ts1-4, ts1-5, ts1-6) of the central pulse 2302. The time slots (ts3-1, ts3-2, ts3-3, ts3-4) of the third pulse 2306 may be arranged from earlier to later. That is, the time slot ts3-1 occurs earlier in time with respect to time slots ts3-2, ts3-3, ts3-4 within the third pulse 2306. Accordingly, the pulses may be arranged to grow outward from the central pulse 2302.
In some embodiments, the pixels on the sequential display may be activated during a subset of the time slots of the second pulse 2304 and/or the third pulse 2306. As time slots are turned on in the second pulse 2304 and the third pulse 2306 to create higher color codes, care is taken to turn on a slot in the second pulse 2304 and a corresponding slot the third pulse 2306 together to maintain the overall centroid in the color code. If system constraints require, as they often do, to turn on a single slot in the second pulse 2304 or the third pulse 2306 for adjacent codes, care is taken to keep the additional slot short or use spatial/temporal dithering to prevent too big a shift in the light energy from the centroid. This also avoids additional contouring artifacts with head or eye motion.
The central pulse 2302 can be thought of as the least significant bits (LSBs) of a digital color code, while the second pulse 2304 and the third pulse 2306 are similar to the most significant bits (MSBs) of the digital color code. The combination of the central pulse 2302 with the second pulse 2304 and the third pulse 2306 yields many possible combinations that can be used for building the 256 modulation steps.
For maximum brightness, a single pulse may need to be created for the highest modulation step, merging the central pulse 2302, the second pulse 2304 and the third pulse 2306. In the transition from three pulses to one pulse, smaller time slots may be turned on to keep the step size small. In this case, smaller slots may be added at the beginning of the second pulse 2304, arranged later to earlier. For example, as illustrated in
As many light modulators (e.g., LCoS, lasers in scanned displays, digital light processing (DLP), liquid crystal display (LCD), and/or other display technologies) have asymmetric turn on and off times, the three pulse lengths and arrangement of the pulses, may need to be asymmetric in order to keep the centroid at a fixed point. If the turn on time is longer than the turn off time, for example, the centroid will be later in the field than the center time. According to various embodiments, each of the three pulses may be constructed in a similar fashion with asymmetrical slot lengths and arrangements.
The combination of the pulse lengths of the central pulse 2302 and the second and third pulses 2304, 2306 may produce more than 256 possible combinations. A subset of these combinations is used to create the 256 modulation steps. The combinations may be selected based on a number of factors including: closest match to desired brightness response curve (i.e., linear gamma, standard red green blue (sRGB) gamma), smallest variation in centroid across all color codes, smallest variation in centroid for adjacent color codes, and smaller brightness variation for that combination across temperature and process.
As the turn on and turn off times may vary with temperature, voltage, process, and other variables, a different set of 256 combinations may be chosen for different conditions. For example, a first set for cool temperatures may be chosen when the device is first turning on, and a different second set may be chosen for when the device has heated up and reached steady state temperature. Any number of sets may be used to limit contouring and maximize image quality across operating conditions.
In some embodiments, the symmetric nature of the bit depth timing in
Each color field (R, G, B) includes one or more colors each represented by a sub code. For each color (e.g., sub code) among the one or more colors of a selected color field, at step 2502, the pose estimator identifies an input (e.g., a sigmoid) representing a sub code for the color field. At step 2504, the pose estimator reconfigures the input as a series of pulses (e.g., three pulses), creating one or more per-field inputs. At step 2506, the transform unit warps each one of the series of pulses based on the first pose. At step 2508, the transform unit generates the warped first color field based on the warped series of pulses. At Step 2510, the transform unit activates pixels on the sequential display to display the warped first color field based on the warped series of pulses. The same steps 2502-2510 may be performed for all color fields (R, G, B).
The disclosure includes methods that may be performed using the subject devices. The methods may comprise the act of providing such a suitable device. Such provision may be performed by the user. In other words, the “providing” act merely requires the user obtain, access, approach, position, set-up, activate, power-up or otherwise act to provide the requisite device in the subject method. Methods recited herein may be carried out in any order of the recited events which is logically possible, as well as in the recited order of events.
Exemplary aspects of the disclosure, together with details regarding material selection and manufacture have been set forth above. As for other details of the present disclosure, these may be appreciated in connection with the above-referenced patents and publications as well as generally known or appreciated by those with skill in the art. The same may hold true with respect to method-based aspects of the disclosure in terms of additional acts as commonly or logically employed.
In addition, though the disclosure has been described in reference to several examples optionally incorporating various features, the disclosure is not to be limited to that which is described or indicated as contemplated with respect to each variation of the disclosure. Various changes may be made to the disclosure described and equivalents (whether recited herein or not included for the sake of some brevity) may be substituted without departing from the true spirit and scope of the disclosure. In addition, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure.
Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in claims associated hereto, the singular forms “a,” “an,” “said,” and “the” include plural referents unless the specifically stated otherwise. In other words, use of the articles allow for “at least one” of the subject item in the description above as well as claims associated with this disclosure. It is further noted that such claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
Without the use of such exclusive terminology, the term “comprising” in claims associated with this disclosure shall allow for the inclusion of any additional element—irrespective of whether a given number of elements are enumerated in such claims, or the addition of a feature could be regarded as transforming the nature of an element set forth in such claims. Except as specifically defined herein, all technical and scientific terms used herein are to be given as broad a commonly understood meaning as possible while maintaining claim validity.
The breadth of the present disclosure is not to be limited to the examples provided and/or the subject specification, but rather only by the scope of claim language associated with this disclosure.
In the foregoing specification, the disclosure has been described with reference to specific embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the disclosure. For example, the above-described process flows are described with reference to a particular ordering of process actions. However, the ordering of many of the described process actions may be changed without affecting the scope or operation of the disclosure. The specification and drawings are, accordingly, to be regarded in an illustrative rather than restrictive sense.
This application is a continuation of U.S. patent application Ser. No. 16/520,062, filed on Jul. 23, 2019, now U.S. Pat. No. 10,943,521, issued on Mar. 9, 2021, entitled “INTRA-FIELD SUB CODE TIMING IN FIELD SEQUENTIAL DISPLAYS,” which is a non-provisional of and claims the benefit of and priority to U.S. Provisional Patent Application No. 62/702,181, filed on Jul. 23, 2018, entitled “INTRA-FIELD SUB CODE TIMING IN FIELD SEQUENTIAL DISPLAYS,” which are hereby incorporated by reference in their entirety for all purposes. The present application is related to U.S. patent application Ser. No. 15/924,078, filed on Mar. 16, 2018, now U.S. Pat. No. 10,762,598, issued on Sep. 1, 2020, entitled “MIXED REALITY SYSTEM WITH COLOR VIRTUAL CONTENT WARPING AND METHOD OF GENERATING VIRTUAL CONTENT USING SAME,” the contents of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
4462165 | Lewis | Jul 1984 | A |
5583974 | Winner et al. | Dec 1996 | A |
5684498 | Welch et al. | Nov 1997 | A |
5784115 | Bozdagi | Jul 1998 | A |
6377401 | Bartlett | Apr 2002 | B1 |
6407736 | Regan | Jun 2002 | B1 |
7375529 | Dupuis et al. | May 2008 | B2 |
7443154 | Merewether et al. | Oct 2008 | B1 |
8165352 | Mohanty et al. | Apr 2012 | B1 |
8401308 | Nakamura et al. | Mar 2013 | B2 |
8950867 | Macnamara | Feb 2015 | B2 |
9013505 | Thornton | Apr 2015 | B1 |
9215293 | Miller | Dec 2015 | B2 |
9299168 | Ubillos et al. | Mar 2016 | B2 |
9299312 | Wyatt | Mar 2016 | B2 |
9417452 | Schowengerdt et al. | Aug 2016 | B2 |
9443355 | Chan et al. | Sep 2016 | B2 |
9671566 | Abovitz et al. | Jun 2017 | B2 |
9728148 | Miyata et al. | Aug 2017 | B2 |
9791700 | Schowengerdt | Oct 2017 | B2 |
9874749 | Bradski et al. | Jan 2018 | B2 |
10089790 | Lawson et al. | Oct 2018 | B2 |
10360832 | Ozguner et al. | Jul 2019 | B2 |
10657869 | Telfer et al. | May 2020 | B2 |
10762598 | Liebenow et al. | Sep 2020 | B2 |
10771772 | Ukai et al. | Sep 2020 | B2 |
10943521 | Capps | Mar 2021 | B2 |
20010043738 | Sawhney et al. | Nov 2001 | A1 |
20020180727 | Guckenberqer et al. | Dec 2002 | A1 |
20030092448 | Forstrom et al. | May 2003 | A1 |
20040140949 | Takagi | Jul 2004 | A1 |
20040201857 | Foxlin | Oct 2004 | A1 |
20050107870 | Wang et al. | May 2005 | A1 |
20070298883 | Feldman et al. | Dec 2007 | A1 |
20080024523 | Tomite et al. | Jan 2008 | A1 |
20080309884 | O'Dor et al. | Dec 2008 | A1 |
20090135129 | Roth | May 2009 | A1 |
20100085423 | Lange | Apr 2010 | A1 |
20100103205 | Iisaka et al. | Apr 2010 | A1 |
20100309292 | Ho et al. | Dec 2010 | A1 |
20110018874 | Hasselgren et al. | Jan 2011 | A1 |
20110184950 | Skaff et al. | Jul 2011 | A1 |
20110199088 | Bittar | Aug 2011 | A1 |
20110238399 | Ophir et al. | Sep 2011 | A1 |
20110248987 | Mitchell | Oct 2011 | A1 |
20120099800 | Llano et al. | Apr 2012 | A1 |
20120117076 | Austermann | May 2012 | A1 |
20120194516 | Newcombe et al. | Aug 2012 | A1 |
20120236030 | Border et al. | Sep 2012 | A1 |
20120287139 | Wyatt | Nov 2012 | A1 |
20120287166 | Wyatt | Nov 2012 | A1 |
20120327139 | Margulis | Dec 2012 | A1 |
20120328196 | Kasahara et al. | Dec 2012 | A1 |
20130057644 | Stefanoski et al. | Mar 2013 | A1 |
20130117377 | Miller | May 2013 | A1 |
20130169626 | Balan et al. | Jul 2013 | A1 |
20130230211 | Tanabiki et al. | Sep 2013 | A1 |
20130235069 | Ubillos et al. | Sep 2013 | A1 |
20130290222 | Gordo et al. | Oct 2013 | A1 |
20130321462 | Salter et al. | Dec 2013 | A1 |
20130346168 | Zhou et al. | Dec 2013 | A1 |
20140006026 | Lamb et al. | Jan 2014 | A1 |
20140037140 | Benhimane et al. | Feb 2014 | A1 |
20140075060 | Sharp et al. | Mar 2014 | A1 |
20140139226 | Jaaskelainen et al. | May 2014 | A1 |
20140176591 | Klein et al. | Jun 2014 | A1 |
20140181587 | Sridharan et al. | Jun 2014 | A1 |
20140212027 | Hallquist et al. | Jul 2014 | A1 |
20140222409 | Efrat et al. | Aug 2014 | A1 |
20140267420 | Schowengerdt et al. | Sep 2014 | A1 |
20140267646 | Na'Aman et al. | Sep 2014 | A1 |
20140306866 | Miller et al. | Oct 2014 | A1 |
20140321702 | Schmalstieg | Oct 2014 | A1 |
20140323148 | Schmalstieg et al. | Oct 2014 | A1 |
20150002542 | Chan et al. | Jan 2015 | A1 |
20150040074 | Hofmann et al. | Feb 2015 | A1 |
20150161476 | Kurz et al. | Jun 2015 | A1 |
20150163345 | Cornaby et al. | Jun 2015 | A1 |
20150172568 | Choe et al. | Jun 2015 | A1 |
20150177831 | Chan et al. | Jun 2015 | A1 |
20150178554 | Kanaujia et al. | Jun 2015 | A1 |
20150178939 | Bradski et al. | Jun 2015 | A1 |
20150205126 | Schowengerdt | Jul 2015 | A1 |
20150215611 | Wu et al. | Jul 2015 | A1 |
20150221133 | Groten et al. | Aug 2015 | A1 |
20150243080 | Steinbach et al. | Aug 2015 | A1 |
20150262372 | Cardoso et al. | Sep 2015 | A1 |
20150302652 | Miller et al. | Oct 2015 | A1 |
20150324198 | Alsup et al. | Nov 2015 | A1 |
20150339857 | O'Connor et al. | Nov 2015 | A1 |
20150346495 | Welch et al. | Dec 2015 | A1 |
20150358539 | Catt | Dec 2015 | A1 |
20150373369 | Jalali et al. | Dec 2015 | A1 |
20150379772 | Hoffman | Dec 2015 | A1 |
20160012643 | Kezele et al. | Jan 2016 | A1 |
20160026253 | Bradski et al. | Jan 2016 | A1 |
20160104444 | Miyata et al. | Apr 2016 | A1 |
20160147065 | Border et al. | May 2016 | A1 |
20160171644 | Gruber | Jun 2016 | A1 |
20160180151 | Philbin et al. | Jun 2016 | A1 |
20160189680 | Paquette | Jun 2016 | A1 |
20160210783 | Tomlin et al. | Jul 2016 | A1 |
20160259404 | Woods | Sep 2016 | A1 |
20160282619 | Oto et al. | Sep 2016 | A1 |
20160299567 | Crisler et al. | Oct 2016 | A1 |
20160378863 | Shlens et al. | Dec 2016 | A1 |
20160379092 | Kutliroff | Dec 2016 | A1 |
20170011555 | Li et al. | Jan 2017 | A1 |
20170018121 | Lawson et al. | Jan 2017 | A1 |
20170032220 | Medasani et al. | Feb 2017 | A1 |
20170098406 | Kobayashi | Apr 2017 | A1 |
20170161919 | Schroeder et al. | Jun 2017 | A1 |
20170205903 | Miller et al. | Jul 2017 | A1 |
20170243324 | Mierle et al. | Aug 2017 | A1 |
20170287377 | Telfer et al. | Oct 2017 | A1 |
20170345398 | Fuchs et al. | Nov 2017 | A1 |
20180039083 | Miller et al. | Feb 2018 | A1 |
20180047332 | Kuwahara et al. | Feb 2018 | A1 |
20180053284 | Rodriguez et al. | Feb 2018 | A1 |
20180213359 | Reinhardt et al. | Jul 2018 | A1 |
20180268518 | Nourai et al. | Sep 2018 | A1 |
20180268519 | Liebenow et al. | Sep 2018 | A1 |
20180268610 | Nourai et al. | Sep 2018 | A1 |
20190015167 | Draelos et al. | Jan 2019 | A1 |
20190051229 | Ozguner et al. | Feb 2019 | A1 |
20190068959 | Ukai et al. | Feb 2019 | A1 |
20190155374 | Miller et al. | May 2019 | A1 |
20200027385 | Capps | Jan 2020 | A1 |
20200050264 | Kruzel et al. | Feb 2020 | A1 |
20210358452 | Crounse | Nov 2021 | A1 |
Number | Date | Country |
---|---|---|
2358682 | Mar 1994 | CA |
101093586 | Dec 2007 | CN |
101530325 | Sep 2009 | CN |
103792661 | May 2014 | CN |
104011788 | Aug 2014 | CN |
0664917 | Aug 1995 | EP |
2887311 | Jun 2015 | EP |
9720244 | Jun 1997 | WO |
2014160342 | Oct 2014 | WO |
2015134958 | Sep 2015 | WO |
2016141373 | Sep 2016 | WO |
2017096396 | Jun 2017 | WO |
2017136833 | Aug 2017 | WO |
2018203324 | Nov 2018 | WO |
Entry |
---|
U.S. Appl. No. 16/520,062, “Non-Final Office Action”, dated Jul. 17, 2020, 15 pages. |
U.S. Appl. No. 16/520,062, “Notice of Allowance”, dated Nov. 3, 2020, 12 pages. |
Bay, et al., “SURF: Speeded Up Robust Features”, International Conference on Simulation, Modeling and Programming for Autonomous Robots, May 7, 2006, 14 pages. |
Coillot, et al., “New Ferromagnetic Core Shapes for Induction Sensors”, Journal of Sensors and Sensor System, vol. 3, 2014, pp. 1-8. |
Kendall, et al., “Pose Net: A Convolutional Metwork for Real-Time 6-DOF Camera Relocalization”, Available Online at: https://arxiv.org/pdf/1505.07427v3.pdf, Nov. 23, 2015, 9 pages. |
Nair, et al., “A Survey on Time-of-Flight Stereo Fusion”, Medical Image Computing and Computer Assisted Intervention, XP047148654, Sep. 11, 2013, 21 pages. |
Ng, et al., “Exploiting Local Features from Deep Networks for Image Retrieval”, IEEE Conference on Computer Vision and Pattern recognition workshops, (CVPRW), Jun. 7, 2015, 9 pages. |
PCT/US2019/043057, “International Search Report and Written Opinion”, dated Oct. 16, 2019, 9 pages. |
Song, et al., “Fast Estimation of Relative Poses for 6-DOF Image Localization”, IEEE International Conference on Multimedia Big Data, Apr. 20-22, 2015, 8 pages. |
Tian, et al., “View Synthesis Techniques for 3D Video”, Applications of Digital Image Processing XXXII; 74430T, Proc. SPIE, vol. 7443, Sep. 2, 2009, 12 pages. |
Zhu, et al., “Joint Depth and Alpha Matte Optimization via Fusion of Stereo and Time-of-flight Sensor”, Conference on Computer Vision and Pattern recognition (CVPR), IEEE, XP002700137, Jun. 20, 2009, pp. 453-460. |
Application No. EP19839969.3 , Extended European Search Report, dated Aug. 9, 2021, 11 pages. |
Application No. PCT/US2019/043057 , International Preliminary Report on Patentability, dated Feb. 4, 2021, 8 pages. |
AU2021290369, “First Examination Report”, dated Mar. 29, 2022, 3 pages. |
IN201947040457, “Examination Report”, dated Feb. 3, 2022, 8 pages. |
Application No. JP2022-002800, Office Action and English Translation, dated Feb. 8, 2022, 5 pages. |
Number | Date | Country | |
---|---|---|---|
20210233453 A1 | Jul 2021 | US |
Number | Date | Country | |
---|---|---|---|
62702181 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16520062 | Jul 2019 | US |
Child | 17165823 | US |