Intra-gastric fastening devices

Information

  • Patent Grant
  • 8062207
  • Patent Number
    8,062,207
  • Date Filed
    Friday, May 13, 2005
    19 years ago
  • Date Issued
    Tuesday, November 22, 2011
    13 years ago
Abstract
Intra-gastric fastening devices are disclosed herein. Expandable devices that are inserted into the stomach of the patient are maintained within by anchoring or otherwise fixing the expandable devices to the stomach walls. Such expandable devices, like inflatable balloons, have tethering regions for attachment to the one or more fasteners which can be configured to extend at least partially through one or several folds of the patient's stomach wall. The fasteners are thus affixed to the stomach walls by deploying the fasteners and manipulating the tissue walls entirely from the inside organ. Such fasteners can be formed in a variety of configurations, e.g., helical, elongate, ring, clamp, and they can be configured to be non-piercing. Alternatively, sutures can be used to wrap around or through a tissue fold for tethering the expandable devices. Non-piercing biased clamps can also be used to tether the device within the stomach.
Description
FIELD OF THE INVENTION

The present invention relates generally to medical apparatus and methods. More particularly, the present invention relates to devices and methods for the attachment of expandable devices and the like within a patient's body cavity, such as the stomach, intestine or gastrointestinal tract.


BACKGROUND OF THE INVENTION

In cases of severe obesity, patients may undergo several types of surgery either to tie off or staple portions of the large or small intestine or stomach, and/or to bypass portions of the same to reduce the amount of food desired by the patient, and the amount absorbed by the intestinal tract. Procedures such as laparoscopic banding, where a device is used to “tie off” or constrict a portion of the stomach, or the placement of intragastric balloons can also achieve these results.


Endoscopic procedures that have been used to assist weight loss have been primarily focused on the placement of a balloon or other space-occupying device in the patient's stomach to fill portions of the stomach to provide the patient with the feeling of fullness, thereby reducing food intake. To accomplish these procedures, an endoscope is utilized to guide the balloon through the patient's mouth and down the esophagus to the stomach. Usually these procedures have allowed placement of the device for 6-12 months, and are coupled with counseling and other types of psychological support.


Many of the conventional surgical interventions require the patient to submit to an intervention under general anesthesia, and can require large incisions and lengthy recovery time. The less invasive procedures, although clinically efficacious in many cases, suffer from complications ranging from deflation of the devices to insufficient anchoring of these devices resulting in unsustained weight loss, stomach erosion, bowel obstruction and even death.


Many of these devices are neither robust enough nor are they adequately secured within the stomach to sustain long term implantation. As a result, many implanted devices are implanted in such a manner as to remain unattached or free-floating within the stomach. Further, due to the caustic nature of stomach acids and other factors, many of the implants deflate and migrate into the intestine, causing bowel obstructions and in some cases death. Also, many devices are not well designed for removal, leading to additional technical difficulties for the clinician.


BRIEF SUMMARY OF THE INVENTION

The present invention provides for the improved methods and apparatus for implanting and anchoring space-occupying devices into the gastrointestinal system of a patient, e.g., the stomach of the patient, that can be deployed in a minimally invasive manner such as transesophageal endoscopy. The invention allows greater access to procedures and devices by patients who might not otherwise be treated surgically as “morbidly obese” (at or above a Body Mass Index (BMI) of 40 kg/m3), but who may just be moderately obese or overweight (BMI of between 25 to 40 kg/m3). In addition, patients who require more invasive surgery for an unrelated ailment, may need a minimally invasive way to lose the weight prior to their more invasive procedure, thereby reducing the risks associated with general anesthesia, or otherwise enabling the more invasive procedure.


Expandable devices that may be inserted into the stomach of a patient may be maintained within the stomach by anchoring or otherwise fixing the device to the stomach wall of the patient. Such expandable devices, e.g., an inflatable balloon, may comprise two portions, an inner portion and an outer portion, the inner portion being able to maintain its shape, regardless of the integrity of the outer portion. Other expandable balloon devices which may be used may maintain their expanded shape and desired volume, independent of any small leaks that may develop over time or they may be configured to maintain a volume of the space-occupying device which can be adjusted in-situ, to change the size of the device after implantation.


The space-occupying devices preferably have a tethering region for attachment to one or more fasteners. The fasteners are configured such that portions of the fasteners may extend at least partially through one or several folds of the patient's stomach wall, thereby maintaining the device within the patient's stomach, but do not extend external to the patient's body. The fasteners may thus be affixed to the stomach walls by deploying the fasteners and manipulating the tissue walls entirely from the inside of the organ.


Such fasteners may be formed in a variety of configurations, e.g., helical, elongate, ring, clamp, and they may optionally be configured to be non-piercing. For example, sutures may simply be used to wrap around or through a tissue fold for tethering the space-occupying devices. Alternatively, non-piercing biased clamps may also be used to tether the device within the stomach.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a schematic illustration of a delivery endoscope advanced to a region of interest within the stomach of a patient.



FIG. 2A shows a cross-sectional view of a stomach within which a tissue fold has been formed from the walls of the stomach.



FIG. 2B shows the stomach of FIG. 2A in which an inflatable or space-occupying member (in its deflated or unexpanded state) has been advanced for anchoring to the tissue fold.



FIG. 3 shows the stomach of FIGS. 2A and 2B in which the space-occupying member has been expanded for deployment.



FIG. 4A shows a variation of a helically-shaped fastener which has been positioned within the tissue fold for anchoring the space-occupying member.



FIGS. 4B and 4C show side and end views, respectively, of the fastener of FIG. 4A.



FIG. 5A shows another variation of an elongate fastener which has been positioned within multiple tissue folds.



FIG. 5B shows a side view of the fastener of FIG. 5A.



FIG. 6 shows another variation of a ring-shaped fastener which has been positioned within the tissue fold.



FIG. 7A shows an end view of another variation of a clamp fastener.



FIG. 7B shows a side view of the clamp fastener of FIG. 7A.



FIG. 8 shows another variation in which a piercing or non-piercing suture is used as a fastener for anchoring the space-occupying member to the tissue.



FIG. 9A shows yet another variation of a clamp fastener.



FIGS. 9B and 9C show cross-sectional side and end views, respectively, of the clamp fastener of FIG. 9A.





DETAILED DESCRIPTION OF THE INVENTION

Expandable devices that may be inserted into the stomach of a patient may be maintained within the stomach by anchoring the device to the walls of the stomach using intra-gastric fasteners. Although the fastening devices described herein describe anchoring within a stomach, this is merely illustrative and the fasteners may be utilized in any hollow body organ or interior body space for temporarily or permanently anchoring expandable devices to tissue. FIG. 1 illustrates a delivery endoscope 10 which may be used to deliver the expandable devices as well as the fastening devices into, e.g., stomach 18 of a patient. Endoscope 10 is shown as having been advanced through the mouth 12 and esophagus 14 of the patient to position the distal end of endoscope 10 within a region of interest 20 within stomach 16. As shown in FIGS. 1-3, the region of interest 20 can be remote from the junction between the stomach 16 and the esophagus 14.



FIG. 2A shows a cross-sectional view of stomach 16 within which endoscope 10 has been positioned adjacent to region of interest 20. At least one tissue fold 50 is formed from within the lumen of stomach 16 utilizing any number of conventional tools which may be passed through the working channel of endoscope 10, or any of the tissue acquisition devices as described in further detail in U.S. patent application Ser. No. 09/871,297 filed May 30, 2001 or U.S. patent application Ser. No. 10/188,547 filed Jul. 2, 2002, both of which are commonly owned and are incorporated herein by reference in their entirety.


The tissue layers of stomach 16 are comprised of the mucosal layer 32, the muscularis or fibrous muscular layer 34, and the serosal layer 36. In preferably forming tissue fold 50, at least two layers of stomach tissue are folded to contact itself such that a certain amount of fibrous tissue overlap occurs prior to fastening tissue fold 50 in a configuration akin to a lap joint. The amount of the overlap can vary and needs only to be sufficient enough to result in joining of the fastened sections, thereby creating a tissue bridge along the length of the fastened tissue. The tissue bridge may be formed of various layers of the stomach and may include scar tissue and other elements of effective wound healing. Once tissue fold 50 has been desirably configured, a fastener or anchor (as described in further detail below) may be used to maintain the tissue fold configuration for anchoring a space-occupying device thereto.


Once tissue fold 50 has been formed, the space occupying device, e.g., an expandable scaffold, an inflatable balloon, etc., may be advanced within stomach 16 towards the region of interest 20 for anchoring to tissue fold 50. As shown in FIG. 2B, space-occupying member 30 may be advanced using an elongate delivery member 21, e.g., endoscope 10 or any one of the delivery devices as shown and described in U.S. patent application Ser. No. 09/816,850 filed Mar. 23, 2001, which is commonly owned and is incorporated herein by reference in its entirety. The use of an inflatable balloon in these examples is intended to be illustrative and any number of space-occupying devices, such as an expandable scaffold, may be utilized as described in the incorporated application. Space-occupying member 30 may have a tethering region 22 integrated on its distal end in the shape of, e.g., a tethering ring or clasp, for attachment to the fastener or anchor which maintains tissue fold 50. During delivery, space-occupying member 30 may be advanced transorally in its deflated state using delivery member 21. Delivery member 21 may also be used to deliver an inert inflation fluid, e.g., water, saline, etc., or an inert gas, e.g., nitrogen, air, etc., through a lumen defined within member 21 for expanding space-occupying member 30 during deployment.


As seen in FIG. 3, delivery member 21 may be used to inflate space-occupying member 30 into its expanded shape 30′. The surface of space-occupying member 30′ may have one or several tabs 40 extending from or defined along its outer surface to allow a grasping tool to manipulate or remove space-occupying member 30′ during the procedure or post-procedurally. Space-occupying member 30 may be affixed to tissue fold 50 by attaching tethering region 22 to the fastener or anchor which maintains tissue fold 50. The attachment may be accomplished prior to, during, or even after inflation or expansion of member 30 and may be done by any number of manipulation tools endoscopically or laparoscopically delivered and positioned, as appreciated by one skilled in the art.


Space-occupying member 30 may be formed of a urethane interior and a silicone exterior. The urethane provides a durability to the balloon for resisting undesirable rupture or leakage and the silicone exterior provides for a smoothness, and conformability to avoid unnecessary trauma or irritation to the stomach lining. In another variation, the member 30 is formed of a composite of silicone, aluminized polyester film, and polyethylene. In this variation, the space occupying device is formed by heat-sealing sheets of mylar/polyethylene composite. The seam is then trimmed to a minimum size and a valve attached. The assembly is then dipped in room temperature vulcanizing (RTV) liquid silicone which, once cured, will leave a smooth surface, which may or may not have a palpable seam. Alternatively, the space occupying device can be rotated as the silicone cures, to allow for a more consistent coating to form.


A variety of sizes and shapes of space-occupying member 30 are contemplated, and it is to be appreciated that one skilled in the art would be competent to choose a particular shape and size according to the particular application. The space-occupying member 30 can be, for example, a spherical or ellipsoidal balloon or another suitable shape. In the case of an ellipsoidal balloon, one method of anchoring such a balloon is along the longer axis of the balloon; however, anchoring may also be achieved by anchoring along the shorter axis of the balloon. Balloon volumes can vary, but a typical volume is approximately 500 cubic centimeters (cc).



FIGS. 4A to 4C show various views of one variation of an anchoring device which may be utilized to maintain the configuration of tissue fold 50 as well as to affix space-occupying member 30 to tissue fold 50. FIG. 4A shows a side view of a helically-shaped fastener 52 pierced through tissue fold 50. Variation 52 is a fastener having a plurality, i.e., more than one, of helical coils 56, as shown in the side view of fastener 52 in FIG. 4B. Fastener 52 preferably has a distal tip 54 which is sharpened to facilitate piercing into and advancement through tissue fold 50 while being rotatingly advanced. FIG. 4C shows an end view in which fastener 52 is preferably formed into a circular configuration to provide for smooth advancement and rotation into the tissue, although other shapes such as elliptical are contemplated. It is to fastener 52 that tethering region 22 may be affixed directly or by using a biocompatible connecting member, e.g., a suture.


Fastener 52 is shown as having helical coils 56 at a uniform pitch. However, fastener 52 may be modified such that the pitch of helical coils 56 is non-uniform. In such a variation, the location along coils 56 where the tissue is ultimately compressed may have a pitch which is tighter or higher than the rest of fastener 52. The tighter pitch allows for increased tissue compression along that portion of fastener 52. The remaining helical coils 56 may have a lower or looser pitch to facilitate insertion into the tissue.


Fastener variation 52, as well as other fastening devices described herein, are preferably made of metallic or non-metallic biocompatible materials. Such materials may include stainless steels, nickel alloys, and titanium alloys, as well biocompatible plastics. Moreover, any of the fasteners may additionally be coated with a healing agent or anti-bacterial agent to facilitate tissue growth and healing.


Additionally, the fasteners may have a cutting, abrading, scoring, heating, freezing, chemically damaging, or some other damaging surface where it contacts the tissue. This scoring or roughening may damage the interior lining of the tissue contacting each other. This damage may encourage a more vigorous healing response and a more permanent fixation between the damaged tissue once stapled or affixed together. Detailed examples may be found in U.S. patent application Ser. No. 09/871,297 filed May 30, 2001, which is commonly owned and is incorporated herein by reference in its entirety.



FIGS. 5A and 5B show another variation of an anchoring device. In this variation, another tissue fold 50′ in addition and adjacent to tissue fold 50 may be utilized. Although two tissue folds are shown, any number of folds may be used as practicable depending upon the desired results and anchoring configuration. Fastener variation 60 may include a straight member having rounded ends 62 to facilitate the anchoring placement and positioning within tissue folds 50, 50′. As shown in FIG. 5B, the length of fastener 60 may be textured 64 to improve tissue healing as well as to prevent excessive fastener movement once positioned within the tissue. Space-occupying member 30 may be attached to fastener 60 using tether or connecting member 66, which may be a suture or a rigid connecting pin.


Another tissue-piercing fastener variation is shown in FIG. 6, which shows a ring-shaped fastener 70 which may pierce tissue fold 50 and connect to tethering region 22 of space-occupying member 30. Ring 70 may be formed as a C-clip type fastener which is biased to remain a closed loop but which may be urged open during deployment. A partial length or the full length of ring 70 surface may be textured, as described above. Moreover, a single ring 70 or several rings may be deployed within the tissue to anchor to the same space-occupying member 30 or to multiple members 30, depending upon the desired results and configuration.


Yet another variation of the fastener is shown in FIGS. 7A and 7B. FIG. 7A shows an end view of clamp fastener 80 which is comprised of two opposed clamp members which are preferably biased towards one another about a hinge portion 82. Fastener 80 may be made of a spring stainless steel or a shape memory alloy, e.g., nickel-titanium alloy, and may be pre-configured into its clamp configuration. As shown in FIGS. 7A and 7B, edges 84 may have beads attached around the entire periphery of the clamp or partially thereon either by an adhesive or by forming the beads integrally with the clamp 80. Alternatively, edges 84 may be blunted during manufacturing to provide atraumatic edges for presentation to the tissue surface.


Clamp 80 may be formed in a variety of shapes, e.g., in a binder clip configuration, a “taco” shell configuration, etc., or any other shape which provides contact surfaces 86 having a contact area sufficient to enable secure anchoring to the tissue. Contact surfaces 86 may be formed with additional anchoring devices such as barbs 88, surface texturing, and/or felt or another tissue in-growth-promoting material. If barbs 88 are used, any number may be used in a variety of barb configurations, e.g., angled barbs, etc.


To affix space-occupying member 30 to fastener 80, a rotating joint 90 may be used. In this variation, clamp 80 may have attached connector 96 having a balled pivot 94 at a distal end. Tethering region 22 of space-occupying member 30 may have a receiving ring for rotatingly receiving pivot 94. Joint 90 may be utilized on any of the fasteners described herein and allows space-occupying member 30 to rotate freely about the joint without regards to the orientation of clamp 80. This may aid in minimizing tissue tears and excess stress applied to tissue fold 50 as space-occupying member 30 is moved about. To deploy clamp 80, it may be urged into an “open” configuration as it is advanced over tissue fold 50 by the delivery device. Once in position over the tissue, clamp 80 may then be released allowing it to compress upon the tissue to become affixed to tissue fold 50.


Another fastener variation 100 is shown in FIG. 8. Suture 100 may simply be used to wrap around tissue fold 50. In this variation, suture 100 may be optionally pierced through the tissue or it may simply be wrapped a number of times around tissue fold 50 to affix space-occupying member 30. Suture 100 may be made of any suitable material, e.g., stainless steel, nylon, polypropylene, or any other conventional suturing material.


Yet another variation is shown in FIGS. 9A to 9C of a non-piercing clamp fastener 110. Fastener 110 in this variation is comprised of at least two opposed collar portions 112 which are connected by a biasing connecting member 114. Member 114 is preferably configured to provide a biasing force such that portions 112 are urged towards one another. Collar portions 112 collectively define a receiving channel 116 through which tissue fold 50 may be positioned and held. Contact walls 118 of receiving channel 116 may be smooth and non-piercing, but they may optionally have a number of teeth or barbs which project into channel 116 for completely or partially penetrating the tissue held therewithin. Moreover, contact walls 118 may have its area varied depending upon the shape and area of the tissue surface presented. For instance, if the tissue area for attachment is formed in the shape of a uvula, then the area of contact walls 118 may be minimized and optionally tapered to receive the bulging contact tissue. If the tissue area is formed more as a fold of tissue, the area of contact walls 118 may be enlarged to present a larger contact region to the tissue, as in the variation of FIGS. 7A and 7B.


With the collar portions 112 clamping onto tissue fold 50, suitable grasping or holding pressure is applied by the fasteners to maintain attachment to tissue fold 50. If too much pressure is applied, the tissue 50 being compressed may necrose, but if too little pressure is applied, slippage of fastener 110 may occur. Accordingly, the suitable amount of pressure may be determined by one of skill in the art depending upon factors such as the size of tissue fold 50 and the size of fastener 110, among other factors.


Although preferred illustrative variations of the present invention are described above, it will be evident to one skilled in the art that various changes and modifications may be made without departing from the invention. For instance, variations of the present invention may be used as permanent or temporary anchoring devices. Moreover, modified variations may also be used in other regions of the body, e.g., for use in the intestinal tract, etc. It is intended in the following claims to cover all such changes and modifications that fall within the true spirit and scope of the invention.

Claims
  • 1. A method of placing an anchor to a region of tissue within a hollow body organ, comprising: grasping the region of tissue from an interior surface of the hollow body organ;configuring the region of tissue to create at least two folds of tissue;securing an anchor to the folds of tissue such that the folds of tissue contain a certain amount of fibrous tissue thereby creating a tissue bridge to maintain the tissue fold configuration; andattaching an expandable, inflatable device to the anchor;wherein the region of tissue is remote from a junction between the hollow body organ and an esophagus.
  • 2. The method of claim 1, further comprising advancing an endoscope transorally to the region of tissue.
  • 3. The method of claim 1, wherein the hollow body organ comprises a stomach.
  • 4. The method of claim 1, wherein grasping the region of tissue comprises holding the tissue with a vacuum force.
  • 5. The method of claim 1, wherein grasping the region of tissue comprises holding the tissue mechanically.
  • 6. The method of claim 1, wherein the anchor is a suture.
  • 7. The method of claim 1, wherein the anchor comprises at least one protrusion adapted to extend within the tissue.
  • 8. The method of claim 1, wherein the anchor is a staple.
  • 9. A method of placing an anchor to a region of tissue within a hollow body organ, comprising: grasping the region of tissue from an interior surface of the hollow body organ;configuring the region of tissue to create at least two folds of tissue;securing an anchor to the folds of tissue thereby creating a tissue bridge to maintain the tissue fold configuration; andattaching a balloon to the anchor;wherein the region of tissue is remote from a junction between the hollow body organ and an esophagus.
  • 10. A method of placing an anchor to a region of tissue within a hollow body organ, comprising: grasping the region of tissue from an interior surface of the hollow body organ;configuring the region of tissue to create at least two folds of tissue;securing an anchor to the folds of tissue thereby creating a tissue bridge to maintain the tissue fold configuration;attaching a tether to the anchor; andattaching a balloon to the tether so that the balloon can float freely in the hollow body organ;wherein the region of tissue is remote from a junction between the hollow body organ and an esophagus.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 10/394,832 filed Mar. 21, 2003, now U.S. Pat. No. 6,994,715, which is a continuation of U.S. Ser. No. 10/215,070 filed Aug. 7, 2002 now U.S. Pat. No. 6,746,460 which issued Jun. 8, 2004.

US Referenced Citations (403)
Number Name Date Kind
2108206 Meeker Feb 1938 A
2508690 Schmerl Jul 1948 A
3372443 Daddona, Jr. Mar 1968 A
3395710 Stratton et al. Aug 1968 A
3986493 Hendren, III Oct 1976 A
4057065 Thow Nov 1977 A
4063561 McKenna Dec 1977 A
4133315 Berman et al. Jan 1979 A
4134405 Smit Jan 1979 A
4198982 Fortner et al. Apr 1980 A
4246893 Berson Jan 1981 A
4258705 Sorensen et al. Mar 1981 A
4311146 Wonder Jan 1982 A
4315509 Smit Feb 1982 A
4343066 Lance Aug 1982 A
4402445 Green Sep 1983 A
4416267 Garren et al. Nov 1983 A
4458681 Hopkins Jul 1984 A
4485805 Foster, Jr. Dec 1984 A
4501264 Rockey Feb 1985 A
4547192 Brodsky et al. Oct 1985 A
4558699 Bashour Dec 1985 A
4592339 Kuzmak et al. Jun 1986 A
4598699 Garren et al. Jul 1986 A
4607618 Angelchik Aug 1986 A
4610383 Rothfuss et al. Sep 1986 A
4636205 Steer Jan 1987 A
4641653 Rockey Feb 1987 A
4643169 Koss et al. Feb 1987 A
4646722 Silverstein et al. Mar 1987 A
4648383 Angelchik Mar 1987 A
4671287 Fiddian-Green Jun 1987 A
4694827 Weiner et al. Sep 1987 A
4716900 Ravo et al. Jan 1988 A
4723547 Kullas et al. Feb 1988 A
4739758 Lai et al. Apr 1988 A
4744363 Hasson May 1988 A
4773393 Haber et al. Sep 1988 A
4790294 Allred, III et al. Dec 1988 A
4795430 Quinn et al. Jan 1989 A
4803985 Hill Feb 1989 A
4841888 Mills et al. Jun 1989 A
4899747 Garren et al. Feb 1990 A
4905693 Ravo Mar 1990 A
4925446 Garay et al. May 1990 A
4927428 Richards May 1990 A
4969474 Schwarz Nov 1990 A
5037021 Mills et al. Aug 1991 A
5059193 Kuslich Oct 1991 A
5080663 Mills et al. Jan 1992 A
5084061 Gau et al. Jan 1992 A
5112310 Grobe May 1992 A
5129915 Cantenys Jul 1992 A
5156609 Nakao et al. Oct 1992 A
5171233 Amplatz et al. Dec 1992 A
5197649 Bessler et al. Mar 1993 A
5220928 Oddsen et al. Jun 1993 A
5222961 Nakao et al. Jun 1993 A
5226429 Kuzmak Jul 1993 A
5234454 Bangs Aug 1993 A
5246456 Wilkinson Sep 1993 A
5248302 Patrick et al. Sep 1993 A
5250058 Miller et al. Oct 1993 A
5254126 Filipi et al. Oct 1993 A
5259366 Reydel et al. Nov 1993 A
5259399 Brown Nov 1993 A
5261920 Main et al. Nov 1993 A
5263629 Trumbull et al. Nov 1993 A
5297536 Wilk Mar 1994 A
5301658 Zhu et al. Apr 1994 A
5306300 Berry Apr 1994 A
5309896 Moll et al. May 1994 A
5309927 Welch May 1994 A
5327914 Shlain Jul 1994 A
5330486 Wilk Jul 1994 A
5330503 Yoon Jul 1994 A
5331975 Bonutti Jul 1994 A
5334209 Yoon Aug 1994 A
5334210 Gianturco Aug 1994 A
5345949 Shlain Sep 1994 A
5346501 Regula et al. Sep 1994 A
5355897 Pietrafitta et al. Oct 1994 A
5376095 Ortiz Dec 1994 A
5382231 Shlain Jan 1995 A
5403312 Yates et al. Apr 1995 A
5403326 Harrison et al. Apr 1995 A
5411508 Bessler et al. May 1995 A
5433721 Hooven et al. Jul 1995 A
5437291 Pasricha et al. Aug 1995 A
5449368 Kuzmak Sep 1995 A
5452837 Williamson, IV et al. Sep 1995 A
5458131 Wilk Oct 1995 A
5465894 Clark et al. Nov 1995 A
5467911 Tsuruta et al. Nov 1995 A
5486183 Middleman et al. Jan 1996 A
5489058 Plyley et al. Feb 1996 A
5503635 Sauer et al. Apr 1996 A
5527319 Green et al. Jun 1996 A
5535935 Vidal et al. Jul 1996 A
5542949 Yoon Aug 1996 A
5549621 Bessler et al. Aug 1996 A
5551622 Yoon Sep 1996 A
5555898 Suzuki et al. Sep 1996 A
5558665 Kieturakis Sep 1996 A
5571116 Bolanos et al. Nov 1996 A
5577654 Bishop Nov 1996 A
5578044 Gordon et al. Nov 1996 A
5582616 Bolduc et al. Dec 1996 A
5584861 Swain et al. Dec 1996 A
5588579 Schnut et al. Dec 1996 A
5601604 Vincent Feb 1997 A
5603443 Clark et al. Feb 1997 A
5607094 Clark et al. Mar 1997 A
5624381 Kieturakis Apr 1997 A
5626588 Sauer et al. May 1997 A
5639008 Gallagher et al. Jun 1997 A
5649937 Bito et al. Jul 1997 A
5651769 Waxman et al. Jul 1997 A
5655698 Yoon Aug 1997 A
5662664 Gordon et al. Sep 1997 A
5662667 Knodel Sep 1997 A
5667520 Bonutti Sep 1997 A
5676659 McGurk Oct 1997 A
5676674 Bolanos et al. Oct 1997 A
5685868 Lundquist Nov 1997 A
5690656 Cope et al. Nov 1997 A
5697943 Sauer et al. Dec 1997 A
5707382 Sierocuk et al. Jan 1998 A
5722990 Sugarbaker et al. Mar 1998 A
5728178 Buffington et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5749893 Vidal et al. May 1998 A
5755730 Swain et al. May 1998 A
5766216 Gangal et al. Jun 1998 A
5776054 Bobra Jul 1998 A
5782844 Yoon et al. Jul 1998 A
5788715 Watson, Jr. et al. Aug 1998 A
5792153 Swain et al. Aug 1998 A
5810851 Yoon Sep 1998 A
5810855 Rayburn et al. Sep 1998 A
5810882 Bolduc et al. Sep 1998 A
5816471 Plyley et al. Oct 1998 A
5820584 Crabb Oct 1998 A
5824008 Bolduc et al. Oct 1998 A
5827298 Hart et al. Oct 1998 A
5833690 Yates et al. Nov 1998 A
5836311 Borst et al. Nov 1998 A
5839639 Sauer et al. Nov 1998 A
5860581 Robertson et al. Jan 1999 A
5861036 Godin Jan 1999 A
5868141 Ellias Feb 1999 A
5868760 McGuckin, Jr. Feb 1999 A
5876448 Thompson et al. Mar 1999 A
5879371 Gardiner et al. Mar 1999 A
5887594 LoCicero, III Mar 1999 A
5888196 Bonutti Mar 1999 A
5897534 Heim et al. Apr 1999 A
5897562 Bolanos et al. Apr 1999 A
5904147 Conlan et al. May 1999 A
5906625 Bito et al. May 1999 A
5910105 Swain et al. Jun 1999 A
5910149 Kuzmak Jun 1999 A
5921993 Yoon Jul 1999 A
5927284 Borst et al. Jul 1999 A
5928264 Sugarbaker et al. Jul 1999 A
5935107 Taylor et al. Aug 1999 A
5938669 Klaiber et al. Aug 1999 A
5947983 Solar et al. Sep 1999 A
5964772 Bolduc et al. Oct 1999 A
5964782 Lafontaine et al. Oct 1999 A
5972001 Yoon Oct 1999 A
5972002 Bark et al. Oct 1999 A
5976161 Kirsch et al. Nov 1999 A
5980537 Ouchi Nov 1999 A
5993464 Knodel Nov 1999 A
5993473 Chan et al. Nov 1999 A
6015378 Borst et al. Jan 2000 A
6030364 Durgin et al. Feb 2000 A
6030392 Dakov Feb 2000 A
6042538 Puskas Mar 2000 A
6044847 Carter et al. Apr 2000 A
6067991 Forsell May 2000 A
6074343 Nathanson et al. Jun 2000 A
6083241 Longo et al. Jul 2000 A
6086600 Kortenbach Jul 2000 A
6113609 Adams Sep 2000 A
6119913 Adams et al. Sep 2000 A
6120513 Bailey et al. Sep 2000 A
6136006 Johnson et al. Oct 2000 A
6159146 El Gazayerli Dec 2000 A
6159195 Ha et al. Dec 2000 A
6165183 Kuehn et al. Dec 2000 A
6179195 Adams et al. Jan 2001 B1
6186942 Sullivan et al. Feb 2001 B1
6186985 Snow Feb 2001 B1
6197022 Baker Mar 2001 B1
6200318 Har-Shai et al. Mar 2001 B1
6206822 Foley et al. Mar 2001 B1
6206893 Klein et al. Mar 2001 B1
6224614 Yoon May 2001 B1
6231561 Frazier et al. May 2001 B1
6248058 Silverman et al. Jun 2001 B1
6254642 Taylor Jul 2001 B1
6273897 Dalessandro et al. Aug 2001 B1
6279809 Nicolo Aug 2001 B1
6290674 Roue et al. Sep 2001 B1
6293923 Yachia et al. Sep 2001 B1
6302917 Dua et al. Oct 2001 B1
6312437 Kortenbach Nov 2001 B1
6328689 Gonzalez et al. Dec 2001 B1
6338345 Johnson et al. Jan 2002 B1
6352543 Cole Mar 2002 B1
6358197 Silverman et al. Mar 2002 B1
6379366 Fleischmann et al. Apr 2002 B1
6387104 Pugsley, Jr. et al. May 2002 B1
6398795 McAlister et al. Jun 2002 B1
6416535 Lazarus Jul 2002 B1
6423087 Sawada Jul 2002 B1
6432040 Meah Aug 2002 B1
6447533 Adams Sep 2002 B1
6460543 Forsell Oct 2002 B1
6475136 Forsell Nov 2002 B1
6478791 Carter et al. Nov 2002 B1
6491707 Makower et al. Dec 2002 B2
6494888 Laufer et al. Dec 2002 B1
6506196 Laufer Jan 2003 B1
6535764 Imran et al. Mar 2003 B2
6540789 Silverman et al. Apr 2003 B1
6551310 Ganz et al. Apr 2003 B1
6554844 Lee et al. Apr 2003 B2
6558400 Deem et al. May 2003 B2
6561969 Frazier et al. May 2003 B2
6572629 Kalloo et al. Jun 2003 B2
6579301 Bales et al. Jun 2003 B1
6592596 Geitz Jul 2003 B1
6605037 Moll et al. Aug 2003 B1
6626899 Houser et al. Sep 2003 B2
6626916 Yeung et al. Sep 2003 B1
6632227 Adams Oct 2003 B2
6663598 Carrillo, Jr. et al. Dec 2003 B1
6663639 Laufer et al. Dec 2003 B1
6663640 Kortenbach Dec 2003 B2
6675809 Stack et al. Jan 2004 B2
6682520 Ingenito Jan 2004 B2
6689062 Mesallum Feb 2004 B1
6692485 Brock et al. Feb 2004 B1
6716222 McAlister et al. Apr 2004 B2
6719764 Gellman et al. Apr 2004 B1
6733512 McGhan May 2004 B2
6736822 McClellan et al. May 2004 B2
6740098 Abrams et al. May 2004 B2
6740121 Geitz May 2004 B2
6746460 Gannoe et al. Jun 2004 B2
6746489 Dua et al. Jun 2004 B2
6754536 Swoyer et al. Jun 2004 B2
6755849 Gowda et al. Jun 2004 B1
6755869 Geitz Jun 2004 B2
6756364 Barbier et al. Jun 2004 B2
6764518 Godin Jul 2004 B2
6773440 Gannoe et al. Aug 2004 B2
6773441 Laufer et al. Aug 2004 B1
6786898 Guenst Sep 2004 B2
6790214 Kraemer et al. Sep 2004 B2
6802868 Silverman et al. Oct 2004 B2
6821285 Laufer et al. Nov 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6835200 Laufer et al. Dec 2004 B2
6837848 Bonner et al. Jan 2005 B2
6838114 Carpenter et al. Jan 2005 B2
6840423 Adams et al. Jan 2005 B2
6845776 Stack et al. Jan 2005 B2
6896682 McClellan et al. May 2005 B1
6926722 Geitz Aug 2005 B2
6966919 Sixto, Jr. et al. Nov 2005 B2
6981978 Gannoe Jan 2006 B2
6991643 Saadat Jan 2006 B2
6994715 Gannoe et al. Feb 2006 B2
7020531 Colliou et al. Mar 2006 B1
7025791 Levine et al. Apr 2006 B2
7033378 Smith et al. Apr 2006 B2
7037343 Imran May 2006 B2
7037344 Kagan et al. May 2006 B2
7063715 Onuki et al. Jun 2006 B2
7083630 DeVries et al. Aug 2006 B2
7087011 Cabiri et al. Aug 2006 B2
7097650 Weller et al. Aug 2006 B2
20010014800 Frazier et al. Aug 2001 A1
20010020190 Taylor Sep 2001 A1
20010037127 De Hoyos Garza Nov 2001 A1
20020022851 Kalloo et al. Feb 2002 A1
20020035361 Houser et al. Mar 2002 A1
20020040226 Laufer et al. Apr 2002 A1
20020047036 Sullivan et al. Apr 2002 A1
20020055757 Torre et al. May 2002 A1
20020058967 Jervis May 2002 A1
20020072761 Abrams et al. Jun 2002 A1
20020077661 Saadat Jun 2002 A1
20020078967 Sixto, Jr. et al. Jun 2002 A1
20020082621 Schurr et al. Jun 2002 A1
20020143346 McGuckin, Jr. et al. Oct 2002 A1
20020165589 Imran et al. Nov 2002 A1
20020183768 Deem et al. Dec 2002 A1
20020193816 Laufer et al. Dec 2002 A1
20030040804 Stack et al. Feb 2003 A1
20030040808 Stack et al. Feb 2003 A1
20030065340 Geitz Apr 2003 A1
20030065359 Weller et al. Apr 2003 A1
20030093117 Saadat May 2003 A1
20030109892 Deem et al. Jun 2003 A1
20030109931 Geitz Jun 2003 A1
20030109935 Geitz Jun 2003 A1
20030120265 Deem et al. Jun 2003 A1
20030120285 Kortenbach Jun 2003 A1
20030120289 McGuckin, Jr. et al. Jun 2003 A1
20030132267 Adams et al. Jul 2003 A1
20030158563 McClellan et al. Aug 2003 A1
20030158601 Silverman et al. Aug 2003 A1
20030171760 Gambale Sep 2003 A1
20030208209 Gambale et al. Nov 2003 A1
20030225312 Suzuki et al. Dec 2003 A1
20040006351 Gannoe et al. Jan 2004 A1
20040009224 Miller Jan 2004 A1
20040010271 Kortenbach Jan 2004 A1
20040024386 Deem et al. Feb 2004 A1
20040034371 Lehman et al. Feb 2004 A1
20040037865 Miller Feb 2004 A1
20040039452 Bessler Feb 2004 A1
20040049209 Benchetrit Mar 2004 A1
20040059349 Sixto, Jr. et al. Mar 2004 A1
20040059354 Smith et al. Mar 2004 A1
20040059358 Kortenbach et al. Mar 2004 A1
20040082963 Gannoe et al. Apr 2004 A1
20040087977 Nolan et al. May 2004 A1
20040089313 Utley et al. May 2004 A1
20040092892 Kagan et al. May 2004 A1
20040097989 Molina Trigueros May 2004 A1
20040107004 Levine et al. Jun 2004 A1
20040116949 Ewers et al. Jun 2004 A1
20040122456 Saadat et al. Jun 2004 A1
20040122473 Ewers et al. Jun 2004 A1
20040122526 Imran Jun 2004 A1
20040133147 Woo Jul 2004 A1
20040133238 Cerier Jul 2004 A1
20040138525 Saadat Jul 2004 A1
20040138526 Guenst Jul 2004 A1
20040138529 Wiltshire et al. Jul 2004 A1
20040138531 Bonner et al. Jul 2004 A1
20040138682 Onuki et al. Jul 2004 A1
20040147958 Lam et al. Jul 2004 A1
20040148021 Cartledge et al. Jul 2004 A1
20040148034 Kagan et al. Jul 2004 A1
20040158331 Stack et al. Aug 2004 A1
20040162568 Saadat Aug 2004 A1
20040167546 Saadat et al. Aug 2004 A1
20040172047 Gellman et al. Sep 2004 A1
20040172141 Stack et al. Sep 2004 A1
20040181242 Stack et al. Sep 2004 A1
20040193190 Liddicoat et al. Sep 2004 A1
20040194157 Meguid Sep 2004 A1
20040194790 Laufer et al. Oct 2004 A1
20040210243 Gannoe et al. Oct 2004 A1
20040215180 Starkebaum et al. Oct 2004 A1
20040220682 Levine et al. Nov 2004 A1
20040225183 Michlitsch et al. Nov 2004 A1
20040225194 Smith et al. Nov 2004 A1
20040225305 Ewers et al. Nov 2004 A1
20040236357 Kraemer et al. Nov 2004 A1
20040249362 Levine et al. Dec 2004 A1
20050010162 Utley et al. Jan 2005 A1
20050021681 Oommen Jan 2005 A1
20050033328 Laufer et al. Feb 2005 A1
20050038415 Rohr et al. Feb 2005 A1
20050049718 Dann et al. Mar 2005 A1
20050055038 Kelleher et al. Mar 2005 A1
20050055039 Burnett et al. Mar 2005 A1
20050075622 Levine et al. Apr 2005 A1
20050075653 Saadat et al. Apr 2005 A1
20050080444 Kraemer et al. Apr 2005 A1
20050085787 Laufer Apr 2005 A1
20050096750 Kagan et al. May 2005 A1
20050119671 Reydel et al. Jun 2005 A1
20050143760 Imran Jun 2005 A1
20050148818 Mesallum Jul 2005 A1
20050149067 Takemoto et al. Jul 2005 A1
20050149114 Cartledge et al. Jul 2005 A1
20050177176 Gerbi et al. Aug 2005 A1
20050194038 Brabec et al. Sep 2005 A1
20050194294 Oexle et al. Sep 2005 A1
20050194312 Niemeyer et al. Sep 2005 A1
20050195925 Traber Sep 2005 A1
20050195944 Bartels et al. Sep 2005 A1
20050196356 Leinen et al. Sep 2005 A1
20050197540 Liedtke Sep 2005 A1
20050197622 Blumenthal et al. Sep 2005 A1
20050197684 Koch Sep 2005 A1
20050198476 Gazsi et al. Sep 2005 A1
20050203548 Weller et al. Sep 2005 A1
20050228415 Gertner Oct 2005 A1
20050256587 Egan Nov 2005 A1
20060020247 Kagan et al. Jan 2006 A1
20060020254 Hoffmann Jan 2006 A1
20060020276 Saadat et al. Jan 2006 A1
20060036267 Saadat et al. Feb 2006 A1
Foreign Referenced Citations (52)
Number Date Country
0 137 878 Apr 1985 EP
0 174 843 Mar 1986 EP
0 174 843 Mar 1986 EP
0 246 999 Nov 1987 EP
0 540 010 May 1993 EP
63277063 Nov 1988 JP
63279854 Nov 1988 JP
63302863 Dec 1988 JP
1049572 Feb 1989 JP
4297219 Oct 1992 JP
WO 9418893 Sep 1994 WO
WO 9917662 Apr 1999 WO
WO 9953827 Oct 1999 WO
WO 0032137 Jun 2000 WO
WO 0048656 Aug 2000 WO
WO 0078227 Dec 2000 WO
WO 0078229 Dec 2000 WO
WO 0166018 Sep 2001 WO
WO 0167964 Sep 2001 WO
WO 0185034 Nov 2001 WO
WO 02024080 Mar 2002 WO
WO 0235980 May 2002 WO
WO 02039880 May 2002 WO
WO 02071951 Sep 2002 WO
WO 02091961 Nov 2002 WO
WO 02096327 Dec 2002 WO
WO 03007796 Jan 2003 WO
WO 03017882 Mar 2003 WO
WO 03078721 Sep 2003 WO
WO 03086247 Oct 2003 WO
WO 03088844 Oct 2003 WO
WO 03094785 Nov 2003 WO
WO 03099140 Dec 2003 WO
WO 03105563 Dec 2003 WO
WO 03105671 Dec 2003 WO
WO 2004009269 Jan 2004 WO
WO 2004014237 Feb 2004 WO
WO 2004017863 Mar 2004 WO
WO 2004019787 Mar 2004 WO
WO 2004019788 Mar 2004 WO
WO 2004019826 Mar 2004 WO
WO 2004037064 May 2004 WO
WO 2004049911 Jun 2004 WO
WO 2004058102 Jul 2004 WO
WO 2004060150 Jul 2004 WO
WO 2004087014 Oct 2004 WO
WO 2004103189 Dec 2004 WO
WO 2005023118 Mar 2005 WO
WO 2005037152 Apr 2005 WO
WO 2005058239 Jun 2005 WO
WO 2005060882 Jul 2005 WO
WO 2006078781 Jul 2006 WO
Related Publications (1)
Number Date Country
20050222592 A1 Oct 2005 US
Continuations (2)
Number Date Country
Parent 10394832 Mar 2003 US
Child 11129626 US
Parent 10215070 Aug 2002 US
Child 10394832 US