The present invention relates to a device for facilitating intra-operative applications of orthogonal alignment to spinal reconstruction. More specifically, the invention will assist in aligning the hips and pelvis in a position perpendicular to the longitudinal axis of the spine and assist in positioning the shoulders parallel to the hips and perpendicular to the spine.
Chronic back problems cause pain and disability for a large portion of the population. In many cases, the chronic back problems are caused by intervertebral disc disease and loss of stability of the intervertebral joint. However, stabilization and arthrodesis of the intervertebral joint can reduce the painful affects associated with chronic back problems.
Spinal fusion surgeries were developed many years ago to stop the motion at a painful vertebral segment, which in turn should decrease pain generated from the joint. Most fusion surgery techniques involve removing some or all of the diseased disc material and adding bone graft to an area of the spine to set up a biological response that causes the bone graft to grow between the two vertebral elements and thereby stop the motion at that segment.
The recent trend in spine surgery has moved toward minimally invasive procedures. Instead of performing open procedures requiring larger incisions, muscle stripping, more anesthesia, longer operating time, and longer hospitalization, minimally invasive surgery utilizes tiny incisions in which small specialized instruments and implants are inserted. Various equipment and devices are available to magnify and view these small areas.
A common problem in either spinal fusion surgery or minimally invasive procedures is that during the surgery, the inserting of a prosthesis and adjusting or removing bone tissue can result in misalignment of the spine or other anatomical parts of the patient. Misalignment of the hips, pelvis, spine, or shoulders can have serious adverse complications after surgery such as increased curvature of the spine and hips being unequal, with one higher than the other. These complications result in an increase of wear and tear on various joints of the patient causing significant pain. If the alignment is not fixed during surgery, another surgery may be required.
Misalignment of the spine often results in long term pain, uneven gait, osteoarthritis, and difficulty in performing functions of daily living. A mal-alignment is often difficult to assess and measure during the surgery. However, surgery is the crucial period because during surgery is when alignment can be corrected. Thus, a device is needed to facilitate orthogonal alignment during spinal reconstruction, and which can be used intra-operatively to assist in measurement of the position of the anatomical components of the spine and other anatomic structures prior to closing the wound when actions can be taken to correct a less than optimal measurement.
The present invention is used to help facilitate intra-operative applications of orthogonal alignment to spinal reconstruction. The device will assist in aligning the hips and pelvis perpendicular to the longitudinal access of the spine and assist in positioning of the shoulders parallel to the hips and perpendicular to the spine. This anatomical positioning will help create appropriate coronal and sagittal balance postoperatively. The device could also be used to help align the hips in relation to the spine, independent of the ilium. It is a goal of the invention to allow more accurate estimation of the sometimes difficult to appreciate intra-operative alignment process during spinal surgery.
In another aspect of the invention, this device could be used in less rigorous spinal reconstructions to be sure that segments of the spine being fused, although not connected directly to the sacrum or the pelvis, are also aligned and orthogonal to the foundation of the sacrum, pelvis, and hip joints.
In accordance with an embodiment of the invention, a T-square shaped device is provided. The T-square device includes a longitudinal member and at least one cross member. The longitudinal member is a rod that runs along the length of the patient's spine, and the rod is used as the longitudinal visual marker for the spine. The cross member is a rod that is positionable orthogonally to the longitudinal member, and it serves as a visual marker for the hips, pelvis, shoulders or some other anatomic or extra-anatomic reference. More than one cross member could be connected to the longitudinal member so that the surgeon could check the hips, spinal alignment, and/or shoulder levels at the same time.
In an alternate embodiment of the present invention, the cross member could be connected to the longitudinal member so that it is operable to slide along the length of the longitudinal member. In this embodiment, one cross member can serve as the visual marker for multiple anatomic references by sliding the cross member along the longitudinal member in accordance with the anatomic reference that the surgeon wishes to check. The cross member could slide on a sliding dovetail or other sliding mechanism design.
In accordance with a further aspect of the present invention, the longitudinal member and/or cross members can be embedded with radiopaque wires or metallic markers to aid in the alignment process and to estimate various anatomic dimensions if the device is used during fluoroscopy.
In accordance with an alternate embodiment of the present invention, two T-square devices could be joined along their respective longitudinal members. In this embodiment, the cross member of the first T-square device is used as a reference line for shoulder alignment, the cross member of the second T-square device is used as a reference line for hip or pelvic alignment, and the joined longitudinal member is used as a reference line for the spine. In a preferred embodiment, the cross members are operable to slide along their respective longitudinal members and the longitudinal members of the two T-square device are also slideably engaged.
In accordance with a method of using the present invention, an anatomical reference is chosen. The anatomical reference is usually an anatomical reference line orthogonal to the spine, and the reference line intersects the spine at an anatomical intersection. The longitudinal member and cross member of the T-square device intersect at a device intersection. The device is positioned, with regard to the spine, by overlying the device intersection and the anatomical intersection. Following positioning of the device with respect to the spine, at least one of the longitudinal member and cross member is aligned with the spine and the anatomical reference line, respectively. The alignment of the longitudinal member with the spine and/or alignment of the cross member with the anatomical reference line can then be compared to assure proper alignment of the spine during surgery.
The subsequent description will elucidate several different versions of the T-square design, with various modifications in shape, material and manufacturing. They include but are not exclusive to the representative drawings. It is conceivable that this device could be made of various radiopaque and/or radiolucent materials, both metal, plastic and composite. The device also can be used for aligning occiput to cervical spine, cervical spine to the pelvis, and facilitate alignment of other appendicular and axial anatomy. The device can be sterilized and used during surgery or used nonsurgically. The device could be manufactured out of available stock material or molded, or machined from a variety of products.
A more complete understanding of the present invention, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
The present invention is directed to a device for facilitating intra-operative applications of orthogonal alignment to spinal reconstruction. More specifically, the present invention is a T-square device that includes a longitudinal member and at least one cross member connected orthogonally to the longitudinal member. The device is to be positioned above the patient's back so that the longitudinal member is aligned with respect to the patient's spine and the cross members are aligned with respect to various anatomical references of the patient.
Referring now to the figures in which like reference numerals refer to like elements, an exemplary T-square device 10 according to the present invention is shown in
In accordance with the embodiment of the invention shown in
Alternatively, the T-square device 10 described above could be turned around so that the longitudinal member 12 having the radiopaque wire 14 and plurality of holes 16 would now be a cross member (
With reference to
With reference to
Preferably, the upper cross member 36 is aligned with the patient's shoulders to allow for visualization of shoulder balance in relation to the patient's hips and spine. The lower cross member 38 is placed over the patient's hip joints or the ilium. However, alternate anatomical or extra-anatomical references could be used. Alternatively, the most simplistic form of this embodiment would have just a single cross member welded to one longitudinal member.
With reference to
As shown in
The cross member 52 of this embodiment may also incorporate a first medial/lateral radiolucent circular marker 60 on one side of the cross member 52 and a second medial/lateral radiolucent circular marker 62 on the opposite side of the cross member 52. The first and second medial/lateral radiolucent markers 60, 62 are positionable over the femoral heads of the patient to ensure accurate localization of the T-square device 50. Positioning of the circular markers 60, 62 on their respective side of the cross member 52 may also be accomplished by using another sliding dovetail connection 64 (as shown in
Because the longitudinal member 54 of this embodiment of the present invention may be too long to fit into an autoclave, a hinge device 66 or non-hinged sliding connection may be needed to separate the longitudinal member 54 into two pieces 54, 70.
It is contemplated that the non-hinged sliding connections of the present invention could be either a datto, a sliding mortise/tenon, or some other sort of sliding dovetail connection. Other possible mechanical hinges could include a spring lock-loaded device, medial/lateral or rostral-caudal slides that will lock into place.
The embodiment of
Alignment of the T-square device with respect to the patient can be accomplished in various ways. One way is having several pairs of superimposable radiopaque markers on the top and bottom of the cross members and the longitudinal member to orient the device within the fluoro field. This would help with orthogonal alignment of the T-square device and the patient to the x-ray beam using the technique of parallax. Alternatively, the orthogonal alignment can be achieved by other techniques such as a strip or piece of radiopaque material oriented in such a way that if it is not othrogonal to the x-ray beam, it will look differently than if it is orthogonal, i.e. a thin strip of metal cut into a rectangular shape would look like a line viewed on edge but would look like a rectangle when viewed enface. For hip alignment there can be sliding cross-hairs provided to locate the femoral head or the acetabulum.
As shown in
Alternatively, one may add a circular leveling bubble, two individual straight bubbles, or some other leveling device to level the T-square when it is suspended above the patient's back.
A method of using the device 10 for aligning the spine with respect to an anatomical reference is also encompassed by the invention. The anatomical reference is an anatomical reference line orthogonal to the spine, and the reference line intersects the spine at an anatomical intersection. The device 10 includes the longitudinal member 12 orthogonal to the cross member 18. The longitudinal member 12 and cross member 18 intersect at a device intersection. The device 10 is positioned, with regard to the spine, by overlying the device intersection and the anatomical intersection. Following positioning of the device with respect to the spine, at least one of the longitudinal member 12 and cross member 18 is aligned with the spine and the anatomical reference line, respectively. The alignment of the longitudinal member 12 with the spine and/or alignment of the cross member 18 with the anatomical reference line can then be compared to assure proper alignment of the spine during surgery.
The anatomical reference line of the method described above is preferably a reference line spanning a pelvis of a patient, a reference line spanning a first hip joint of a patient to a second hip joint of a patient, or a reference line spanning a first shoulder of a patient to a second shoulder of a patient. Thus, the anatomical intersection is the location where the selected anatomical reference line intersects the spine. The T-square device 50 of
There are many different features to the present invention and it is contemplated that these features may be used together or separately. Thus, the invention should not be limited to any particular combination of features or to a particular application of the invention. Further, it should be understood that variations and modifications within the spirit and scope of the invention might occur to those skilled in the art to which the invention pertains. Accordingly, all expedient modifications readily attainable by one versed in the art from the disclosure set forth herein that are within scope and spirit of the present invention are to be included as further embodiments of the present invention. The scope of the present invention is accordingly defined as set forth in the appended claims.
This application claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Patent Application No. 60/909,720, filed Apr. 3, 2007, the entirety of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60909720 | Apr 2007 | US |