This disclosure relates generally to bone plate devices and methods for fixing bone using plate devices.
Bones, such as the bones of a foot, may be anatomically misaligned. In certain circumstances, surgical intervention is required to correctly align the bones to reduce patient discomfort and improve patient quality of life. Surgical intervention may involve cutting one or more of the misaligned bones and then physically realigning the bones into an anatomically corrected position. A bone plate or multiple bone plates may be used to hold the bones in the anatomically corrected position, helping to prevent the bones from shifting back to their misaligned position.
In general, this disclosure is directed to bone fixation systems and techniques for fixating bones. In some examples, a bone plating system includes an intra-osseous support structure configured to be placed in an opening formed between adjacent bones. For example, during a tarsal-metatarsal fusion procedure in which a first metatarsal is realigned with respect to a second metatarsal, the intra-osseous support structure may be placed within the osseous tissue of the first metatarsal and the medial cuneiform, spanning the tarsal-metatarsal joint. An opening or groove may be formed in the end of the first metatarsal facing the medial cuneiform and also in the end of the medial cuneiform facing the first metatarsal, providing cavities in which opposed ends of the intra-osseous support structure are inserted. One or more fasteners can be used to secure the intra-osseous support structure to the bones in which the fastener is inserted. For instance, in the example of a tarsal-metatarsal fusion procedure, a fastener may be inserted into the medial cuneiform (e.g., from the dorsal toward the plantar side), securing the intra-osseous support structure to the medial cuneiform. A second fastener can be inserted into the first metatarsal (e.g., from the dorsal toward the plantar side), securing the intra-osseous support structure to the first metatarsal.
In some applications, a bone plate is also applied on exterior surfaces of the bone portions into which the intra-osseous support structure is inserted. For example, one or more flat or curved bone plates may be applied to exterior surfaces of bone portions containing the intra-osseous support structure. Depending on the configuration, the exterior bone plate(s) may be in compression while the intra-osseous support structure is in tensions under load, providing a balanced fixation system to effectively fixation opposed portions of bone.
In one example, a bone plating system is described that includes a fastener having a length and an intra-osseous support structure. The example specifies that the intra-osseous support structure is configured to be placed in an opening formed in a first bone portion and a second bone portion and has an aperture to receive the fastener.
In another example, a method of plating a bone is described. The method includes forming an opening in a first bone portion and a second bone portion and placing an intra-osseous support structure in the opening. The method further includes inserting a first fastener through the first bone portion and into the intra-osseous support structure and inserting a second fastener through the second bone portion and into the intra-osseous support structure.
The following detailed description is exemplary in nature and is not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the following description provides some practical illustrations for implementing exemplary embodiments of the present invention. Examples of constructions, materials, dimensions, and manufacturing processes are provided for selected elements, and all other elements employ that which is known to those of ordinary skill in the field of the invention. Those skilled in the art will recognize that many of the noted examples have a variety of suitable alternatives.
Embodiments of the invention include a bone plating system. Embodiments of the system can be useful for providing structural support to bones subject to a surgical procedure, such as a bone alignment, osteotomy, fracture repair, and/or fusion procedure. Such a procedure may be performed, for example, on bones (e.g., adjacent bones separated by a joint or different portions of a single bone separated by a fracture) in the foot or hand. In one example, the procedure can be performed to correct an alignment between a metatarsal (e.g., a first metatarsal) and a cuneiform (e.g., a first cuneiform), such as a bunion correction. An example of such a procedure is a lapidus procedure. In another example, the procedure can be performed by modifying an alignment of a metatarsal (e.g., a first metatarsal). An example of such a procedure is a basilar metatarsal osteotomy procedure.
As shown in
The intra-osseous support structure 20 can include any useful form. In some embodiments, the intra-osseous support structure has a first major surface, a second major surface, and a perimeter edge extending between the first major surface and the second major surface. In the embodiment shown in
In the embodiment shown in
As shown in
The bone plate 60 can include any suitable form. In some embodiments, the bone plate has a bone facing surface and a surface opposite the bone facing surface. In certain embodiments, such as the embodiment shown in
In embodiments of the plating system having a plate 60, the plate and intra-osseous support structure 20 can be connected to the bone and each other by the at least one fastener 50. In such embodiments, the bone plate 60 can have at least one aperture 64, 66 to receive respective fasteners 50, 52. In the embodiment shown, the bone plate has a first portion for placement on the first bone portion 34 and a second portion for placement on the second bone portion 38. At least one aperture 64, 66 for receiving a respective fastener 50, 52 can be provided on each portion. Further, the intra-osseous support structure 20 can have at least one aperture (not shown in
In some embodiments, the aperture in the intra-osseous support structure can include an attachment mechanism configured to engage a fastener. The fastener and attachment mechanism can include any structure suitable for engagement. In some embodiments, the fastener includes a screw, and the attachment mechanism includes a threaded aperture to receive and engage the screw. The attachment mechanism can include guides to facilitate alignment with the fasteners. In some embodiments, the fastener has a length that is less than the thickness of the bone. In certain embodiments, the fastener will have a length between about one-half of the thickness of the bone and the entire thickness of the bone. For example, the fastener can have a length of about two-thirds the thickness of the bone. In some embodiments, the fastener can extend through the aperture of the intra-osseous support structure (optionally engaging an attachment member thereof) and engage bone on one or both sides of the intra-osseous support structure.
Any number of fasteners and respective intra-osseous support structure apertures can be provided. In the embodiment shown in
The fasteners and respective apertures can be provided in any orientation. In some embodiments, such as the embodiments shown in
As shown in
The plating system can also include features useful for placing the intra-osseous support structure. As shown in
The plating system can be used to join any bone portions. In one example, the first bone portion and the second bone portion are portions of a single bone separated by a fracture. As a further example, the first bone portion and the second bone portion are portions of a single bone separated by an osteotomy. As another example, the first bone portion and the second bone portion can be portions of two different bones separated by a joint, such as a cuneiform (e.g., medial cuneiform) and a metatarsal (e.g., first metatarsal). In the two-bone example, the intra-osseous support structure can be placed intra-osseously in the cuneiform and the metatarsal in an opening that spans the joint therebetween (e.g., tarsal-metatarsal joint). In such an embodiment, fasteners having a length less than the thickness of the cuneiform and metatarsal, respectively, can be used to connect the intra-osseous support structure to the bones. In embodiments of the plating system having a bone plate, the bone facing surface of the bone plate can be placed facing a dorsal surface of the cuneiform and a dorsal surface of the metatarsal, spanning a joint therebetween, and the fasteners can extend through apertures defined by the plate.
Embodiments of the invention also include methods of plating a bone, such as with the embodiments of bone plating systems described herein. Note the order of steps as described is only exemplary unless otherwise indicated. In some embodiments, after preparing the surgical area, the method can include the step of forming an opening in a first bone portion and a second bone portion. The opening can be formed from a side of the bone. The opening can be formed generally parallel with a longitudinal axis of the bone, or may be formed at an angle with respect to such longitudinal axis such that it crosses the longitudinal axis. The opening can be formed, e.g., by a saw, drill, mill, box chisel, router, or the like.
The method can also include the steps of placing an intra-osseous support structure in the opening and aligning it in a desired position. In some embodiments, the intra-osseous support structure can be placed generally parallel to a longitudinal axis of the bone (e.g., toward a tension side of the longitudinal axis. In other embodiments, the intra-osseous support structure can be placed at a skewed angle relative to the longitudinal axis of the bone, such that it crosses the longitudinal axis of the bone. In such embodiments, at least a portion of the intra-osseous support structure will reside on a tension side of the longitudinal axis and another portion will reside on a compression side of the longitudinal axis. The method can also include the steps of inserting a first fastener through a first bone portion and engaging the first fastener with the intra-osseous support structure, and inserting a second fastener through a second bone portion and engaging the second fastener with the intra-osseous support structure to secure the plating system to the bone. In some embodiments, the step of placing the intra-osseous support structure in the opening includes placing a stop in apposition to the first bone portion or the second bone portion. In embodiments of intra-osseous support structures having tabs, the method can also include removing the tab after placement of the support structure. Embodiments of the method can also include attaching an additional support structure to the first bone portion and the second bone portion.
In some embodiments, the method can also include the step of forming a first hole in the first bone portion from the first surface and toward an opposite surface and forming a second hole in the second bone portion from the second surface and toward an opposite surface. The first and second holes and the opening can intersect. The first and second holes can be formed, for example, with hand-driven or powered drills. In such embodiments, the fasteners can be inserted through the holes to engage an intra-osseous support structure placed within the opening.
Embodiments of the method also include placing a bone plate having a first portion in apposition to a first surface of a first bone portion and a second portion in apposition to a second surface of a second bone portion, the bone plate having a first aperture in the first portion and a second aperture in the second portion. The bone plate can be initially held in position by pins and/or protrusions. The fasteners can be inserted through apertures defined by the plate.
Thus, embodiments of the invention are disclosed. Although the present invention has been described with reference to certain disclosed embodiments, the disclosed embodiments are presented for purposes of illustration and not limitation, and other embodiments of the invention are possible. One skilled in the art will appreciate that various changes, adaptations, and modifications may be made without departing from the spirit of the invention.
This application is a continuation of U.S. patent application Ser. No. 16/877,159, filed May 18, 2020, which is a continuation of U.S. patent application Ser. No. 15/148,774, filed May 6, 2016 and issued as U.S. Pat. No. 10,653,467, on May 19, 2020, which claims the benefit of U.S. Provisional Application Ser. No. 62/157,561, filed May 6, 2015. The entire contents of each of these applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2133859 | Hawley | Oct 1938 | A |
2614559 | Livingston | Oct 1952 | A |
2825329 | Caesar | Mar 1958 | A |
3709218 | Halloran | Jan 1973 | A |
4159716 | Borchers | Jul 1979 | A |
4187840 | Watanabe | Feb 1980 | A |
4338927 | Volkov et al. | Jul 1982 | A |
4570624 | Wu | Feb 1986 | A |
4627425 | Reese | Dec 1986 | A |
4628919 | Clyburn | Dec 1986 | A |
4754746 | Cox | Jul 1988 | A |
4757810 | Reese | Jul 1988 | A |
4790302 | Colwill et al. | Dec 1988 | A |
4895141 | Koeneman et al. | Jan 1990 | A |
4952214 | Comparetto | Aug 1990 | A |
4959065 | Arnett et al. | Sep 1990 | A |
4978347 | Ilizarov | Dec 1990 | A |
4988349 | Pennig | Jan 1991 | A |
5021056 | Hofmann et al. | Jun 1991 | A |
5112334 | Alchermes et al. | May 1992 | A |
5207676 | Canadell et al. | May 1993 | A |
5254119 | Schreiber | Oct 1993 | A |
5312412 | Whipple | May 1994 | A |
5358504 | Paley et al. | Oct 1994 | A |
5364402 | Mumme et al. | Nov 1994 | A |
5413579 | Tom Du Toit | May 1995 | A |
5417694 | Marik et al. | May 1995 | A |
5439381 | Cohen | Aug 1995 | A |
5449360 | Schreiber | Sep 1995 | A |
5529075 | Clark | Jun 1996 | A |
5586564 | Barrett et al. | Dec 1996 | A |
5620442 | Bailey et al. | Apr 1997 | A |
H1706 | Mason | Jan 1998 | H |
5788695 | Richardson | Aug 1998 | A |
5803924 | Oni et al. | Sep 1998 | A |
5810822 | Mortier | Sep 1998 | A |
5893553 | Pinkous | Apr 1999 | A |
5935128 | Carter et al. | Aug 1999 | A |
5941877 | Viegas et al. | Aug 1999 | A |
5951556 | Faccioli et al. | Sep 1999 | A |
6030391 | Brainard et al. | Feb 2000 | A |
6162223 | Orsak et al. | Dec 2000 | A |
6171309 | Huebner | Jan 2001 | B1 |
6719773 | Boucher et al. | Apr 2004 | B1 |
6743233 | Baldwin et al. | Jun 2004 | B1 |
7001388 | Orbay et al. | Feb 2006 | B2 |
7033361 | Collazo | Apr 2006 | B2 |
7037309 | Weil et al. | May 2006 | B2 |
7037342 | Nilsson et al. | May 2006 | B2 |
7097647 | Segler et al. | Aug 2006 | B2 |
7153310 | Ralph et al. | Dec 2006 | B2 |
7182766 | Mogul | Feb 2007 | B1 |
7229445 | Hayeck et al. | Jun 2007 | B2 |
7241298 | Nemec et al. | Jul 2007 | B2 |
7377924 | Raistrick et al. | May 2008 | B2 |
7465303 | Riccione et al. | Dec 2008 | B2 |
7641660 | Lakin et al. | Jan 2010 | B2 |
D610257 | Horton | Feb 2010 | S |
7686811 | Byrd et al. | Mar 2010 | B2 |
D629900 | Fisher | Dec 2010 | S |
7972338 | O'Brien | Jul 2011 | B2 |
D646389 | Claypool et al. | Oct 2011 | S |
8057478 | Kuczynski et al. | Nov 2011 | B2 |
D651315 | Bertoni et al. | Dec 2011 | S |
D651316 | May et al. | Dec 2011 | S |
8080010 | Schulz et al. | Dec 2011 | B2 |
8123753 | Poncet | Feb 2012 | B2 |
8137406 | Novak et al. | Mar 2012 | B2 |
8147530 | Strnad et al. | Apr 2012 | B2 |
8167918 | Strnad et al. | May 2012 | B2 |
8172848 | Tomko et al. | May 2012 | B2 |
8177820 | Anapliotis et al. | May 2012 | B2 |
8192441 | Collazo | Jun 2012 | B2 |
8197487 | Poncet et al. | Jun 2012 | B2 |
8231623 | Jordan | Jul 2012 | B1 |
8231663 | Kay et al. | Jul 2012 | B2 |
8246561 | Agee et al. | Aug 2012 | B1 |
D666721 | Wright et al. | Sep 2012 | S |
8262664 | Justin et al. | Sep 2012 | B2 |
8282644 | Edwards | Oct 2012 | B2 |
8282645 | Lawrence et al. | Oct 2012 | B2 |
8292966 | Morton | Oct 2012 | B2 |
8313492 | Wong et al. | Nov 2012 | B2 |
8323289 | Re | Dec 2012 | B2 |
8337503 | Lian | Dec 2012 | B2 |
8343159 | Bennett | Jan 2013 | B2 |
8377105 | Bscher | Feb 2013 | B2 |
8382807 | Austin et al. | Feb 2013 | B2 |
8403966 | Ralph et al. | Mar 2013 | B2 |
D679395 | Wright et al. | Apr 2013 | S |
8435246 | Fisher et al. | May 2013 | B2 |
8475462 | Thomas et al. | Jul 2013 | B2 |
8496690 | Sixto et al. | Jul 2013 | B2 |
8523870 | Green, II et al. | Sep 2013 | B2 |
8556946 | Prandi | Oct 2013 | B2 |
D694884 | Mooradian et al. | Dec 2013 | S |
D695402 | Dacosta et al. | Dec 2013 | S |
8652142 | Geissler | Feb 2014 | B2 |
D701303 | Cook | Mar 2014 | S |
8672945 | Lavallee et al. | Mar 2014 | B2 |
8696716 | Kartalian et al. | Apr 2014 | B2 |
D705929 | Frey | May 2014 | S |
8715363 | Ratron et al. | May 2014 | B2 |
8728084 | Berelsman et al. | May 2014 | B2 |
8758354 | Habegger et al. | Jun 2014 | B2 |
8764763 | Wong et al. | Jul 2014 | B2 |
8771279 | Philippon et al. | Jul 2014 | B2 |
8784427 | Fallin et al. | Jul 2014 | B2 |
8784457 | Graham | Jul 2014 | B2 |
8795286 | Sand et al. | Aug 2014 | B2 |
8801727 | Chan et al. | Aug 2014 | B2 |
8808303 | Stemniski et al. | Aug 2014 | B2 |
8828012 | May et al. | Sep 2014 | B2 |
8828063 | Blitz | Sep 2014 | B2 |
8858602 | Weiner et al. | Oct 2014 | B2 |
8882778 | Ranft | Nov 2014 | B2 |
8888824 | Austin et al. | Nov 2014 | B2 |
8911482 | Lee et al. | Dec 2014 | B2 |
8940026 | Hilse et al. | Jan 2015 | B2 |
8998903 | Price et al. | Apr 2015 | B2 |
8998904 | Zeetser et al. | Apr 2015 | B2 |
9023052 | Lietz et al. | May 2015 | B2 |
9044250 | Olsen et al. | Jun 2015 | B2 |
9060822 | Lewis | Jun 2015 | B2 |
9089376 | Medoff et al. | Jul 2015 | B2 |
9101421 | Blacklidge | Aug 2015 | B2 |
9107715 | Blitz et al. | Aug 2015 | B2 |
9138244 | Mebarak et al. | Sep 2015 | B2 |
9271769 | Batsch et al. | Mar 2016 | B2 |
D765844 | DaCosta | Sep 2016 | S |
D766434 | DaCosta | Sep 2016 | S |
D766437 | DaCosta | Sep 2016 | S |
D766438 | DaCosta | Sep 2016 | S |
D766439 | DaCosta | Sep 2016 | S |
9452057 | Dacosta et al. | Sep 2016 | B2 |
9642656 | Kotuljac et al. | May 2017 | B2 |
9668793 | Gaudin | Jun 2017 | B2 |
9750538 | Soffiatti et al. | Sep 2017 | B2 |
9867642 | Simon | Jan 2018 | B2 |
9980760 | Dacosta et al. | May 2018 | B2 |
10226287 | Langford et al. | Mar 2019 | B2 |
10238437 | Simon | Mar 2019 | B2 |
10376268 | Fallin et al. | Aug 2019 | B2 |
11304705 | Fallin et al. | Apr 2022 | B2 |
20020099381 | Maroney | Jul 2002 | A1 |
20020107519 | Dixon et al. | Aug 2002 | A1 |
20020198531 | Millard et al. | Dec 2002 | A1 |
20030135212 | Chow | Jul 2003 | A1 |
20040010259 | Keller et al. | Jan 2004 | A1 |
20040039394 | Conti et al. | Feb 2004 | A1 |
20040097946 | Dietzel et al. | May 2004 | A1 |
20050004676 | Schon et al. | Jan 2005 | A1 |
20050075641 | Singhatat et al. | Apr 2005 | A1 |
20050101961 | Huebner et al. | May 2005 | A1 |
20050149042 | Metzger | Jul 2005 | A1 |
20050228389 | Stiernborg | Oct 2005 | A1 |
20050267482 | Hyde, Jr. | Dec 2005 | A1 |
20050273112 | McNamara | Dec 2005 | A1 |
20060206044 | Simon | Sep 2006 | A1 |
20060217733 | Plassky et al. | Sep 2006 | A1 |
20060229621 | Cadmus | Oct 2006 | A1 |
20060241607 | Myerson et al. | Oct 2006 | A1 |
20060241608 | Myerson et al. | Oct 2006 | A1 |
20060264961 | Murray-Brown | Nov 2006 | A1 |
20070123857 | Deffenbaugh et al. | May 2007 | A1 |
20070233138 | Figueroa et al. | Oct 2007 | A1 |
20070265634 | Weinstein | Nov 2007 | A1 |
20070276383 | Rayhack | Nov 2007 | A1 |
20080091197 | Coughlin | Apr 2008 | A1 |
20080140081 | Heavener et al. | Jun 2008 | A1 |
20080172054 | Claypool et al. | Jul 2008 | A1 |
20080208252 | Holmes | Aug 2008 | A1 |
20080262500 | Collazo | Oct 2008 | A1 |
20080269908 | Warburton | Oct 2008 | A1 |
20090036893 | Kartalian et al. | Feb 2009 | A1 |
20090093849 | Grabowski | Apr 2009 | A1 |
20090105767 | Reiley | Apr 2009 | A1 |
20090118733 | Orsak et al. | May 2009 | A1 |
20090198244 | Leibel | Aug 2009 | A1 |
20090198279 | Zhang et al. | Aug 2009 | A1 |
20090222047 | Graham | Sep 2009 | A1 |
20090254092 | Albiol Llorach | Oct 2009 | A1 |
20090254126 | Orbay et al. | Oct 2009 | A1 |
20090287309 | Walch et al. | Nov 2009 | A1 |
20090312802 | Dasilva | Dec 2009 | A1 |
20100069910 | Hasselman | Mar 2010 | A1 |
20100121334 | Couture et al. | May 2010 | A1 |
20100130981 | Richards | May 2010 | A1 |
20100152782 | Stone et al. | Jun 2010 | A1 |
20100168799 | Schumer | Jul 2010 | A1 |
20100185245 | Paul et al. | Jul 2010 | A1 |
20100249779 | Hotchkiss et al. | Sep 2010 | A1 |
20100256687 | Neufeld | Oct 2010 | A1 |
20100324556 | Tyber et al. | Dec 2010 | A1 |
20110087295 | Kubiak et al. | Apr 2011 | A1 |
20110093084 | Morton | Apr 2011 | A1 |
20110245835 | Dodds et al. | Oct 2011 | A1 |
20110288550 | Orbay et al. | Nov 2011 | A1 |
20110301648 | Lofthouse et al. | Dec 2011 | A1 |
20120016426 | Robinson | Jan 2012 | A1 |
20120065689 | Prasad et al. | Mar 2012 | A1 |
20120078258 | Lo et al. | Mar 2012 | A1 |
20120123420 | Honiball | May 2012 | A1 |
20120123484 | Lietz et al. | May 2012 | A1 |
20120130376 | Loring et al. | May 2012 | A1 |
20120130383 | Budoff | May 2012 | A1 |
20120184961 | Johannaber | Jul 2012 | A1 |
20120239045 | Li | Sep 2012 | A1 |
20120253350 | Anthony et al. | Oct 2012 | A1 |
20120265301 | Demers et al. | Oct 2012 | A1 |
20120277745 | Lizee et al. | Nov 2012 | A1 |
20120303033 | Weiner et al. | Nov 2012 | A1 |
20120330135 | Millahn et al. | Dec 2012 | A1 |
20130012949 | Fallin et al. | Jan 2013 | A1 |
20130035694 | Grimm et al. | Feb 2013 | A1 |
20130085499 | Lian | Apr 2013 | A1 |
20130096563 | Meade et al. | Apr 2013 | A1 |
20130150900 | Haddad et al. | Jun 2013 | A1 |
20130150903 | Vincent | Jun 2013 | A1 |
20130158556 | Jones et al. | Jun 2013 | A1 |
20130165936 | Myers | Jun 2013 | A1 |
20130165938 | Chow et al. | Jun 2013 | A1 |
20130172942 | Lewis et al. | Jul 2013 | A1 |
20130184714 | Kaneyama et al. | Jul 2013 | A1 |
20130190765 | Harris et al. | Jul 2013 | A1 |
20130190766 | Harris et al. | Jul 2013 | A1 |
20130204259 | Zajac | Aug 2013 | A1 |
20130231668 | Olsen et al. | Sep 2013 | A1 |
20130237987 | Graham | Sep 2013 | A1 |
20130237989 | Bonutti | Sep 2013 | A1 |
20130267956 | Terrill et al. | Oct 2013 | A1 |
20130310836 | Raub et al. | Nov 2013 | A1 |
20130325019 | Thomas et al. | Dec 2013 | A1 |
20130325076 | Palmer et al. | Dec 2013 | A1 |
20130331845 | Horan et al. | Dec 2013 | A1 |
20130338785 | Wong | Dec 2013 | A1 |
20140005672 | Edwards et al. | Jan 2014 | A1 |
20140025127 | Richter | Jan 2014 | A1 |
20140039501 | Schickendantz et al. | Feb 2014 | A1 |
20140039561 | Weiner et al. | Feb 2014 | A1 |
20140046387 | Waizenegger | Feb 2014 | A1 |
20140074099 | Vigneron et al. | Mar 2014 | A1 |
20140074101 | Collazo | Mar 2014 | A1 |
20140094861 | Fallin | Apr 2014 | A1 |
20140094924 | Hacking et al. | Apr 2014 | A1 |
20140163563 | Reynolds et al. | Jun 2014 | A1 |
20140171953 | Gonzalvez et al. | Jun 2014 | A1 |
20140180342 | Lowery et al. | Jun 2014 | A1 |
20140194884 | Martin et al. | Jul 2014 | A1 |
20140207144 | Lee et al. | Jul 2014 | A1 |
20140214037 | Mayer et al. | Jul 2014 | A1 |
20140249537 | Wong et al. | Sep 2014 | A1 |
20140257509 | Dacosta et al. | Sep 2014 | A1 |
20140276815 | Riccione | Sep 2014 | A1 |
20140276853 | Long et al. | Sep 2014 | A1 |
20140277176 | Buchanan et al. | Sep 2014 | A1 |
20140277214 | Helenbolt et al. | Sep 2014 | A1 |
20140296995 | Reiley et al. | Oct 2014 | A1 |
20140303621 | Gerold et al. | Oct 2014 | A1 |
20140336658 | Luna et al. | Nov 2014 | A1 |
20140350561 | Dacosta et al. | Nov 2014 | A1 |
20150032168 | Orsak et al. | Jan 2015 | A1 |
20150045801 | Axelson, Jr. et al. | Feb 2015 | A1 |
20150045839 | Dacosta et al. | Feb 2015 | A1 |
20150051650 | Verstreken et al. | Feb 2015 | A1 |
20150066094 | Prandi et al. | Mar 2015 | A1 |
20150112446 | Melamed et al. | Apr 2015 | A1 |
20150119944 | Geldwert | Apr 2015 | A1 |
20150142064 | Perez et al. | May 2015 | A1 |
20150150608 | Sammarco | Jun 2015 | A1 |
20150182273 | Stemniski et al. | Jul 2015 | A1 |
20150223851 | Hill et al. | Aug 2015 | A1 |
20150245858 | Weiner et al. | Sep 2015 | A1 |
20160015426 | Dayton et al. | Jan 2016 | A1 |
20160022315 | Soffiatti et al. | Jan 2016 | A1 |
20160135858 | Dacosta et al. | May 2016 | A1 |
20160151165 | Fallin et al. | Jun 2016 | A1 |
20160175089 | Fallin et al. | Jun 2016 | A1 |
20160192950 | Dayton et al. | Jul 2016 | A1 |
20160199076 | Fallin et al. | Jul 2016 | A1 |
20160213384 | Fallin et al. | Jul 2016 | A1 |
20160235414 | Hatch et al. | Aug 2016 | A1 |
20160242791 | Fallin et al. | Aug 2016 | A1 |
20160256204 | Patel et al. | Sep 2016 | A1 |
20160354127 | Lundquist et al. | Dec 2016 | A1 |
20170000533 | Fallin et al. | Jan 2017 | A1 |
20170042599 | Bays et al. | Feb 2017 | A1 |
20170079669 | Bays et al. | Mar 2017 | A1 |
20180132868 | Dacosta et al. | May 2018 | A1 |
20180344334 | Kim et al. | Dec 2018 | A1 |
20180344371 | Monk et al. | Dec 2018 | A1 |
20190357950 | Bernstein et al. | Nov 2019 | A1 |
Number | Date | Country |
---|---|---|
2009227957 | Jul 2014 | AU |
2491824 | Sep 2005 | CA |
2854997 | May 2013 | CA |
695846 | Sep 2006 | CH |
2930668 | Aug 2007 | CN |
201558162 | Aug 2010 | CN |
201572172 | Sep 2010 | CN |
201586060 | Sep 2010 | CN |
201912210 | Aug 2011 | CN |
202801773 | Mar 2013 | CN |
103462675 | Dec 2013 | CN |
103505276 | Jan 2014 | CN |
203458450 | Mar 2014 | CN |
102860860 | May 2014 | CN |
203576647 | May 2014 | CN |
104490460 | Apr 2015 | CN |
104510523 | Apr 2015 | CN |
104523327 | Apr 2015 | CN |
104546102 | Apr 2015 | CN |
204379413 | Jun 2015 | CN |
204410951 | Jun 2015 | CN |
204428143 | Jul 2015 | CN |
204428144 | Jul 2015 | CN |
204428145 | Jul 2015 | CN |
204446081 | Jul 2015 | CN |
685206 | Sep 2000 | EP |
1897509 | Jul 2009 | EP |
2124772 | Dec 2009 | EP |
2124832 | Aug 2012 | EP |
2632349 | Sep 2013 | EP |
2665428 | Nov 2013 | EP |
2742878 | Jun 2014 | EP |
2750617 | Jul 2014 | EP |
2849684 | Mar 2015 | EP |
3023068 | May 2016 | EP |
2362616 | Mar 1978 | FR |
2764183 | Nov 1999 | FR |
3030221 | Jun 2016 | FR |
2154143 | Sep 1985 | GB |
2154144 | Sep 1985 | GB |
200903719 | Jun 2009 | IN |
200904479 | May 2010 | IN |
140DELNP2012 | Feb 2013 | IN |
2004KOLNP2013 | Nov 2013 | IN |
4134243 | Aug 2008 | JP |
4162380 | Oct 2008 | JP |
2011092405 | May 2011 | JP |
2011523889 | Aug 2011 | JP |
4796943 | Oct 2011 | JP |
5466647 | Apr 2014 | JP |
2014511207 | May 2014 | JP |
2014521384 | Aug 2014 | JP |
5628875 | Nov 2014 | JP |
100904142 | Jun 2009 | KR |
756 | Nov 2014 | MD |
2098036 | Dec 1997 | RU |
2195892 | Jan 2003 | RU |
2320287 | Mar 2008 | RU |
2321366 | Apr 2008 | RU |
2321369 | Apr 2008 | RU |
2346663 | Feb 2009 | RU |
2412662 | Feb 2011 | RU |
1333328 | Aug 1987 | SU |
0166022 | Sep 2001 | WO |
2008051064 | May 2008 | WO |
2009029798 | Mar 2009 | WO |
2009032101 | Mar 2009 | WO |
2011037885 | Mar 2011 | WO |
2012029008 | Mar 2012 | WO |
2013090392 | Jun 2013 | WO |
2013134387 | Sep 2013 | WO |
2013169475 | Nov 2013 | WO |
2014020561 | Feb 2014 | WO |
2014022055 | Feb 2014 | WO |
2014035991 | Mar 2014 | WO |
2014085882 | Jun 2014 | WO |
2014147099 | Sep 2014 | WO |
2014152219 | Sep 2014 | WO |
2014152535 | Sep 2014 | WO |
2014177783 | Nov 2014 | WO |
2014200017 | Dec 2014 | WO |
2015105880 | Jul 2015 | WO |
2015127515 | Sep 2015 | WO |
Entry |
---|
Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 41 pages. |
Prior Art Publications, Exhibit A of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 3 pages. |
Claim Chart for Fishco, “Making the Lapidus Easy,” The Podiatry Institute (Apr. 2014), Exhibit B1 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 97 pages. |
Claim Chart for Fishco, “A Straightforward Guide to the Lapidus Bunionectomy,” HMP Global (Sep. 6, 2013), Exhibit B2 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 67 pages. |
Claim Chart for Groves, “Functional Position Joint Sectioning: Pre-Load Method for Lapidus Arthrodesis,” Update 2015: Proceedings of the Annual Meeting of the Podiatry Institute, Chpt. 6, pp. 23-29 (Apr. 2015), Exhibit B3 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 151 pages. |
Claim Chart for Mote, “First Metatarsal-Cuneiform Arthrodesis for the Treatment of First Ray Pathology: A Technical Guide,” The Journal Foot & Ankle Surgery (Sep. 1, 2009), Exhibit B5 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 21 pages. |
Claim Chart for U.S. Pat. No. 10,376,268 to Fallin et al., entitled “Indexed Tri-Planar Osteotomy Guide and Method,” Issued Aug. 13, 2019, Exhibit B6 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 155 pages. |
Claim Chart for U.S. Pat. No. 8,282,645 to Lawrence et al., entitled “Metatarsal Bone Implant Cutting Guide,” issued Jan. 18, 2010, Exhibit B7 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 76 pages. |
Claim Chart for U.S. Pat. No. 9,452,057 to Dacosta et al., entitled “Bone Implants and Cutting Apparatuses and Methods,” issued Apr. 8, 2011, Exhibit B8 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 110 pages. |
Obviousness Chart, Exhibit C of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 153 pages. |
“Foot and Ankle Instrument Set,” Smith & Nephew, 2013, 2 pages. |
“Lapidus Pearls: Gaining Joint Exposure to Decrease Non-Union,” Youtube, Retrieved online from <https://www.youtube.com/watch?v=-jqJyE7pj-Y>, dated Nov. 2, 2009, 3 pages. |
“Reconstructive Surgery of the Foot & Ankle,” The Podiatry Institute, Update 2015, Conference Program, May 2015, 28 pages. |
“Speed Continuous Active Compression Implant,” BioMedical Enterprises, Inc., A120-029 Rev. 3, 2013, 4 pages. |
“Visionaire: Patient Matched Cutting Blocks Surgical Procedure,” Smith & Nephew, Inc., 2009, 2 pages. |
Arthrex, “Comprehensive Foot System,” Retrieved online from <https://www.arthrex.com/resources/ animation/8U3iaPvY6kO8bwFAwZF50Q/comprehensive-foot-system?referringTeam=foot_and_ankle>, dated Aug. 27, 2013, 3 pages. |
Baravarian, “Why the Lapidus Procedure is Ideal for Bunions,” Podiatry Today, Retrieved online from <https://www.hmpgloballearhmpgloballe.com/site/podipodi/article/5542>, dated May 2006, 8 pages. |
Bauer et al., “Offset-V Osteotomy of the First Metatarsal Shaft in Hallux Abducto Valgus, ” McGlamry's Comprehensive Textbook of Foot and Ankle Surgery, Fourth Edition, vol. 1, Chapter 29, 2013, 26 pages. |
Cottom, “Fixation of the Lapidus Arthrodesis with a Plantar Interfragmentary Screw and Medial Low Profile Locking Plate,” The Journal of Foot & Ankle Surgery, vol. 51, 2012, pp. 517-522. |
Coughlin, “Fixation of the Lapidus Arthrodesis with a Plantar Interfragmentary Screw and Medial Low Profile Locking Plate, ”Orthopaedics and Traumatology, vol. 7, 1999, pp. 133-143. |
Dayton et al., “Observed Changes in Radiographic Measurements of the First Ray after Frontal Plane Rotation of the First Metatarsal in a Cadaveric Foot Model,” The Journal of Foot & Ankle Surgery, vol. 53, 2014, pp. 274-278. |
Dayton et al., “Relationship of Frontal Plane Rotation of First Metatarsal to Proximal Articular Set Angle and Hallux Alignment in Patients Undergoing Tarsometatarsal Arthrodesis for Hallux Abducto Valgus: A Case Series and Critical Review of the Literature,” The Journal of Foot & Ankle Surgery, 2013, Article in Press, Mar. 1, 2013, 7 pages. |
DiDomenico et al., “Lapidus Bunionectomy: First Metatarsal-Cuneiform Arthrodesis,” McGlamry's Comprehensive Textbook of Foot and Ankle Surgery, Fourth Edition, vol. 1, Chapter 31, 2013, 24 pages. |
Fallin et al., US Provisional Application Entitled Indexed Tri-Planar Osteotomy Guide and Method, U.S. Appl. No. 62/118,378, filed Feb. 19, 2015, 62 pages. |
Fishco, “A Straightforward Guide To The Lapidus Bunionectomy, ”Podiatry Today, Retrieved online from <https://www.hmpgloballearningnetwork.com/site/podiatry/blogged/straightforward-guide-lapidus-bunionectomy>, dated Sep. 6, 2013, 5 pages. |
Fishco, “Making the Lapidus Easy,” The Podiatry Institute, Update 2014, Chapter 14, 2014, pp. 91-93. |
Fleming et al., “Results of Modified Lapidus Arthrodesis Procedure Using Medial Eminence as an Interpositional Autograft,” The Journal of Foot & Ankle Surgery, vol. 50, 2011, pp. 272-275. |
Fuhrmann, “Arthrodesis of the First Tarsometatarsal Joint for Correction of the Advanced Splayfoot Accompanied by a Hallux Valgus,” Operative Orthopadie und Traumatologie, No. 2, 2005, pp. 195-210. |
Gerard et al., “The Modified Lapidus Procedure,” Orthopedics, vol. 31, No. 3, Mar. 2008, 7 pages. |
Giannoudis et al., “Hallux Valgus Correction,” Practical Procedures in Elective Orthopaedic Surgery, Pelvis and Lower Extremity, Chapter 38, 2012, 22 pages. |
Greiner, “The Jargon of Pedal Movements,” Foot & Ankle International, vol. 28, No. 1, Jan. 2007, pp. 109-125. |
Groves, “Functional Position Joint Sectioning: Pre-Load Method for Lapidus Arthrodesis,” The Podiatry Institute, Update 2015, Chapter 6, 2015, pp. 23-29. |
Hardy et al., “Observations on Hallux Valgus,” The Journal of Bone and Joint Surgery, vol. 33B, No. 3, Aug. 1951, pp. 376-391. |
Holmes, Jr., “Correction of the Intermetatarsal Angle Component of Hallux Valgus Using Fiberwire-Attached Endo-buttons,” Revista Internacional de Ciencias Podologicas, vol. 6, No. 2, 2012, pp. 73-79. |
Integra, “Integra Large Qwix Positioning and Fixation Screw, Surgical Technique,” 2012, 16 pages. |
Kilmartin et al., “Combined rotation scarf and Akin osteotomies for hallux valgus: a patient focused 9 year follow up of 50 patients,” Journal of Foot and Ankle Research, vol. 3, No. 2, 2010, 12 pages. |
Lee et al., “Technique Tip: Lateral Soft-Tissue Release for Correction of Hallux Valgus Through a Medial Incision Using A Dorsal Flap Over the First Metatarsal,” Foot & Ankle International, vol. 28, No. 8, Aug. 2007, pp. 949-951. |
Mote et al., “First Metatarsal-Cuneiform Arthrodesis for the Treatment of First Ray Pathology: A Technical Guide,” JFAS Techniques Guide, vol. 48, No. 5, Sep./Oct. 2009, pp. 593-601. |
Myerson, “Cuneiform-Metatarsal Arthrodesis,” The Foot and Ankle, Chapter 9, 1997, pp. 107-117. |
Sammarco, “Surgical Strategies: Mau Osteotomy for Correction of Moderate and Severe Hallux Valgus Deformity,” Foot & Ankle International, vol. 28, No. 7, Jul. 2007, pp. 857-864. |
Schon et al., “Cuneiform-Metatarsal Arthrodesis for Hallux Valgus, ”The Foot and Ankle, Second Edition, Chapter 8, 2002, pp. 99-117. |
Sokoloff, “Lapidus Procedure,” Textbook of Bunion Surgery, Chapter 15, 1981, pp. 277-287. |
Stamatis et al., “Mini Locking Plate as ”Medial Buttress“ for Oblique Osteotomy for Hallux Valgus,” Foot & Ankle International, vol. 31, No. 10, Oct. 2010, pp. 920-922. |
Stewart, “Use for BME Speed Nitinol Staple Fixation for the Lapidus Procedure,” date unknown, 1 page. |
Wukich et al., “Hypermobility of the First Tarsometatarsal Joint,” Foot and Ankle Clinics, vol. 10, No. 1, Mar. 2005, pp. 157-166. |
Dayton et al., “Biwinged Excision for Round Pedal Lesions,” The Journal of Foot and Ankle Surgery, vol. 35, No. 3, 1996, pp. 244-249. |
Dayton et al., “Medial Incision Approach to the First Metatarsophalangeal Joint,” The Journal of Foot and Ankle Surgery, vol. 40, No. 6, Nov./Dec. 2001, pp. 414-417. |
Dayton et al., “Reduction of the Intermetatarsal Angle after First Metatarsophalangeal Joint Arthrodesis in Patients with Moderate and Severe Metatarsus Primus Adductus,” The Journal of Foot and Ankle Surgery, vol. 41, No. 5, Sep./Oct. 2002, pp. 316-319. |
Dayton et al., “Use of the Z Osteotomy for Tailor Bunionectomy,” The Journal of Foot and Ankle Surgery, vol. 42, No. 3, May/Jun. 2003, pp. 167-169. |
Dayton et al., “Early Weightbearing After First Metatarsophalangeal Joint Arthrodesis: A Retrospective Observational Case Analysis, ” The Journal of Foot and Ankle Surgery, vol. 43, No. 3, May/Jun. 2004, pp. 156-159. |
Dayton et al., “Dorsal Suspension Stitch: An Alternative Stabilization After Flexor Tenotomy for Flexible Hammer Digit Syndrome,” The Journal of Foot and Ankle Surgery, vol. 48, No. 5, Sep./Oct. 2009, pp. 602-605. |
Dayton et al., “The Extended Knee Hemilithotomy Position for Gastrocnemius Recession,” The Journal of Foot and Ankle Surgery, vol. 49, 2010, pp. 214-216. |
Wienke et al., “Bone Stimulation For Nonunions: What the Evidence Reveals,” Podiatry Today, vol. 24, No. 9, Sep. 2011, pp. 52-57. |
Dayton et al., “Hallux Varus as Complication of Foot Compartment Syndrome,” The Journal of Foot and Ankle Surgery, vol. 50, 2011, pp. 504-506. |
Dayton et al., “Measurement of Mid-Calcaneal Length on Plain Radiographs: Reliability of a New Method,” Foot and Ankle Specialist, vol. 4, No. 5, Oct. 2011, pp. 280-283. |
Dayton et al., “A User-Friendly Method of Pin Site Management for External Fixators,” Foot and Ankle Specialist, Sep. 16, 2011, 4 pages. |
Dayton et al., “Effectiveness of a Locking Plate in Preserving Midcalcaneal Length and Positional Outcome after Evans Calcaneal Osteotomy: A Retrospective Pilot Study,” The Journal of Foot and Ankle Surgery, vol. 52, 2013, pp. 710-713. |
Dayton et al., “Does Postoperative Showering or Bathing of a Surgical Site Increase the Incidence of Infection? A Systematic Review of the Literature,” The Journal of Foot and Ankle Surgery, vol. 52, 2013, pp. 612-614. |
Dayton et al., “Technique for Minimally Invasive Reduction of Calcaneal Fractures Using Small Bilateral External Fixation,” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 7 pages. |
Dayton et al., “Clarification of the Anatomic Definition of the Bunion Deformity,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 160-163. |
Dayton et al., “Observed Changes in Radiographic Measurements of the First Ray after Frontal Plane Rotation of the First Metatarsal in a Cadaveric Foot Model,” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 5 pages. |
Dayton et al., “Observed Changes in First Metatarsal and Medial Cuneiform Positions after First Metatarsophalangeal Joint Arthrodesis,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 32-35. |
Dayton et al., “Reduction of the Intermetatarsal Angle after First Metatarsal Phalangeal Joint Arthrodesis: A Systematic Review,” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 4 pages. |
Feilmeier et al., “Reduction of Intermetatarsal Angle after First Metatarsophalangeal Joint Arthrodesis in Patients with Hallux Valgus,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 29-31. |
Dayton et al., “Principles of Management of Growth Plate Fractures in the Foot and Ankle,” Clinics in Podiatric Medicine and Surgery, Pediatric Foot Deformities, Oct. 2013, 17 pages. |
Dayton et al., “Observed Changes in Radiographic Measurements of the First Ray after Frontal and Transverse Plane Rotation of the Hallux: Does the Hallux Drive the Metatarsal in a Bunion Deformity?,” The Journal of Foot and Ankle Surgery, Article in Press, 2014, 4 pages. |
Rodriguez et al., “Ilizarov method of fixation for the management of pilon and distal tibial fractures in the compromised diabetic patient: A technique guide,” The Foot and Ankle Journal Online, vol. 7, No. 2, 2014, 9 pages. |
Feilmeier et al., “Incidence of Surgical Site Infection in the Foot and Ankle with Early Exposure and Showering of Surgical Sites: A Prospective Observation,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 173-175. |
Catanese et al., “Measuring Sesamoid Position in Hallux Valgus: When Is the Sesamoid Axial View Necessary,” Foot and Ankle Specialist, 2014, 3 pages. |
Dayton et al., “Comparison of Complications for Internal and External Fixation for Charcot Reconstruction: A Systematic Review,” The Journal of Foot and Ankle Surgery, Article in Press, 2015, 4 pages. |
Dayton et al., “A new triplanar paradigm for bunion management,” Lower Extremity Review, Apr. 2015, 9 pages. |
Dayton et al., “American College of Foot and Ankle Surgeons' Clinical Consensus Statement: Perioperative Prophylactic Antibiotic Use in Clean Elective Foot Surgery,” The Journal of Foot and Ankle Surgery, Article in Press, 2015, 7 pages. |
Dayton et al., “Complications of Metatarsal Suture Techniques for Bunion Correction: A Systematic Review of the Literature,” The Journal of Foot and Ankle Surgery, Article in Press, 2015, 3 pages. |
DeCarbo et al., “The Weil Osteotomy: A Refresher,” Techniques in Foot and Ankle Surgery, vol. 13, No. 4, Dec. 2014, pp. 191-198. |
DeCarbo et al., “Resurfacing Interpositional Arthroplasty for Degenerative Joint Diseas of the First Metatarsalphalangeal Joint,” Podiatry Management, Jan. 2013, pp. 137-142. |
DeCarbo et al., “Locking Plates: Do They Prevent Complications?,” Podiatry Today, Apr. 2014, 7 pages. |
Easley et al., “Current Concepts Review: Hallux Valgus Part II: Operative Treatment,” Foot and Ankle International, vol. 28, No. 6, Jun. 2007, pp. 748-758. |
Kim et lal., “A Multicenter Retrospective Review of Outcomes for Arthrodesis, Hemi-Metallic Joint Implant, and Resectional Arthroplasty in the Surgical Treatment of End-Stage Hallux Rigidus,” The Journal of Foot and Ankle Surgery, vol. 51, 2012, pp. 50-56. |
Easley et al., “Current Concepts Review: Hallux Valgus Part I: Pathomechanics, Clinical Assessment, and Nonoperative Management,” Foot and Ankle International, vol. 28, No. 5, May 2007, pp. 654-659. |
Sandhu et al., “Digital Arthrodesis With a One-Piece Memory Nitinol Intramedullary Fixation Device: A Retrospective Review,” Foot and Ankle Specialist, vol. 6, No. 5, Oct. 2013, pp. 364-366. |
Weber et al., “Use of the First Ray Splay Test to Assess Transverse Plane Instability Before First Metatarsocuneiform Fusion,” The Journal of Foot and Ankle Surgery, vol. 45, No. 4, Jul./Aug. 2006, pp. 278-282. |
Smith et al., “Opening Wedge Osteotomies for Correction of Hallux Valgus: A Review of Wedge Plate Fixation,” Foot and Ankle Specialist, vol. 2, No. 6, Dec. 2009, pp. 277-282. |
Easley et al., “What is the Best Treatment for Hallux Valgus?,” Evidence-Based Orthopaedics - The Best Answers to Clinical Questions, Chapter 73, 2009, pp. 479-491. |
Shurnas et al., “Proximal Metatarsal Opening Wedge Osteotomy,” Operative Techniques in Foot and Ankle Surgery, Section I, Chapter 13, 2011, pp. 73-78. |
Coetzee et al., “Revision Hallux Valgus Correction,” Operative Techniques in Foot and Ankle Surgery, Section I, Chapter 15, 2011, pp. 84-96. |
Le et al., “Tarsometatarsal Arthrodesis,” Operative Techniques in Foot and Ankle Surgery, Section II, Chapter 40, 2011, pp. 281-285. |
Collan et al., “The biomechanics of the first metatarsal bone in hallux valgus: A preliminary study utilizing a weight bearing extremity CT,” Foot and Ankle Surgery, vol. 19, 2013, pp. 155-161. |
Eustace et al., “Hallux valgus, first metatarsal pronation and collapse of the medial longitudinal arch—a radiological correlation,” Skeletal Radiology, vol. 23, 1994, pp. 191-194. |
Mizuno et al., “Detorsion Osteotomy of the First Metatarsal Bone in Hallux Valgus,” Japanese Orthopaedic Association, Tokyo, 1956; 30:813-819. |
Okuda et al., “The Shape of the Lateral Edge of the First Metatarsal Head as a Risk Factor for Recurrence of Hallux Valgus,” The Journal of Bone and Joint Surgery, vol. 89, 2007, pp. 2163-2172. |
Okuda et al., “Proximal Metatarsal Osteotomy for Hallux Valgus: Comparison of Outcome for Moderate and Severe Deformities,” Foot and Ankle International, vol. 29, No. 7, Jul. 2008, pp. 664-670. |
D'Amico et al., “Motion of the First Ray: Clarification Through Investigation,” Journal of the American Podiatry Association, vol. 69, No. 1, Jan. 1979, pp. 17-23. |
Groves, “Operative Report,” St. Tammany Parish Hospital, Date of Procedure, Mar. 26, 2014, 2 pages. |
Claim Chart for Groves Public Use (Mar. 26, 2014), Exhibit B4 of Defendant Fusion Orthopedics LLC's Invalidity Contentions, No. CV-22-00490-PHX-SRB, US District Court for the District of Arizona, Aug. 27, 2022, 161 pages. |
Albano et al., “Biomechanical Study of Transcortical or Transtrabecular Bone Fixation of Patellar Tendon Graft wih Bioabsorbable Pins in ACL Reconstruction in Sheep,” Revista Brasileira de Ortopedia (Rev Bras Ortop.) vol. 47, No. 1, 2012, pp. 43-49. |
Anderson et al., “Uncemented STAR Total Ankle Prostheses,” The Journal of Bone and Joint Surgery, vol. 86(1, Suppl 2), Sep. 2004, pp. 103-111, (Abstract Only). |
Dayton et al., “Is Our Current Paradigm for Evaluation and Management of the Bunion Deformity Flawed? A Discussion of Procedure Philosophy Relative to Anatomy,” The Journal of Foot and Ankle Surgery, vol. 54, 2015, pp. 102-111. |
Dayton et al., “Observed Changes in Radiographic Measurements of the First Ray after Frontal and Transverse Plane Rotation of the Hallux: Does the Hallux Drive the Metatarsal in a Bunion Deformity?,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 584-587. |
Dayton et al., “Relationship Of Frontal Plane Rotation Of First Metatarsal To Proximal Articular Set Angle And Hallux Alignment In Patients Undergoing Tarsometatarsal Arthrodesis For Hallux Abducto Valgus: A Case Series And Critical Review Of The Literature,” The Journal of Foot and Ankle Surgery, vol. 52, No. 3, May/Jun. 2013, pp. 348-354. |
Dayton et al., “Quantitative Analysis of the Degree of Frontal Rotation Required to Anatomically Align the First Metatarsal Phalangeal Joint During Modified Tarsal-Metatarsal Arthrodesis Without Capsular Balancing,” The Journal of Foot and Ankle Surgery, 2015, pp. 1-6. |
De Geer et al., “A New Measure of Tibial Sesamoid Position in Hallux Valgus in Relation to the Coronal Rotation of the First Metatarsal in CT Scans,” Foot and Ankle International, Mar. 26, 2015, 9 pages. |
Didomenico et al., “Correction of Frontal Plane Rotation of Sesamoid Apparatus during the Lapidus Procedure: A Novel Approach,” The Journal of Foot and Ankle Surgery, vol. 53, 2014, pp. 248-251. |
Dobbe et al. “Patient-Tailored Plate For Bone Fixation And Accurate 3D Positioning In Corrective Osteotomy,” Medical and Biological Engineering and Computing, vol. 51, No. 1-2, Feb. 2013, pp. 19-27, (Abstract Only). |
EBI Extra Small Rail Fixator, Biomet Trauma, retrieved Dec. 19, 2014, from the Internet: <http://footandanklefixation.com/product/biomet-trauma-ebi-extra-small-rail-fixator>, 7 pages. |
Garthwait, “Accu-Cut System Facilitates Enhanced Precision,” Podiatry Today, vol. 18, No. 6, Jun. 2005, 6 pages. |
Gonzalez Del Pino et al., “Variable Angle Locking Intercarpal Fusion System for Four-Corner Arthrodesis: Indications and Surgical Technique,” Journal of Wrist Surgery, vol. 1, No. 1, Aug. 2012, pp. 73-78. |
Grondal et al., “A Guide Plate for Accurate Positioning of First Metatarsophalangeal Joint during Fusion,” Operative Orthopädie Und Traumatologie, vol. 16, No. 2, 2004, pp. 167-178 (Abstract Only). |
“Hat-Trick Lesser Toe Repair System,” Smith & Nephew, Brochure, Aug. 2014, 12 pages. |
“Hoffmann II Compact External Fixation System,” Stryker, Brochure, Literature No. 5075-1-500, 2006, 12 pages. |
“Hoffmann II Micro Lengthener,” Stryker, Operative Technique, Literature No. 5075-2-002, 2008, 12 pages. |
“Hoffmann Small System External Fixator Orthopedic Instruments,” Stryker, retrieved Dec. 19, 2014, from the Internet: <http://www.alibaba.com/product-detail/Stryker-Hoffmann-Small-System-External-Fixator_1438850129.html>, 3 pages. |
Kim et al., “A New Measure of Tibial Sesamoid Position in Hallux Valgus in Relation to the Coronal Rotation of the First Metatarsal in CT Scans,” Foot and Ankle International, vol. 36, No. 8, 2015, pp. 944-952. |
“Lag Screw Target Bow,” Stryker Leibinger GmbH & Co. KG, Germany 2004, 8 pages. |
MAC (Multi Axial Correction) Fixation System, Biomet Trauma, retrieved Dec. 19, 2014, from the Internet: <http://footandanklefixation.com/product/biomet-trauma-mac-multi-axial-correction-fixation-system>, 7 pages. |
Michelangelo Bunion System, Surgical Technique, Instratek Incorporated, publication date unknown, 4 pages. |
Mini Joint Distractor, Arthrex, retrieved Dec. 19, 2014, from the Internet: <http://www.arthrex.com/foot-ankle/mini-joint-distractor/products>, 2 pages. |
MiniRail System, Small Bone Innovations, Surgical Technique, 2010, 24 pages. |
Modular Rail System: External Fixator, Smith & Nephew, Surgical Technique, 2013, 44 pages. |
Monnich et al., “A Hand Guided Robotic Planning System for Laser Osteotomy in Surgery,” World Congress on Medical Physics and Biomedical Engineering vol. 25/6: Surgery, Nimimal Invasive Interventions, Endoscopy and Image Guided Therapy, Sep. 7-12, 2009, pp. 59-62, (Abstract Only). |
Moore et al., “Effect Of Ankle Flexion Angle On Axial Alignment Of Total Ankle Replacement,” Foot and Ankle International, vol. 31, No. 12, Dec. 2010, pp. 1093-1098, (Abstract Only). |
Mortier et al., “Axial Rotation of the First Metatarsal Head in a Normal Population and Hallux Valgus Patients,” Orthopaedics and Traumatology: Surgery and Research, vol. 98, 2012, pp. 677-683. |
Okuda et al., “Postoperative Incomplete Reduction of the Sesamoids as a Risk Factor for Recurrence of Hallux Valgus,” The Journal of Bone and Joint Surgery, vol. 91-A, No. 1, Jul. 2009, pp. 1637-1645. |
Rx-Fix Mini Rail External Fixator, Wright Medical Technology, Brochure, Aug. 15, 2014, 2 pages. |
Scanlan et al. “Technique Tip: Subtalar Joint Fusion Using a Parallel Guide and Double Screw Fixation,” The Journal of Foot and Ankle Surgery, vol. 49, Issue 3, May-Jun. 2010, pp. 305-309, (Abstract Only). |
Scranton Jr. et al., “Anatomic Variations in the First Ray: Part I. Anatomic Aspects Related to Bunion Surgery,” Clinical Orthopaedics and Related Research, vol. 151, Sep. 1980, pp. 244-255. |
Siddiqui et al. “Fixation Of Metatarsal Fracture With Bone Plate In A Dromedary Heifer,” Open Veterinary Journal, vol. 3, No. 1, 2013, pp. 17-20. |
Sidekick Stealth Rearfoot Fixator, Wright Medical Technology, Surgical Technique, Dec. 2, 2013, 20 pages. |
Simpson et al., “Computer-Assisted Distraction Ostegogenesis By Ilizarov's Method,” International Journal of Medical Robots and Computer Assisted Surgery, vol. 4, No. 4, Dec. 2008, pp. 310-320, (Abstract Only). |
Small Bone External Fixation System, Acumed, Surgical Technique, Effective date Sep. 2014, 8 pages. |
Stableloc External Fixation System, Acumed, Product Overview, Effective date Sep. 2015, 4 pages. |
Stahl et al., “Derotation Of Post-Traumatic Femoral Deformities By Closed Intramedullary Sawing,” Injury, vol. 37, No. 2, Feb. 2006, pp. 145-151, (Abstract Only). |
Talbot et al.,“ Assessing Sesamoid Subluxation: How Good is the AP Radiograph?,” Foot and Ankle International, vol. 19, No. 8, Aug. 1998, pp. 547-554. |
TempFix Spanning the Ankle Joint Half Pin and Transfixing Pin Techniques, Biomet Orthopedics, Surgical Technique, 2012, 16 pages. |
Weber et al., “A Simple System For Navigation Of Bone Alignment Osteotomies Of The Tibia,” International Congress Series, vol. 1268, Jan. 2004, pp. 608-613, (Abstract Only). |
Whipple et al., “Zimmer Herbert Whipple Bone Screw System: Surgical Techniques for Fixation of Scaphoid and Other Small Bone Fractures,” Zimmer, 2003, 59 pages. |
Yakacki et al. “Compression Forces of Internal and External Ankle Fixation Devices with Simulated Bone Resorption,” Foot and Ankle International, vol. 31, No. 1, Jan. 2010, pp. 76-85, (Abstract Only). |
Yasuda et al., “Proximal Supination Osteotomy of the First Metatarsal for Hallux Valgus,” Foot and Ankle International, vol. 36, No. 6, Jun. 2015, pp. 696-704. |
Chang et al., “Lapidus Arthrodesis: A Different Perspective,” Journal of the American Podiatric Medical Association, vol. 84, No. 6, Jun. 1994, pp. 281-288. |
Horton et al., “Deformity Correction and Arthrodesis of the Midfoot with a Medial Plate,” Foot & Ankle, vol. 14, No. 9, Nov./Dec. 1993, pp. 493-499. |
Number | Date | Country | |
---|---|---|---|
20220409250 A1 | Dec 2022 | US |
Number | Date | Country | |
---|---|---|---|
62157561 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16877159 | May 2020 | US |
Child | 17897321 | US | |
Parent | 15148774 | May 2016 | US |
Child | 16877159 | US |