Intracorporeal marker and marker delivery device

Information

  • Patent Grant
  • 8498693
  • Patent Number
    8,498,693
  • Date Filed
    Friday, April 8, 2011
    13 years ago
  • Date Issued
    Tuesday, July 30, 2013
    11 years ago
Abstract
An elongated intracorporeal remotely detectable marker includes a core of bioabsorbable fibers. An outer jacket of bioabsorbable fibers is disposed around at least part of the core. In one embodiment, for example, the core has a longitudinal extent and a pair of opposed ends, and the outer jacket is disposed around the longitudinal extent of the core, with the pair of opposed ends being exposed.
Description
FIELD OF THE INVENTION

The invention is generally directed to devices and methods for the delivery of remotely detectable markers to a desired location within a patient's body. In particular, the invention is directed to devices and methods configured to retain a remotely detectable marker within a delivery device before delivery to a desired intracorporeal location.


BACKGROUND OF THE INVENTION

In diagnosing and treating certain medical conditions, it is often desirable to mark a suspicious body site for the subsequent taking of a biopsy specimen, for delivery of medicine, radiation, or other treatment, for the relocation of a site from which a biopsy specimen was taken, or at which some other procedure was performed. As is known, obtaining a tissue sample by biopsy and the subsequent examination are typically employed in the diagnosis of cancers and other malignant tumors, or to confirm that a suspected lesion or tumor is not malignant. The information obtained from these diagnostic tests and/or examinations is frequently used to devise a therapeutic plan for the appropriate surgical procedure or other course of treatment.


In many instances, the suspicious tissue to be sampled is located in a subcutaneous site, such as inside a human breast. To minimize surgical intrusion into a patient's body, it is often desirable to insert a small instrument, such as a biopsy needle, into the body for extracting the biopsy specimen while imaging the procedure using fluoroscopy, ultrasonic imaging, x-rays, magnetic resonance imaging (MRI) or any other suitable form of imaging technique. Examination of tissue samples taken by biopsy is of particular significance in the diagnosis and treatment of breast cancer. In the ensuing discussion, the biopsy and treatment site described will generally be the human breast, although the invention is suitable for marking biopsy sites in other parts of the human and other mammalian body as well.


Periodic physical examination of the breasts and mammography are important for early detection of potentially cancerous lesions. In mammography, the breast is compressed between two plates while specialized x-ray images are taken. If an abnormal mass in the breast is found by physical examination or mammography, ultrasound may be used to determine whether the mass is a solid tumor or a fluid-filled cyst. Solid masses are usually subjected to some type of tissue biopsy to determine if the mass is cancerous.


If a solid mass or lesion is large enough to be palpable, a tissue specimen can be removed from the mass by a variety of techniques, including but not limited to open surgical biopsy, a technique known as Fine Needle Aspiration Biopsy (FNAB) and instruments characterized as “vacuum assisted large core biopsy devices”.


If a solid mass of the breast is small and non-palpable (e.g., the type typically discovered through mammography), a vacuum assisted large core biopsy procedure is usually used. In performing a stereotactic biopsy of a breast, the patient lies on a special biopsy table with her breast compressed between the plates of a mammography apparatus and two separate x-rays or digital video views are taken from two different points of view. A computer calculates the exact position of the lesion as well as depth of the lesion within the breast. Thereafter, a mechanical stereotactic apparatus is programmed with the coordinates and depth information calculated by the computer, and such apparatus is used to precisely advance the biopsy needle into the small lesion. The stereotactic technique may be used to obtain histologic specimens. Usually at least five separate biopsy specimens are obtained from locations around the small lesion as well as one from the center of the lesion.


The available treatment options for cancerous lesions of the breast include various degrees of mastectomy or lumpectomy, radiation therapy, chemotherapy and combinations of these treatments. However, radiographically visible tissue features, originally observed in a mammogram, may be removed, altered or obscured by the biopsy procedure, and may heal or otherwise become altered following the biopsy. In order for the surgeon or radiation oncologist to direct surgical or radiation treatment to the precise location of the breast lesion several days or weeks after the biopsy procedure was performed, it is desirable that a biopsy site marker be placed in the patient's body to serve as a landmark for subsequent location of the lesion site. A biopsy site marker may be a permanent marker (e.g., a metal marker visible under x-ray examination), or a temporary marker (e.g., a bioresorbable marker detectable with ultrasound). While current radiographic type markers may persist at the biopsy site, an additional mammography generally must be performed at the time of follow up treatment or surgery in order to locate the site of the previous surgery or biopsy. In addition, once the site of the previous procedure is located using mammography, the site must usually be marked with a location wire which has a hook on the end which is advanced into site of the previous procedure. The hook is meant to fix the tip of the location wire with respect to the site of the previous procedure so that the patient can then be removed from the confinement of the mammography apparatus and the follow-up procedure performed. However, as the patient is removed from the mammography apparatus, or otherwise transported the position of the location wire can change or shift in relation to the site of the previous procedure. This, in turn, can result in follow-up treatments being misdirected to an undesired portion of the patient's tissue.


As an alternative or adjunct to radiographic imaging, ultrasonic imaging (herein abbreviated as “USI”) or visualization techniques can be used to image the tissue of interest at the site of interest during a surgical or biopsy procedure or follow-up procedure. USI is capable of providing precise location and imaging of suspicious tissue, surrounding tissue and biopsy instruments within the patient's body during a procedure. Such imaging facilitates accurate and controllable removal or sampling of the suspicious tissue so as to minimize trauma to surrounding healthy tissue.


For example, during a breast biopsy procedure, the biopsy device is often imaged with USI while the device is being inserted into the patient's breast and activated to remove a sample of suspicious breast tissue. As USI is often used to image tissue during follow-up treatment, it may be desirable to have a marker, similar to the radiographic markers discussed above, which can be placed in a patient's body at the site of a surgical procedure and which are visible using USI. Such a marker enables a follow-up procedure to be performed without the need for traditional radiographic mammography imaging which, as discussed above, can be subject to inaccuracies as a result of shifting of the location wire as well as being tedious and uncomfortable for the patient.


Placement of a marker or multiple markers at a location within a patient's body requires delivery devices capable of holding markers within the device until the device is properly situated within a breast or other body location. Accordingly, devices and methods for retaining markers within a marker delivery device while allowing their expulsion from the devices at desired intracorporeal locations are desired.


SUMMARY OF THE INVENTION

The invention is generally directed to the delivery of one or more markers to an intracorporeal site within a patient's body. A marker delivery device embodying features of the invention include a delivery tube or cannula having an inner lumen leading to a discharge opening and having a releasable plug which is disposed at least in part within the inner lumen and which at least partially occludes the discharge opening in the distal end of the delivery tube.


The invention, in one form thereof, is directed to a remotely detectable elongated intracorporeal marker. The marker includes a core of bioabsorbable fibers. An outer jacket of bioabsorbable fibers is disposed around at least part of the core. In one embodiment, for example, the core has a longitudinal extent and a pair of opposed ends, and the outer jacket is disposed around the longitudinal extent of the core, with the pair of opposed ends being exposed.


According to another embodiment of the invention, a releasable plug may be configured to occlude or block off the discharge opening of the delivery cannula or the inner lumen leading thereto to prevent tissue and fluid from entering the inner lumen through the discharge opening during delivery and to hold in any other markers within the inner lumen proximal to the releasable plug during handling and delivery. In one embodiment having features of the invention, the delivery device has a releasable plug with a remotely detectable marker element incorporated therein. Preferably, the marker element incorporated into the releasable plug is non-magnetic and remotely detectable by magnetic resonance imaging.


In yet another embodiment having features of the invention, the delivery device has a releasable plug and has at least one short term, remotely detectable marker mass in the inner lumen or at least one fibrous marker in the inner lumen proximal to the releasable plug. Preferably, at least one short term marker and at least one fibrous marker are disposed within the inner lumen of the delivery cannula.


The releasable plug may be secured within the inner lumen by a variety of means, but It is preferred to press fit the plug into the distal portion of the inner lumen so as to occlude the discharge opening. However, the plug may alternatively be mechanically or adhesively secured within the distal portion of the inner lumen. For further plug details see application Ser. No. 10/174,401, now U.S. Pat. No. 7,651,505, entitled Plugged Tip Delivery Tube For Marker Placement which is incorporated herein in its entirety by reference. However, the releasable plug should be configured to be easily pushed out of the discharge opening of the delivery cannula, even if the releasable plug has swollen due to contact with a water based fluid. As described above, the releasable plug preferably has a non-magnetic, MRI detectable element which does not interfere with the subsequent imaging of adjacent tissue. The MRI detectable element is about 0.5 to about 5 mm in maximum dimension, preferably about 1 to about 3 mm. Suitable non-magnetic, MRI detectable materials include titanium, platinum, gold, iridium, tantalum, tungsten, silver, rhodium and the like.


The releasable plug is formed of a biocompatible, preferably bioabsorbable material such as oxidized regenerated cellulose, polyethylene glycol, polylactic acid, polyglycolic acid, polycaproic acid, and copolymers, polymer alloys, polymer blends, and combinations thereof. Preferable materials are oxidized regenerated cellulose and polymers of polyethylene glycol with molecular weights of about 5000 to about 120,000 Daltons. The releasable plug should be formed of a water swellable material, so that it swells upon contact with water based fluids (e.g. body fluids) to further occlude or otherwise seal the discharge opening of the delivery cannula and thereby prevent premature contact of body fluids with any markers within the inner lumen proximal to the releasable plug. The plug may also be formed of fibrous materials and be in the form of a fibrous marker described below.


The short term markers disposed within the inner lumen of the delivery cannula proximal to the releasable plug should be remotely detectable for at least two weeks, preferably at least up to six weeks, but not longer than about one year, preferably not more than about six months, so as to not interfere with subsequent imaging of the target site. The short term markers are preferably formed of bioabsorbable polymeric materials such as polymers of lactic acid, glycolic acid and caprolactones and copolymers and blends thereof. Other suitable materials include those described in application Ser. No. 09/717,909, now U.S. Pat. No. 6,752,083, and application Ser. No. 10/124,757, now U.S. Pat. No. 6,862,470, both of which are incorporated by reference in their entireties. The plug and the short term markers may be formed of the same or similar material. The releasable plug may also be formed of fibrous material and be in the form of the fibrous markers described below.


The fibrous marker should be slidably disposed within the inner lumen of the delivery cannula, preferably proximal to at least one short term marker so that upon discharge from the cannula into a target site, the fibrous marker will block the accessing passageway and prevent loss of marker material therethrough. A suitable material for forming the fibrous marker is a felt and/or fiber material formed of oxidized regenerated cellulose which has an in vivo lifetime of a few hours up to about 6 weeks, typically about 3 days to about 4 weeks. However, the fibrous marker may be formed of a bioabsorbable polymer such as polylactic acid or polyglycolic acid, a co-polymer of polylactic acid and polyglycolic acid, polycaprolactone, collagen and mixtures thereof, including mixtures with oxidized regenerated cellulose. Suitable oxidized, regenerated cellulose includes SURGICEL™ from the Ethicon Division of Johnson & Johnson or other suitable oxidized regenerated cellulose which are naturally hemostatic. Alternatively, a hemostatic agent such as collagen, gelatin or polysaccharides may be incorporated into the fibrous material to provide the hemostasis upon contact with blood. A wide variety of other hemostatic agents may be incorporated into the marker. The thrombus formed by the hemostasis is formed very quickly to fill the cavity at the biopsy site and at least temporarily hold the plug and any other markers in position within the cavity. Anesthetic agents to control post procedure pain, chemotherapeutic agents to kill any residual neoplastic tissue and coloring agents (e.g. carbon black and methylene blue) for visual location of the biopsy site, may also be incorporated into the fibrous marker.


The fibrous material is formed into an elongated member, e.g. by rolling or folding, and bound in a compressed condition to provide sufficient column strength to facilitate introduction into and discharge from a tubular delivery device. Suitable binding agents for holding the fibrous marker in a compressed condition are water soluble polymers such as polyvinyl alcohol, polyethylene glycol, polyvinyl pyrollidone. One or more radiographically detectable marker elements are provided with at least one of the fibrous markers, preferably centrally located on the elongated marker to ensure that the radiographically detectable element is disposed at a more or less central location within the target site rather than at a site margin.


The releasable plug, the short term markers and the fibrous markers may include a variety of therapeutic or diagnostic materials such as hemostatic agents, anesthetic agents, coloring agents, antibiotics, antifungal agents, antiviral agents, chemotherapeutic agents, radioactive agents and the like.


The delivery device preferably has a plunger slidably disposed within the inner lumen of the delivery cannula which is movable from an initial position accommodating the releasable plug and any markers proximal to the plug within the tube, to a delivery position to push the plug and any desired number of markers out of the discharge opening in the distal end of the cannula into the target tissue site.


Upon being discharged into the intracorporeal target site, the markers at least partially fill the site to enable short term detection by remote imaging and preferably long term detection by remote imaging without interfering with imaging of tissue adjacent to the site. The markers may swell on contact with body fluid, e.g. blood so as to further fill the biopsy cavity. The fibrous marker partially fills the cavity at the target site, positioning the radiopaque marker element within the interior of the target cavity.


The marker mass proximal to the releasable plug may be in the form of ultrasound-detectable, bio-resorbable finely-divided particulate material (such as a powder or granulated material), in which many of the particles have internal cavities. Such particulate materials preferably have particle sizes less than about 2000 microns, and typically between about 20 microns and about 2000 microns. For optimum delivery and marker resolution, the particulate should have a particulate size of about 20 microns to about 1500 microns, preferably about 500 microns to about 800 microns. The ultrasound-detectable, bio-resorbable particulate materials may be formed of polymeric materials such as polylactic acid, polyglycolic acid, polycaprolactone, and combinations of these polymers and the particulate may be bound by suitable binding agents such as gelatin, polyethylene glycol, polyvinyl alcohol, glycerin, polysaccharides, other hydrophilic materials, and combinations of these. Suitable gelatins include bovine collagen, porcine collagen, ovine collagen, equine collagen, synthetic collagen, agar, synthetic gelatin, and combinations of these. Further details of the particulate marker material and the delivery thereof can be found in application Ser. No. 10/124,757, now U.S. Pat. No. 6,862,470, which has been incorporated herein. Polysaccharide particulate or powder may be included with the other particulate materials as a hemostatic agent.


The delivery tube of the device may be configured to fit within a guide cannula, such as a Mammotome® or SenoCor360™ biopsy cannula or a coaxial needle guide.


The ultrasound-detectable biopsy site markers of the present invention provide several advantages. A biopsy cavity with marker material having features of the present invention provides a large USI-bright mass, making it much easier, for example, to distinguish the ultrasound signal of the marker from signals arising naturally from within a breast. The marker materials produce bright ultrasound echo signals from one portion of the filled region, which contrasts with the dark ultrasound shadow region immediately behind the bright ultrasound echo region. The strength of the reflected signal, and the contrast with the shadow region, make the marked site readily detectable. Such ready detectability allows, for example, less-experienced physicians to perform the identification by USI and the subsequent surgical resection without the need for an interventional radiologist to identify and mark the biopsy cavity. When a MRI marker element is incorporated into the releasable plug or the short term markers, the target site in which the markers are deployed may be subsequently detected by ultrasound, magnetic resonance and X-ray without interfering with imaging adjacent tissue at a later date.


One advantage of the embodiment of the invention directed to the elongated intracorporeal remotely detectable marker having a core and outer jacket is that by having a two layer core/jacket marker body, upon contact with a body fluid or other water based fluid, the length of the fibrous marker remains about the same but the wrapped structure unfolds upon swelling. This “unfolding” creates more surface area subject to exposure to the fluid to enhance expansion, and potentially provides a larger imaging characteristic than would be possible with an unwrapped single layer marker of similar initial shape, i.e., a core alone.


The invention provides the advantages of securely retaining markers within a marker delivery device, improving accuracy and avoiding errors in placement of markers at desired locations within a patient's body, preventing ingress of tissue into the distal tip of the device when it is advanced through tissue, and guiding the device by use of an imaging device including ultrasound, X-ray and magnetic resonance based devices.


These and other advantages of the invention will become more apparent from the following description when taken in conjunction with the accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1A is a partly cut-away perspective view of a marker delivery assembly embodying features of the invention.



FIG. 1B is a transverse cross-sectional view of the marker delivery assembly of FIG. 1A taken at line 1B-1B.



FIG. 1C is a transverse cross-sectional view of the marker delivery assembly of FIG. 1A taken at line 1C-1C.



FIG. 2 is an end perspective view of a fibrous marker with a core member suitable for use with a marker delivery system embodying features of the invention.



FIG. 3 is an end perspective view of an alternative fibrous marker without a core member suitable for use with a marker delivery system embodying features of the invention.



FIG. 4A-4F illustrates forming a fibrous marker with a core member as depicted in FIG. 4.



FIG. 5 is a partially cut away, perspective view of a human breast from which a biopsy specimen has been removed, showing a markers being delivered to the biopsy site with the marker delivery assembly shown in FIG. 1A.



FIG. 6 is a partial cut-away view of a human breast shown in FIG. 2 with the markers delivered into the biopsy site and the delivery device removed.



FIG. 7 is a longitudinal cross-sectional view of the distal portion of an alternative marker delivery device embodying features of the invention with a sharp, tissue penetrating distal tip.



FIG. 8 is a longitudinal cross-sectional view of the distal portion of a marker delivery device embodying features of the invention having particulate marker mass proximal to the releasable plug.





DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION


FIGS. 1A-1C illustrate a marker delivery device 10 embodying features of the invention which includes a delivery tube or cannula 11 with a bore 12, a distal portion 13, and a proximal portion 14 with a handle 15. A releasable distal plug 16, several (five) short term markers 17, a pair of fibrous markers 18 and 19 and a proximal plug 20 are shown disposed within the bore 12. A plunger 21 is slidably disposed within the tube bore 12, and is provided with a proximal end 22 configured to allow an operator to press the plunger further into the bore 12 and push the releasable plug 16 and one or more of the other markers out of the discharge port or opening 23 in the distal end 24 of delivery tube 11. Cannula handle 15 allows an operator to hold the cannula steady while pressing plunger 21 to discharge the releasable plug 16 and markers 17 and 18.


Releasable plug 16 may substantially fill the discharge opening 23, as shown in FIG. 1, or may occupy or block only a portion of the discharge opening 23. The exposed face of plug 16 is preferably provided with an inclined configuration to conform with the inclination of the discharge opening 23.


Markers 17, 18 and 19 and proximal plug 20 are preferably configured to slide readily within tube bore 12. Releasable plug 16 is configured to be tight enough, e.g. press fit, in the bore 12 to prevent its inadvertent release which would allow premature discharge of markers 17, 18 and 19 from delivery tube 11 and undesirable contact with body fluid. But the plug 16 must be easily released when the plunger 21 is pressed deeper into the bore 12 of the delivery tube 11. An adhesive or mechanical element(s) may be used to hold the releasable plug 16 in a position within the bore 12 to occlude the discharge opening 23. Suitable adhesives include polyurethane or polyacrylic based adhesives, polyhydroxymethacrylate base adhesives, fibrin glue (e.g., Tisseal™), collagen adhesive, or mixtures thereof. Suitable mechanical means for securing the releasable plug 16 are described in application Ser. No. 10/174,401, now U.S. Pat. No. 7,651,505, which has been incorporated herein. The distal end 24 of the delivery cannula 11 is provided with a ramp 25 which guides the discharged plug 16 and markers 17, 18 and 19 out of the side port 26 into the target site. The distal tip 27 may be tapered for delivery through a guide tube as shown.


The delivery tube 11 may be provided with markings 28 which serve as visual landmarks to aid an operator in accurately placing the distal end 24 of the cannula 11 in a desired location within a patient's body for discharging the markers. The markings 37 also be radiopaque, ultrasound-reflective, or otherwise configured to be detectable by remote imaging devices and imaging methods.


Short term markers 17 are made at least in part with detectable, biocompatible materials. Suitable marker materials include bioresorbable polymeric materials such as poly(esters), poly(hydroxy acids), poly(lactones), poly(amides), poly(ester-amides), poly(amino acids), poly(anhydrides), poly(ortho-esters), poly(carbonates), poly(phosphazines), poly(thioesters), poly(urethanes), poly(ester urethanes), polysaccharides, polylactic acid, polyglycolic acid, polycaproic acid, polybutyric acid, polyvaleric acid, and copolymers, polymer alloys, polymer blends, and combinations thereof. Preferable polymeric materials are polymers of lactic acid, glycolic acid and caprolactones. The short term markers 17 may also be formed at least in part of gelatin. One or more of the short term markers 17 may include a remotely detectable preferably radiopaque element 28.


Releasable plug 16 is preferably formed at least in part of oxidized regenerated cellulose or polyethylene glycol, but may be made from the same or similar bioabsorbable materials as marker 17. The polyethylene glycol quickly expands when contacting a water based fluid such as blood, which ensures that the releasable plug seals off the discharge opening to prevent premature contact between body fluid (or other water based fluid) and the markers 17, 18 and 19 within the bore 12. The polyethylene glycol should have a molecular weight of about 5000 to about 20000 Daltons, preferably about 8000 to about 10000 Daltons in the final plug form. The releasable plug 16 preferably has a non-magnetic element 29 incorporated within the body of the releasable plug that is remotely detectable by magnetic resonance imaging (MRI). It may be formed of titanium, platinum, gold, iridium, tantalum, tungsten, silver, rhodium and the like. The MRI detectable element 29 should have a maximum dimension of about 0.5 to about 5 mm, preferably about 1 to about 3 mm to be MRI detectable. Elements with dimensions greater than about 5 mm tend to interfere with the imaging of adjacent tissue.


Releasable plug 16, markers 17, 18 and 19, and plug 20 are configured for a slidable fit within the bore 12 of the delivery tube 11. The exterior of the delivery tube 11 is preferably configured to fit within a guide cannula sized to accept a Mammotome®, Tru-Cut®, or SenoCor® biopsy device. Typically, plug 16 and markers 17 and 18 will have diameters determined by the size of the bore 12 and typically will be about 0.02 inch (0.5 mm) to about 0.5 inch (12 mm), preferably about 0.04 inch (1 mm) to about 0.3 inch (8 mm). Plug 16 may have slightly larger transverse dimensions to provide a tight fit. In addition, plugs 16 and 20 and short term markers 17 will have a length of about 0.04 inch (1 mm) to about 0.8 inch (20 mm), preferably about 0.1 inch (2.5 mm) to about 0.6 inch (15 mm).


The fibrous markers 18 and 19 are preferably rolled or folded pieces of fibrous material such as oxidized cellulose or oxidized, regenerated cellulose which has been compressed and impregnated with a binding agent such as polyethylene glycol and freeze dried in the compressed condition. The fibrous material may be rolled up by itself, as shown in FIG. 3, or wrapped as an outer jacket about a matt-like core 30 as shown in FIG. 2. The fibrous marker is generally configured to be slidably disposed within the inner lumen of the delivery cannula 11, and before delivery is about 0.5 mm to about 12 mm, preferably about 1 to about 8 mm in diameter and about 5 to about 30 mm, preferably about 10 to about 25 mm in length. Upon contact with a body fluid or other water based fluid, the length of the fibrous marker remains about the same but the wrapped structure unfolds upon swelling to a width of about 5 to about 25 mm, usually about 10 to about 20 mm. With a radiopaque marker element clamped about a center portion of the wrapped fibrous marker, the fibrous marker expands into a generally bow-tie shape when exposed to body fluids. However, even though secured to the fibrous marker, the radiopaque marker element need not restrict the expansion of the fibrous marker.


The manufacture and use of an embodiment of a fibrous elongated intracorporeal marker 18 with core 30 of bioabsorbable fibers is schematically illustrated in FIGS. 4A-4F. In the embodiment, as shown in FIGS. 4C-4E, core 30 has a longitudinal extent and a pair of opposed ends. An outer jacket 33 of bioabsorbable fibers is disposed around the elongated longitudinal extent of core 30, with the pair of opposed ends being exposed.


A felt pad or mat 31 of oxidized, regenerated cellulose about 0.125 to about 0.375 inch (3.2-9.3 mm), preferably about 0.25 inch (6.4 mm) thick is impregnated with a 10% (Wt.) polyethylene glycol in a 70% isopropyl alcohol solution and then compressed to a mat about 0.03 to about 0.05 inch (0.76-1.3 mm) thick. A reduction in thickness of 80% or more is suitable. The compressed mat 31 is cut up into elongated strips 32 with square or near square transverse cross-sectional shapes which form the core 30. The core 30 is wrapped in a fabric 33 (i.e., the outer jacket) of oxidized regenerated cellulose about 5 to about 10 mm in width and about 20 mm in length, compressed and impregnated with the 10% PEG dispersion and then freeze dried to a diameter of about 0.065 inch (1.65 mm). Elevated temperatures may be employed to dry the material. The fabric 33 should make at least one, preferably two or more complete wraps about the core 30. The wrapped and compressed product may then be cut to a desired length to form the fibrous marker 18. Alternatively, the uncompressed mat 31, the strip 32 and fiber wrap 33 may be provided at the desired length for the fibrous marker 18, wrapped and then compressed.


The fiber wrap (i.e., outer jacket) 33 may be formed, at least in part, from a bioabsorbable material, such as for example, a material comprised of at least one of oxidized cellulose, oxidized regenerated cellulose, polylactic acid, a copolymer of polylactic acid and glycolic acid, and polycaprolactone. Also, the fiber wrap (i.e., outer jacket) 33 may be a woven fabric.


A radiographically detectable marker element 34 may be formed of a radiopaque wire about 0.005 to about 0.01 inch (0.13-0.25 mm), and may then be disposed around, e.g., crimped about, or embedded in, a central portion (or other desired portion) of the marker 18. The fibrous marker 18 is then ready for deployment. As shown in FIG. 1A, only fibrous marker 18 is provided with marker element 34. Marker 19 may be formed in the same or similar manner but without the radiopaque element 34.


Fibrous markers without the core member 30 may be formed by rolling or folding into the desired configuration. The fibrous material, oxidized rayon felt is first impregnated with a 10% PEG dispersion, compressed and then freeze dried. The dried felt material is rolled again compressed in the rolled state, impregnated with a 10-30% PEG solution, and freeze dried in the rolled compressed condition. The rayon felt material can be initially oxidized by treating in a solution of 80% (by vol.) Nitric Acid, 20% (by vol.) Sulfuric Acid and 1% (by weight) Sodium Nitrite. The felt is treated in the oxidizing, acidic solution at room temperature for about 4.5 hours and then rinsed with deionized water.


Radiopaque elements 28 and 34 may be made with suitable radiopaque material, including stainless steel, platinum, gold, iridium, titanium, tantalum, tungsten, silver, rhodium, nickel, bismuth, other radiopaque metals, alloys and oxides of these metals, barium salts, iodine salts, iodinated materials, and combinations of these. The radiopaque elements 28 and 34 may also be configured for detection by MRI. Radiopaque materials and markers may be permanent, or may be temporary and not detectable after a period of time subsequent to their placement within a patient. Colorants, such as dyes (e.g., methylene blue and carbon black) and pigments (e.g., barium sulfate), may also be included in markers 17 and 19 and plugs 16 and 20 embodying features of the invention.



FIG. 5 schematically illustrates the use of a marker delivery system 10 to deliver markers to a desired location 35 within a patient's body. The desired location 35 is typically a cavity from which a biopsy sample has been, or is to be, taken, or a lesion that has been or will be removed or otherwise treated. In FIG. 5, the marker delivery system 10 is shown inserted into a breast 40 through a guide cannula 41 until the distal end 24 is disposed at the delivery site, cavity 35 where a tissue specimen has been removed. While an operator holds the system 10 by the handle 15 of the delivery tube 11, the plunger 21 is pressed further into the bore 12 of delivery cannula 11 to discharge the releasable plug 16 and markers 17, 18 and 19 into the cavity 35. FIG. 6 schematically illustrates the plug 16 and markers 17, 18 and 19 within the cavity 35 after deployment. When the markers contact body fluid within the cavity 35, they tend to swell and thereby further fill the cavity. The fibrous markers 18 and 19 generally block the accessing track 36 to the cavity 35 so that none of the smaller markers 17 will be lost through the track 36. Marks 37 are provided on the proximal end of cannula 11 to provide end location information to the operator.



FIG. 7 illustrates the distal portion 50 of cannula 51 of an alternative delivery system that is essentially the same as that shown in FIGS. 1A-1C except that the distal tip 52 of cannula 51 is configured in a needle-like shape. The delivery system cannula 51 may be used in conjunction with a guide cannula (not shown) or the cannula 51 can be inserted directly through tissue to reach the target site without the need for a guide cannula. The releasable plug 53 is secured in the discharge opening 54 as in the previously discussed embodiment. The exposed face 55 of the plug 53 is preferably flush with the discharge opening 54 of the distal tip 52.


Insertion of marker delivery devices embodying features of the invention may be performed with or without the aid of an imaging device, such as an ultrasound imaging device, an X-ray imaging device, a MRI device, or other imaging device. Alternatively, or additionally, insertion may be visually guided, or may be guided by palpation or by other means.


The size and composition of the short term markers 17 are selected so as to remain in place within the patient and be detectable by ultrasound for at least 2 weeks, preferably at least 6 weeks to have practical clinical value. However, the short term markers should not be detectable by ultrasound after about one year, preferably not after about six months, so as to avoid interfering with subsequent site examination. For most clinical purposes, a suitable in-situ lifespan when the short term marker is ultrasonically detectable is about six to about twenty weeks. The radiopaque and MRI detectable marker elements generally will have much longer lifespans.



FIG. 8 illustrates the distal shaft section 60 of an alternative delivery cannula 61 which has a fibrous releasable plug 62 in the inner lumen 63 of the distal shaft section which at least partially occludes the discharge opening 64 in the distal end of the shaft. The fibrous releasable plug 62 may be formed as shown in FIGS. 2, 3 and 4A-F.


The inner lumen proximal to the fibrous releasable plug 62 is filled with a particulate marker material 65. The corresponding parts of the system are the same as that shown in FIGS. 1A-1C. Plunger 66 is slidably disposed within the inner lumen 63 to eject the powdered mass 65. The particulate marker material 65 may be discharged dry or mixed with a suitable fluid and discharged as a slurry.


The particulate may be formed of a biocompatible and bio-resorbable polymeric material such as polylactic acid, polyglycolic acid, polycaprolactones, poly(esters), poly(hydroxy acids), poly(lactones), poly(amides), poly(ester-amides), poly(amino acids), poly(anhydrides), poly(ortho-esters), poly(carbonates), poly(phosphazines), poly(thioesters), poly(urethanes), poly(ester urethanes), polysaccharides, polybutyric acid, polyvaleric acid, and copolymers, polymer alloys, polymer mixtures, and combinations thereof. Of those, polylactic acid, polyglycolic acid, and polycaproic acid are preferred. The polymeric material in particulate form should have cavities or entrap bubbles which facilitate remote detection.


Suitable particulate materials have particle sizes typically about 20 microns to about 2000 microns, preferably about 20 microns to about 800 microns and more preferably about 300 microns to about 500 microns. The particulate should have cavities for USI with maximum dimensions of about 10 microns to about 500 microns, preferably about 20 microns to about 200 microns. The polymeric particulate materials suitable for use in making ultrasound-detectable biopsy marker materials typically have a bulk density of about 0.8 g/ml to about 1.5 g/ml, preferably about 0.8 g/ml to about 1 g/ml. The particulate may also contain or be mixed with binding agents such as polyethylene glycol, polyvinyl alcohol and the like. Polysaccharide particulate or powder may be incorporated into the particulate mass in amounts up to about 50% (by weight) of the total particulate mass for purposes of hemostasis.


While particular forms of the invention have been illustrated and described herein in the context of a breast biopsy site, it will be apparent that the device and methods having features of the invention may find use in a variety of locations and in a variety of applications, in addition to the human breast. Moreover, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited to the specific embodiments illustrated. It is therefore intended that this invention to be defined by the scope of the appended claims as broadly as the prior art will permit, and in view of the specification if need be. Moreover, those skilled in the art will recognize that features shown in one embodiment may be utilized in other embodiments. Terms such as “element”, “member”, “device”, “section”, “portion”, “step”, “means” and words of similar import when used in the following claims shall not be construed as invoking the provisions of 35 U.S.C. §112(6) unless the following claims expressly use the terms “means” followed by a particular function without specific structure or “step” followed by a particular function without specific action. All patents and patent applications referred to above are hereby incorporated by reference in their entirety.

Claims
  • 1. A remotely detectable elongated intracorporeal marker, comprising: a core of bioabsorbable fibers; andan outer jacket of bioabsorbable fibers disposed around at least part of the core.
  • 2. The intracorporeal marker of claim 1, wherein the core has a longitudinal extent and a pair of opposed ends, and the outer jacket is disposed around the longitudinal extent of the core and with the pair of opposed ends being exposed.
  • 3. The intracorporeal marker of claim 1, further comprising a radiopaque marker element disposed around the outer jacket.
  • 4. The intracorporeal marker of claim 1, wherein the bioabsorbable fibers of the core comprise at least one material selected from the group consisting of cellulose, polylactic acid, a copolymer of polylactic acid and glycolic acid, and polycaprolactone.
  • 5. The intracorporeal marker of claim 4, wherein the cellulose is oxidized, regenerated cellulose.
  • 6. The intracorporeal marker of claim 1, wherein the outer jacket is at least in part woven fabric.
  • 7. The intracorporeal marker of claim 1, wherein the marker is in a compressed condition, and maintained in the compressed condition by having incorporated therein a binding agent.
  • 8. The intracorporeal marker of claim 7, wherein the binding agent is at least one water soluble polymer selected from the group consisting of polyvinyl alcohol, polyethylene glycol and polyvinyl pyrollidone.
  • 9. The intracorporeal marker of claim 1, comprising at least one bioactive component selected from the group consisting of therapeutic and diagnostic agents incorporated therein.
  • 10. The intracorporeal marker of claim 1, wherein the core includes a material selected from the group consisting of polylactic acid, a co-polymer of polylactic acid and glycolic acid, polycaprolactone, collagen and mixtures thereof, including mixtures with an oxidized cellulose.
  • 11. The intracorporeal marker of claim 1, comprising a radiopaque marker element disposed around a central portion of the outer jacket.
  • 12. The intracorporeal marker of claim 11, wherein the radiopaque marker element holds the central portion to restrict expansion thereof.
  • 13. The intracorporeal marker of claim 12, wherein the outer jacket is configured to expand into a bow-tie shape when exposed to body fluid or other water based fluid.
  • 14. The intracorporeal marker of claim 1 which has been compressed at least 25%, and is bound in a compressed bound condition by a polymer binding agent selected from the group of water soluble polymers consisting of polyvinyl alcohol, polyethylene glycol and polyvinyl pyrollidone.
  • 15. The intracorporeal marker of claim 1, which is about 0.5 mm to about 12 mm in diameter and about 5 to about 30 mm in length.
  • 16. The intracorporeal marker of claim 1, wherein the bioabsorbable fibers of the outer jacket comprise at least one material selected from the group consisting of oxidized cellulose, oxidized regenerated cellulose, polylactic acid, a copolymer of polylactic acid and glycolic acid, and polycaprolactone.
  • 17. A remotely imageable marker system for an intracorporeal site, comprising: a first tissue marker pellet comprised of a polysaccharide, the polysaccharide exhibiting hemostatic properties; anda second tissue marker for delivery to a patient site with the first tissue marker pellet, the second tissue marker configured as a fibrous marker comprising:a core of bioabsorbable fibers; andan outer jacket of bioabsorbable fibers disposed around at least part of the core.
RELATED APPLICATIONS

This application is a continuation-in-part of application Ser. No. 12/214,398 entitled MARKER DELIVERY DEVICE WITH RELEASABLE PLUG, filed Jun. 18, 2008, now U.S. Pat. No. 7,970,454, which is a divisional of application Ser. No. 10/753,694, filed Jan. 7, 2004 now abandoned, which is a continuation-in-part of application Ser. No. 10/444,770, filed May 23, 2003, now U.S. Pat. No. 7,983,734. Also, this application is a continuation-in-part of U.S. patent application Ser. No. 12/852,286 entitled CAVITY-FILLING BIOPSY SITE MARKERS, filed Aug. 6, 2010, now U.S. Pat. No. 8,219,182, which is a continuation of U.S. patent application Ser. No. 10/990,327, filed Nov. 16, 2004, now U.S. Pat. No. 7,792,569, which is a continuation of U.S. patent application Ser. No. 10/124,757, filed Apr. 16, 2002, now U.S. Pat. No. 6,862,470, which is a continuation-in-part of U.S. patent application Ser. No. 09/717,909, filed Nov. 20, 2000, now U.S. Pat. No. 6,725,083, which is a continuation-in-part of U.S. patent application Ser. No. 09/343,975, filed Jun. 30, 1999, now U.S. Pat. No. 6,347,241, which is a continuation-in-part of U.S. patent application Ser. No. 09/241,936, filed Feb. 2, 1999, now U.S. Pat. No. 6,161,034. Also, this application is a continuation-in-part of U.S. patent application Ser. No. 12/592,020 entitled PLUGGED TIP DELIVERY TUBE FOR MARKER PLACEMENT, filed Nov. 18, 2009, now U.S. Pat. No. 8,177,792, which is a continuation of U.S. patent application Ser. No. 10/174,401, filed Jun. 17, 2002, now U.S. Pat. No. 7,651,505. All the above from which priority is claimed are incorporated herein by reference in their entireties.

US Referenced Citations (483)
Number Name Date Kind
2192270 McGowan Mar 1940 A
2481408 Fuller et al. Sep 1949 A
2832888 Houston Apr 1958 A
2899362 Sieger, Jr. et al. Aug 1959 A
2907327 White Oct 1959 A
3341417 Sinaiko Sep 1967 A
3402712 Eisenhand Sep 1968 A
3516412 Ackerman Jun 1970 A
3593343 Viggers Jul 1971 A
3757781 Smart Sep 1973 A
3818894 Wichterle et al. Jun 1974 A
3823212 Chvapil Jul 1974 A
3921632 Bardani Nov 1975 A
4005699 Bucalo Feb 1977 A
4007732 Kvavle et al. Feb 1977 A
4041931 Elliott et al. Aug 1977 A
4103690 Harris Aug 1978 A
4105030 Kercso Aug 1978 A
4172449 LeRoy et al. Oct 1979 A
4197846 Bucalo Apr 1980 A
4217889 Radovan et al. Aug 1980 A
4276885 Tickner et al. Jul 1981 A
4294241 Miyata Oct 1981 A
4298998 Naficy Nov 1981 A
4331654 Morris May 1982 A
4390018 Zukowski Jun 1983 A
4400170 McNaughton et al. Aug 1983 A
4401124 Guess et al. Aug 1983 A
4405314 Cope Sep 1983 A
4428082 Naficy Jan 1984 A
4438253 Casey et al. Mar 1984 A
4442843 Rasor et al. Apr 1984 A
4470160 Cavon Sep 1984 A
4487209 Mehl Dec 1984 A
4545367 Tucci Oct 1985 A
4549560 Andis Oct 1985 A
4582061 Fry Apr 1986 A
4582640 Smestad et al. Apr 1986 A
4588395 Lemelson May 1986 A
4597753 Turley Jul 1986 A
4647480 Ahmed Mar 1987 A
4655226 Lee Apr 1987 A
4661103 Harman Apr 1987 A
4682606 DeCaprio Jul 1987 A
4693237 Hoffman et al. Sep 1987 A
4740208 Cavon Apr 1988 A
4762128 Rosenbluth Aug 1988 A
4813062 Gilpatrick Mar 1989 A
4820267 Harman Apr 1989 A
4832680 Haber et al. May 1989 A
4832686 Anderson May 1989 A
4847049 Yamamoto Jul 1989 A
4863470 Carter Sep 1989 A
4870966 Dellon et al. Oct 1989 A
4874376 Hawkins, Jr. Oct 1989 A
4889707 Day et al. Dec 1989 A
4909250 Smith Mar 1990 A
4938763 Dunn et al. Jul 1990 A
4950665 Floyd Aug 1990 A
4963150 Brauman Oct 1990 A
4970298 Silver et al. Nov 1990 A
4989608 Ratner Feb 1991 A
4994013 Suthanthiran et al. Feb 1991 A
4994028 Leonard et al. Feb 1991 A
5012818 Joishy May 1991 A
5059197 Urie et al. Oct 1991 A
5081997 Bosley, Jr. et al. Jan 1992 A
5120802 Mares et al. Jun 1992 A
5125413 Baran Jun 1992 A
5137928 Erbel et al. Aug 1992 A
5141748 Rizzo Aug 1992 A
5147307 Gluck Sep 1992 A
5147631 Glajch et al. Sep 1992 A
5162430 Rhee et al. Nov 1992 A
5163896 Suthanthiran et al. Nov 1992 A
5195540 Shiber Mar 1993 A
5197482 Rank et al. Mar 1993 A
5197846 Uno et al. Mar 1993 A
5199441 Hogle Apr 1993 A
5219339 Saito Jun 1993 A
5221269 Miller et al. Jun 1993 A
5231615 Endoh Jul 1993 A
5236410 Granov et al. Aug 1993 A
5242759 Hall Sep 1993 A
5250026 Ehrlich et al. Oct 1993 A
5271961 Mathiowitz et al. Dec 1993 A
5273532 Niezink et al. Dec 1993 A
5280788 Janes et al. Jan 1994 A
5281197 Arias et al. Jan 1994 A
5281408 Unger Jan 1994 A
5282781 Liprie Feb 1994 A
5284479 de Jong Feb 1994 A
5289831 Bosley Mar 1994 A
5320100 Herweck et al. Jun 1994 A
5320613 Houge et al. Jun 1994 A
5328955 Rhee et al. Jul 1994 A
5334381 Unger Aug 1994 A
5344640 Deutsch et al. Sep 1994 A
5353804 Kornberg et al. Oct 1994 A
5354623 Hall Oct 1994 A
5358514 Schulman et al. Oct 1994 A
5366756 Chesterfield et al. Nov 1994 A
5368030 Zinreich et al. Nov 1994 A
5388588 Nabai et al. Feb 1995 A
5394875 Lewis et al. Mar 1995 A
5395319 Hirsch et al. Mar 1995 A
5409004 Sloan Apr 1995 A
5417708 Hall et al. May 1995 A
5422730 Barlow et al. Jun 1995 A
5425366 Reinhardt et al. Jun 1995 A
5431639 Shaw Jul 1995 A
5433204 Olson Jul 1995 A
5449560 Antheunis et al. Sep 1995 A
5451406 Lawin et al. Sep 1995 A
5460182 Goodman et al. Oct 1995 A
5469847 Zinreich et al. Nov 1995 A
5475052 Rhee et al. Dec 1995 A
5490521 Davis et al. Feb 1996 A
5494030 Swartz et al. Feb 1996 A
5499989 LaBash Mar 1996 A
5507807 Shippert Apr 1996 A
5508021 Grinstaff et al. Apr 1996 A
5514085 Yoon May 1996 A
5522896 Prescott Jun 1996 A
5538726 Order Jul 1996 A
5542915 Edwards et al. Aug 1996 A
5549560 Van de Wijdeven Aug 1996 A
RE35391 Brauman Dec 1996 E
5580568 Greff et al. Dec 1996 A
5585112 Unger et al. Dec 1996 A
5611352 Kobren et al. Mar 1997 A
5626611 Liu et al. May 1997 A
5628781 Williams et al. May 1997 A
5629008 Lee May 1997 A
5636255 Ellis Jun 1997 A
5643246 Leeb et al. Jul 1997 A
5646146 Faarup et al. Jul 1997 A
5667767 Greff et al. Sep 1997 A
5669882 Pyles Sep 1997 A
5673841 Schulze et al. Oct 1997 A
5676146 Scarborough Oct 1997 A
5676925 Klaveness et al. Oct 1997 A
5688490 Tournier et al. Nov 1997 A
5690120 Jacobsen et al. Nov 1997 A
5695480 Evans et al. Dec 1997 A
5702128 Maxim et al. Dec 1997 A
5702716 Dunn et al. Dec 1997 A
5716981 Hunter et al. Feb 1998 A
5747060 Sackler et al. May 1998 A
5762903 Park et al. Jun 1998 A
5769086 Ritchart et al. Jun 1998 A
5776496 Violante et al. Jul 1998 A
5779647 Chau et al. Jul 1998 A
5782764 Werne Jul 1998 A
5782775 Milliman et al. Jul 1998 A
5795308 Russin Aug 1998 A
5799099 Wang et al. Aug 1998 A
5800362 Kobren et al. Sep 1998 A
5800389 Burney et al. Sep 1998 A
5800445 Ratcliff et al. Sep 1998 A
5800541 Rhee et al. Sep 1998 A
5817022 Vesely Oct 1998 A
5820918 Ronan et al. Oct 1998 A
5821184 Haines et al. Oct 1998 A
5823198 Jones et al. Oct 1998 A
5824042 Lombardi et al. Oct 1998 A
5824081 Knapp et al. Oct 1998 A
5826776 Schulze et al. Oct 1998 A
5830178 Jones et al. Nov 1998 A
5842477 Naughton et al. Dec 1998 A
5842999 Pruitt et al. Dec 1998 A
5845646 Lemelson Dec 1998 A
5846220 Elsberry Dec 1998 A
5851508 Greff et al. Dec 1998 A
5853366 Dowlatshahi Dec 1998 A
5865806 Howell Feb 1999 A
5869080 McGregor et al. Feb 1999 A
5871501 Leschinsky et al. Feb 1999 A
5876340 Tu et al. Mar 1999 A
5879357 Heaton et al. Mar 1999 A
5891558 Bell et al. Apr 1999 A
5897507 Kortenbach et al. Apr 1999 A
5902310 Foerster et al. May 1999 A
5911705 Howell Jun 1999 A
5916164 Fitzpatrick et al. Jun 1999 A
5921933 Sarkis et al. Jul 1999 A
5922024 Janzen et al. Jul 1999 A
5928626 Klaveness et al. Jul 1999 A
5928773 Andersen Jul 1999 A
5941439 Kammerer et al. Aug 1999 A
5941890 Voegele et al. Aug 1999 A
5942209 Leavitt et al. Aug 1999 A
5948425 Janzen et al. Sep 1999 A
5954670 Baker Sep 1999 A
5972817 Haines et al. Oct 1999 A
5980564 Stinson Nov 1999 A
5989265 Bouquet De La Joliniere et al. Nov 1999 A
6015541 Greff et al. Jan 2000 A
6030333 Sioshansi et al. Feb 2000 A
6053925 Barnhart Apr 2000 A
6056700 Burney et al. May 2000 A
6066122 Fisher May 2000 A
6066325 Wallace et al. May 2000 A
6071301 Cragg et al. Jun 2000 A
6071310 Picha et al. Jun 2000 A
6071496 Stein et al. Jun 2000 A
6090996 Li Jul 2000 A
6096065 Crowley Aug 2000 A
6096070 Ragheb et al. Aug 2000 A
6106473 Violante et al. Aug 2000 A
6117108 Woehr et al. Sep 2000 A
6120536 Ding et al. Sep 2000 A
6142955 Farascioni et al. Nov 2000 A
6159240 Sparer et al. Dec 2000 A
6159445 Klaveness et al. Dec 2000 A
6161034 Burbank et al. Dec 2000 A
6162192 Cragg et al. Dec 2000 A
6173715 Sinanan et al. Jan 2001 B1
6174330 Stinson Jan 2001 B1
6177062 Stein et al. Jan 2001 B1
6181960 Jensen et al. Jan 2001 B1
6183497 Sing et al. Feb 2001 B1
6190350 Davis et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6200258 Slater et al. Mar 2001 B1
6203524 Burney et al. Mar 2001 B1
6203568 Lombardi et al. Mar 2001 B1
6213957 Milliman et al. Apr 2001 B1
6214045 Corbitt, Jr. et al. Apr 2001 B1
6214315 Greff et al. Apr 2001 B1
6220248 Voegele et al. Apr 2001 B1
6224630 Bao et al. May 2001 B1
6228049 Schroeder et al. May 2001 B1
6228055 Foerster et al. May 2001 B1
6231615 Preissman May 2001 B1
6234177 Barsch May 2001 B1
6241687 Voegele et al. Jun 2001 B1
6241734 Scribner et al. Jun 2001 B1
6251418 Ahern et al. Jun 2001 B1
6261243 Burney et al. Jul 2001 B1
6261302 Voegele et al. Jul 2001 B1
6264917 Klaveness et al. Jul 2001 B1
6270464 Fulton, III et al. Aug 2001 B1
6270472 Antaki et al. Aug 2001 B1
6287278 Woehr et al. Sep 2001 B1
6287332 Bolz et al. Sep 2001 B1
6289229 Crowley Sep 2001 B1
6306154 Hudson et al. Oct 2001 B1
6312429 Burbank et al. Nov 2001 B1
6316522 Loomis et al. Nov 2001 B1
6335029 Kamath et al. Jan 2002 B1
6336904 Nikolchev Jan 2002 B1
6340367 Stinson et al. Jan 2002 B1
6343227 Crowley Jan 2002 B1
6347240 Foley et al. Feb 2002 B1
6347241 Burbank et al. Feb 2002 B2
6350244 Fisher Feb 2002 B1
6350274 Li Feb 2002 B1
6354989 Nudeshima Mar 2002 B1
6356112 Tran et al. Mar 2002 B1
6356782 Sirimanne et al. Mar 2002 B1
6358217 Bourassa Mar 2002 B1
6363940 Krag Apr 2002 B1
6371904 Sirimanne et al. Apr 2002 B1
6394965 Klein May 2002 B1
6403758 Loomis Jun 2002 B1
6405733 Fogarty et al. Jun 2002 B1
6409742 Fulton, III et al. Jun 2002 B1
6424857 Henrichs et al. Jul 2002 B1
6425903 Voegele Jul 2002 B1
6427081 Burbank et al. Jul 2002 B1
6436030 Rehil Aug 2002 B2
6450937 Mercereau et al. Sep 2002 B1
6450938 Miller Sep 2002 B1
6471700 Burbank et al. Oct 2002 B1
6506156 Jones et al. Jan 2003 B1
6511468 Cragg et al. Jan 2003 B1
6537193 Lennox Mar 2003 B1
6540981 Klaveness et al. Apr 2003 B2
6544185 Montegrande Apr 2003 B2
6551253 Worm et al. Apr 2003 B2
6554760 Lamoureux et al. Apr 2003 B2
6562317 Greff et al. May 2003 B2
6564806 Fogarty et al. May 2003 B1
6565551 Jones et al. May 2003 B1
6567689 Burbank et al. May 2003 B2
6575888 Zamora et al. Jun 2003 B2
6575991 Chesbrough et al. Jun 2003 B1
6585773 Xie Jul 2003 B1
6605047 Zarins et al. Aug 2003 B2
6610026 Cragg et al. Aug 2003 B2
6613002 Clark et al. Sep 2003 B1
6616630 Woehr et al. Sep 2003 B1
6626850 Chau et al. Sep 2003 B1
6628982 Thomas et al. Sep 2003 B1
6636758 Sanchez et al. Oct 2003 B2
6638234 Burbank et al. Oct 2003 B2
6638308 Corbitt, Jr. et al. Oct 2003 B2
6652442 Gatto Nov 2003 B2
6656192 Espositio et al. Dec 2003 B2
6662041 Burbank et al. Dec 2003 B2
6699205 Fulton, III et al. Mar 2004 B2
6712774 Voegele et al. Mar 2004 B2
6712836 Berg et al. Mar 2004 B1
6716444 Castro et al. Apr 2004 B1
6725083 Burbank et al. Apr 2004 B1
6730042 Fulton et al. May 2004 B2
6730044 Stephens et al. May 2004 B2
6746661 Kaplan Jun 2004 B2
6746773 Llanos et al. Jun 2004 B2
6752154 Fogarty et al. Jun 2004 B2
6766186 Hoyns et al. Jul 2004 B1
6774278 Ragheb et al. Aug 2004 B1
6780179 Lee et al. Aug 2004 B2
6824507 Miller Nov 2004 B2
6824527 Gollobin Nov 2004 B2
6846320 Ashby et al. Jan 2005 B2
6862470 Burbank et al. Mar 2005 B2
6863685 Davila et al. Mar 2005 B2
6881226 Corbitt, Jr. et al. Apr 2005 B2
6899731 Li et al. May 2005 B2
6918927 Bates et al. Jul 2005 B2
6936014 Vetter et al. Aug 2005 B2
6939318 Stenzel Sep 2005 B2
6945973 Bray Sep 2005 B2
6951564 Espositio et al. Oct 2005 B2
6992233 Drake et al. Jan 2006 B2
6994712 Fisher et al. Feb 2006 B1
7001341 Gellman et al. Feb 2006 B2
7008382 Adams et al. Mar 2006 B2
7014610 Koulik Mar 2006 B2
7025765 Balbierz et al. Apr 2006 B2
7044957 Foerster et al. May 2006 B2
7083576 Zarins et al. Aug 2006 B2
7125397 Woehr et al. Oct 2006 B2
7160258 Imran et al. Jan 2007 B2
7172549 Slater et al. Feb 2007 B2
7214211 Woehr et al. May 2007 B2
7229417 Foerster et al. Jun 2007 B2
7236816 Kumar et al. Jun 2007 B2
7264613 Woehr et al. Sep 2007 B2
7294118 Saulenas et al. Nov 2007 B2
7297725 Winterton et al. Nov 2007 B2
7329402 Unger et al. Feb 2008 B2
7416533 Gellman et al. Aug 2008 B2
7424320 Chesbrough et al. Sep 2008 B2
7449000 Adams et al. Nov 2008 B2
7527610 Erickson May 2009 B2
7534452 Chernomorsky et al. May 2009 B2
7569065 Chesbrough et al. Aug 2009 B2
7577473 Davis et al. Aug 2009 B2
7637948 Corbitt, Jr. Dec 2009 B2
7651505 Lubock et al. Jan 2010 B2
7819820 Field et al. Oct 2010 B2
20010006616 Leavitt et al. Jul 2001 A1
20010033867 Ahern et al. Oct 2001 A1
20010049481 Fulton, III et al. Dec 2001 A1
20020004060 Heublein et al. Jan 2002 A1
20020016625 Falotico et al. Feb 2002 A1
20020022883 Burg Feb 2002 A1
20020026201 Foerster et al. Feb 2002 A1
20020035324 Sirimanne et al. Mar 2002 A1
20020045842 Van Bladel et al. Apr 2002 A1
20020052572 Franco et al. May 2002 A1
20020055731 Atala et al. May 2002 A1
20020058868 Hoshino et al. May 2002 A1
20020058882 Fulton, III et al. May 2002 A1
20020077687 Ahn Jun 2002 A1
20020082519 Miller et al. Jun 2002 A1
20020082682 Barclay et al. Jun 2002 A1
20020082683 Stinson et al. Jun 2002 A1
20020095204 Thompson et al. Jul 2002 A1
20020095205 Edwin et al. Jul 2002 A1
20020107437 Sirimanne et al. Aug 2002 A1
20020133148 Daniel et al. Sep 2002 A1
20020143359 Fulton, III et al. Oct 2002 A1
20020165608 Llanos et al. Nov 2002 A1
20020193815 Foerster et al. Dec 2002 A1
20020193867 Gladdish, Jr. et al. Dec 2002 A1
20030036803 McGhan Feb 2003 A1
20030051735 Pavcnik et al. Mar 2003 A1
20030116806 Kato Jun 2003 A1
20030165478 Sokoll Sep 2003 A1
20030191355 Ferguson Oct 2003 A1
20030199887 Ferrera et al. Oct 2003 A1
20030225420 Wardle Dec 2003 A1
20030236573 Evans et al. Dec 2003 A1
20040001841 Nagavarapu et al. Jan 2004 A1
20040002650 Mandrusov et al. Jan 2004 A1
20040016195 Archuleta Jan 2004 A1
20040024304 Foerster et al. Feb 2004 A1
20040059341 Gellman et al. Mar 2004 A1
20040073107 Sioshansi et al. Apr 2004 A1
20040073284 Bates et al. Apr 2004 A1
20040097981 Selis May 2004 A1
20040101479 Burbank et al. May 2004 A1
20040101548 Pendharkar May 2004 A1
20040106891 Langan et al. Jun 2004 A1
20040116802 Jessop et al. Jun 2004 A1
20040124105 Seiler et al. Jul 2004 A1
20040127765 Seiler et al. Jul 2004 A1
20040133124 Bates et al. Jul 2004 A1
20040162574 Viola Aug 2004 A1
20040167619 Case et al. Aug 2004 A1
20040193044 Burbank et al. Sep 2004 A1
20040204660 Fulton et al. Oct 2004 A1
20040210208 Paul et al. Oct 2004 A1
20040213756 Michal et al. Oct 2004 A1
20040236211 Burbank et al. Nov 2004 A1
20040236212 Jones et al. Nov 2004 A1
20050020916 MacFarlane et al. Jan 2005 A1
20050033157 Klein et al. Feb 2005 A1
20050033195 Fulton et al. Feb 2005 A1
20050036946 Pathak et al. Feb 2005 A1
20050045192 Fulton et al. Mar 2005 A1
20050059887 Mostafavi et al. Mar 2005 A1
20050059888 Sirimanne et al. Mar 2005 A1
20050063908 Burbank et al. Mar 2005 A1
20050065354 Roberts Mar 2005 A1
20050065453 Shabaz et al. Mar 2005 A1
20050080337 Sirimanne et al. Apr 2005 A1
20050080339 Sirimanne et al. Apr 2005 A1
20050085724 Sirimanne et al. Apr 2005 A1
20050100580 Osborne et al. May 2005 A1
20050113659 Pothier et al. May 2005 A1
20050119562 Jones et al. Jun 2005 A1
20050143650 Winkel Jun 2005 A1
20050143656 Burbank et al. Jun 2005 A1
20050165305 Foerster et al. Jul 2005 A1
20050175657 Hunter et al. Aug 2005 A1
20050181007 Hunter et al. Aug 2005 A1
20050208122 Allen et al. Sep 2005 A1
20050234336 Beckman et al. Oct 2005 A1
20050268922 Conrad et al. Dec 2005 A1
20050273002 Goosen et al. Dec 2005 A1
20050277871 Selis Dec 2005 A1
20060004440 Stinson Jan 2006 A1
20060009800 Christianson et al. Jan 2006 A1
20060025677 Verard et al. Feb 2006 A1
20060036158 Field et al. Feb 2006 A1
20060036159 Sirimanne et al. Feb 2006 A1
20060036165 Burbank et al. Feb 2006 A1
20060074443 Foerster et al. Apr 2006 A1
20060079770 Sirimanne et al. Apr 2006 A1
20060079805 Miller et al. Apr 2006 A1
20060079829 Fulton et al. Apr 2006 A1
20060079888 Mulier et al. Apr 2006 A1
20060122503 Burbank et al. Jun 2006 A1
20060155190 Burbank et al. Jul 2006 A1
20060173280 Goosen et al. Aug 2006 A1
20060173296 Miller et al. Aug 2006 A1
20060177379 Asgari Aug 2006 A1
20060217635 McCombs et al. Sep 2006 A1
20060235298 Kotmel et al. Oct 2006 A1
20060241385 Dietz Oct 2006 A1
20060241411 Field et al. Oct 2006 A1
20060292690 Liu et al. Dec 2006 A1
20070021642 Lamoureux et al. Jan 2007 A1
20070038145 Field Feb 2007 A1
20070057794 Gisselberg et al. Mar 2007 A1
20070083132 Sharrow Apr 2007 A1
20070087026 Field Apr 2007 A1
20070106152 Kantrowitz et al. May 2007 A1
20070135711 Chernomorsky et al. Jun 2007 A1
20070142725 Hardin et al. Jun 2007 A1
20070167736 Dietz et al. Jul 2007 A1
20070167749 Yarnall et al. Jul 2007 A1
20070239118 Ono et al. Oct 2007 A1
20070287933 Phan et al. Dec 2007 A1
20080097199 Mullen Apr 2008 A1
20080188768 Zarins et al. Aug 2008 A1
20080249436 Darr Oct 2008 A1
20080269638 Cooke et al. Oct 2008 A1
20090000629 Hornscheidt et al. Jan 2009 A1
20090024225 Stubbs Jan 2009 A1
20090069713 Adams et al. Mar 2009 A1
20090076484 Fukaya Mar 2009 A1
20090131825 Burbank et al. May 2009 A1
20100010341 Talpade et al. Jan 2010 A1
20100030072 Casanova et al. Feb 2010 A1
20100030149 Carr, Jr. Feb 2010 A1
20100331668 Ranpura Dec 2010 A1
20110028836 Ranpura et al. Feb 2011 A1
Foreign Referenced Citations (46)
Number Date Country
1029528 May 1958 DE
0146699 Jul 1985 EP
0255123 Feb 1988 EP
0292936 Nov 1988 EP
0458745 Nov 1991 EP
0475077 Mar 1992 EP
0552924 Jul 1993 EP
0769281 Apr 1997 EP
1114618 Jul 2001 EP
1163888 Dec 2001 EP
1216721 Jun 2002 EP
1281416 Jun 2002 EP
1364628 Nov 2003 EP
1493451 Jan 2005 EP
1767167 Mar 2007 EP
2646674 Nov 1990 FR
708148 Apr 1954 GB
2131757 May 1990 JP
8906978 Aug 1989 WO
9112823 Sep 1991 WO
9314712 Aug 1993 WO
9317671 Sep 1993 WO
9317718 Sep 1993 WO
9416647 Aug 1994 WO
9507057 Mar 1995 WO
9806346 Feb 1998 WO
9908607 Feb 1999 WO
9935966 Jul 1999 WO
9951143 Oct 1999 WO
0023124 Apr 2000 WO
0024332 May 2000 WO
0028554 May 2000 WO
0054689 Sep 2000 WO
0108578 Feb 2001 WO
0170114 Sep 2001 WO
0207786 Jan 2002 WO
03000308 Jan 2003 WO
2004045444 Jun 2004 WO
2005013832 Feb 2005 WO
2005089664 Sep 2005 WO
2006012630 Feb 2006 WO
2006056739 Jun 2006 WO
2006097331 Sep 2006 WO
2006105353 Oct 2006 WO
2007069105 Jun 2007 WO
2008077081 Jun 2008 WO
Non-Patent Literature Citations (12)
Entry
Johnson & Johnson: New Minimally Invasive Breast Biopsy Device Receives Marketing Clearance in Canada; Aug. 6, 1999. From http://www.jnjgateway.com. 4 pages.
Johnson & Johnson: Mammotome Hand Held Receives FDA Marketing Clearance for Minimally Invasive Breast Biopises; Sep. 1, 1999. From From http://www.jnjgateway.com. 5 pages.
Liberman, Laura, et al. Percutaneous Removal of Malignant Mammographic Lesions at Stereotactic Vacuum-assisted Biopsy. From: The Departments of Radiology, Pathology, and Surgery. Memorial Sloan-Kettering Cancer Center. From the 1997 RSNA scientific assembly. vol. 206, No. 3. pp. 711-715.
Armstrong, J.S., et al., “Differential Marking of Excision Planes in Screened Breast Lesions by Organically Coloured Gelatins”, Journal of Clinical Pathology, Jul. 1990, No. 43 (7) pp. 604-607, XP000971447 abstract; tables 1,2.
Fucci, V., et al., “Large Bowel Transit Times Using Radioopaque Markers in Normal Cats”, J. of Am. Animal Hospital Assn., Nov.-Dec. 1995 31 (6) 473-477.
Schindlbeck, N. E., et al., “Measurement of Colon Transit Time” [“Messung der Kolontransitzeit”], J. of Gastroenterology, No. 28, pp. 399-404, 1990.
Shiga et al., Preparation of Poly(D, L-lactide) and Copoly(lactide-glycolide) Microspheres of Uniform Size, J. Pharm. Pharmacol. 1996 48:891-895.
Eiselt, P. et al, “Development of Technologies Aiding Large—Tissue Engineering”, Biotechnol, Prog., vol. 14, No. 1, pp. 134-140, 1998.
Fajardo, Laurie, et al., “Placement of Endovascular Embolization Microcoils to Localize the Site of Breast Lesions Removed at Stereotactic Core Biopsy”, Radiology, Jan. 1998, pp. 275-278, vol. 206—No. 1.
H. J. Gent, M.D., et al., Stereotaxic Needle Localization and Cytological Diagnosis of Occult Breast Lesions, Annals of Surgery, Nov. 1986, pp. 580-584, vol. 204—No. 5.
Meuris, Bart, “Calcification of Aortic Wall Tissue in Prosthetic Heart Valves: Initiation, Influencing Factors and Strategies Towards Prevention”, Thesis, 2007, pp. 21-36, Leuven University Press; Leuven, Belgium.
Jong-Won Rhie, et al. “Implantation of Cultured Preadipocyte Using Chitosan/Alginate Sponge”, Key Engineering Materials, Jul. 1, 2007, pp. 346-352, XP008159356, ISSN: 0252-1059, DOI: 10.4028/www.scientific.net/KEM.342-343.349, Department of Plastic Surgery, College of Medicine, The Catholic University of Korea, Seoul Korea.
Related Publications (1)
Number Date Country
20110184280 A1 Jul 2011 US
Divisions (1)
Number Date Country
Parent 10753694 Jan 2004 US
Child 12214398 US
Continuations (3)
Number Date Country
Parent 10990327 Nov 2004 US
Child 12852286 US
Parent 10124757 Apr 2002 US
Child 10990327 US
Parent 10174401 Jun 2002 US
Child 12592020 US
Continuation in Parts (9)
Number Date Country
Parent 12214398 Jun 2008 US
Child 13082463 US
Parent 10444770 May 2003 US
Child 10753694 US
Parent 13082463 US
Child 10753694 US
Parent 12852286 Aug 2010 US
Child 13082463 US
Parent 09717909 Nov 2000 US
Child 10124757 US
Parent 09343975 Jun 1999 US
Child 09717909 US
Parent 09241936 Feb 1999 US
Child 09343975 US
Parent 13082463 US
Child 09343975 US
Parent 12592020 Nov 2009 US
Child 13082463 US