The present invention generally relates to medical implants and uses thereof for treating obesity and/or obesity-related diseases and, more specifically, to transorally-delivered devices designed to occupy space within a stomach and/or stimulate the stomach wall.
Over the last 50 years, obesity has been increasing at an alarming rate and is now recognized by leading government health authorities, such as the Centers for Disease Control (CDC) and National Institutes of Health (NIH), as a disease. In the United States alone, obesity affects more than 60 million individuals and is considered the second leading cause of preventable death. Worldwide, approximately 1.6 billion adults are overweight, and it is estimated that obesity affects at least 400 million adults.
Obesity is caused by a wide range of factors including genetics, metabolic disorders, physical and psychological issues, lifestyle, and poor nutrition. Millions of obese and overweight individuals first turn to diet, fitness and medication to lose weight; however, these efforts alone are often not enough to keep weight at a level that is optimal for good health. Surgery is another increasingly viable alternative for those with a Body Mass Index (BMI) of greater than 40. In fact, the number of bariatric surgeries in the United States was estimated to be about 400,000 in 2010.
Examples of surgical methods and devices used to treat obesity include the LAP-BAND® (Allergan, Inc., Irvine, Calif.) gastric band and the LAP-BAND AP® (Allergan, Inc., Irvine, Calif.). However, surgery might not be an option for every obese individual; for certain patients, non-surgical therapies or minimal-surgery options are more effective or appropriate.
In the early 1980s, physicians began to experiment with the placement of intragastric balloons to reduce the size of the stomach reservoir, and consequently its capacity for food. Once deployed in the stomach, the balloon helps to trigger a sensation of fullness and a decreased feeling of hunger. These devices are designed to provide therapy for moderately obese individuals who need to shed pounds in preparation for surgery, or as part of a dietary or behavioral modification program. These balloons are typically cylindrical or pear-shaped, generally range in size from 200-500 ml or more, are made of an elastomer such as silicone, polyurethane, or latex, and are filled with air, an inert gas, water, or saline.
One such inflatable intragastric balloon is described in U.S. Pat. No. 5,084,061 and is commercially available as the BioEnterics Intragastric Balloon System (“BIB System,” sold under the trademark ORBERA). The BIB System comprises a silicone elastomer intragastric balloon that is inserted into the stomach and filled with fluid. Conventionally, the balloons are placed in the stomach in an empty or deflated state and thereafter filled (fully or partially) with a suitable fluid. The balloon occupies space in the stomach, thereby leaving less room available for food and creating a feeling of satiety for the patient. Placement of the intragastric balloon is non-surgical, trans-oral, usually requiring no more than 20-30 minutes. The procedure is performed gastroscopically in an outpatient setting, typically using local anesthesia and sedation. Placement of such balloons is temporary, and such balloons are typically removed after about six months. Removing the balloon requires deflation by puncturing with a gastroscopic instrument, and either aspirating the contents of the balloon and removing it, or allowing the fluid to pass into the patient's stomach. Clinical results with these devices show that for many obese patients, the intragastric balloons significantly help to control appetite and accomplish weight loss.
Despite the advances in the design of intragastric balloons, there remains a need for improved transoral obesity treatment devices.
Transoral obesity treatment devices generally promote a feeling of satiety in the patient by contacting the insides of the stomach wall, reducing the space in the stomach, or otherwise reducing the amount of food consumed or digested by the patient.
In accordance with one embodiment, an intragastric obesity treatment implant disclosed herein comprises a collapsible/expandable frame formed of a plurality of spaced struts, the frame having a relaxed generally spherical configuration with a size sufficient to contact the interior stomach walls upon contraction thereof. A flexible material drapes around and connects to the frame so as to span across the spaces between the struts. The frame is capable of being converted into a substantially linear delivery configuration and being formed of a material that will resist degradation over a period of at least six months within the stomach. The collapsible/expandable frame may comprise a plurality of circular wires interwoven to define a sphere when relaxed. In one embodiment, the circular wires all wind around the sphere in one direction, CW or CCW. In another form, the collapsible/expandable frame comprises an articulated frame of a plurality of strut elements connected together at joints and forming a plurality of struts that extend from a pole of the sphere to an opposite pole. The flexible material may be a porous mesh or may be impermeable and the implant is filled with saline. Desirably, the shape of the collapsible/expandable frame is adjustable in vivo.
Another intragastric obesity treatment implant includes a collapsible/expandable frame formed of a plurality of spaced wires each extending between end poles along a generally helical path. The frame has a relaxed generally spherical configuration with a size sufficient to contact the interior stomach walls upon contraction thereof. The frame is also capable of being converted into a substantially linear delivery configuration by displacing the poles away from one another, and is formed of a material that will resist degradation over a period of at least six months within the stomach. The implant may further have a flexible material draped around and connected to the frame so as to span across the spaces between the wires, such as a porous mesh or an impermeable material such that the implant may be filled with saline. The helical wires may all wind around the sphere in one direction between the end poles, CW or CCW, or in both directions to form a braided mesh. The shape of the collapsible/expandable frame is preferably adjustable in vivo. In one embodiment, the wires are Nitinol and the ends of the wires are held by end caps of silicones.
A still further intragastric obesity treatment implant of the present application comprises a plurality of collapsible/expandable frames formed of a plurality of spaced struts having a relaxed generally spherical configuration. The frames are connected in series with intermediate tethers, and each frame has a size that will not pass through the pyloric sphincter and is made of a material that will resist degradation over a period of at least six months within the stomach. A duodenal anchor connected to a distal frame may be included, the duodenal anchor having a size that permits it to pass through the pyloric sphincter and be formed of a material of sufficient mass and specific gravity that prevents it from migrating back up through the pyloric sphincter. A proximal frame may include an internally threaded sleeve suitable for receiving an externally threaded end of a delivery tube, and the intermediate tethers are preferably tubular permitting passage of a stiff rod through the series of frames. In addition, a flexible material draped may be draped around and connected to each frame so as to span across the spaces between the struts.
The following detailed descriptions are given by way of example, but not intended to limit the scope of the disclosure solely to the specific embodiments described herein, may best be understood in conjunction with the accompanying drawings in which:
Persons skilled in the art will readily appreciate that various aspects of the disclosure may be realized by any number of methods and devices configured to perform the intended functions. Stated differently, other methods and devices may be incorporated herein to perform the intended functions. It should also be noted that the drawing Figures referred to herein are not all drawn to scale, but may be exaggerated to illustrate various aspects of the invention, and in that regard, the drawing Figures should not be construed as limiting. Finally, although the present disclosure may be described in connection with various medical principles and beliefs, the present disclosure should not be bound by theory.
By way of example, the present disclosure will reference certain transoral obesity treatment devices. Nevertheless, persons skilled in the art will readily appreciate that certain aspects of the present disclosure advantageously may be applied to one of the numerous varieties of transoral obesity treatment devices other than those disclosed herein.
In one aspect, these transoral obesity treatment devices described herein are intended to be placed inside the patient, transorally and without invasive surgery, without associated patient risks of invasive surgery and without substantial patient discomfort. Recovery time may be minimal as no extensive tissue healing is required. The life span of these transoral obesity treatment devices may be material-dependent upon long-term survivability within an acidic stomach, but is intended to last one year or longer.
In a first embodiment disclosed herein,
As seen in
In one embodiment, the intragastric implant 20 includes an elastic frame 22 with substantially soft, atraumatic end caps 26. The wires 24 that make up the frame 22 may be metallic, such as Nitinol, or a polymer than can withstand the stomach environment for lengthy periods, preferably at least a year. Nitinol is preferred for its relatively inert behavior in the stomach chemistry, its extreme elasticity, and the relatively low frictional coefficient against itself. In one configuration, the wires 24 are coated with silicone to take advantage of its resistance to deterioration in the stomach as well as its lubricity. The end caps 26 desirably comprise a soft polymer such as silicone.
The implant 20 is designed to collapse into an elongated tube oriented axially with the caps 26 at each end. In one embodiment, alternating wires 24 of the elastic frame 22 are weaved in opposite generally helical paths to form a braided mesh. As shown, each wire 24 desirably attaches to one end cap 26 in a substantially axial orientation, and then curves into a generally helical path before transitioning back to an axial direction at the other end cap 26. Such a mesh can be elongated along the axis by displacing the end caps 26 apart to reduce the radial profile of the frame 22. For instance, a delivery tool (not shown) may engage one end cap 26 while passing a deployment probe through the middle of the frame 22 to the opposite end cap 26. Extension of the probe and distal end cap 26 while maintaining the position of the proximal end cap 26 pushes apart the two poles of the implant 20 and collapses the frame 22. Subsequent to delivery of the implant 20 into the stomach, the delivery tool releases both end caps 26 and the elasticity of the frame 22 causes it to expand into the generally spherical shape shown. Removal of the implant 20 occurs in the opposite way, with the tool grasping one end cap 26 and the deployment probe extending through the interior of the frame 22 to engage and distally displace the opposite end cap 26.
The expanded spherical shape shown represents the relaxed shape of the wires 24, at least within the constraints of the assembly between the end caps 26. Either bare Nitinol or Nitinol coated with silicone provides relatively low sliding friction between the wires, which facilitates both expansion on delivery and contraction at the time of removal. In a preferred embodiment, there are at least thirty total wires 24, and more preferably there are at least twenty helical wires 24 extending around the frame 22 in each rotational direction. Of course, other mesh patterns than the braided helical one shown are contemplated, such as described below, as long as the frame 22 can be easily expanded for delivery and contracted for removal.
Each of the devices disclosed in
Furthermore, the devices of
In either embodiment, the flexible drape material serves to increase the surface area over which the structure acts on the stomach. The drape material is connected to the collapsible/expandable frame such as with sutures, adhesive or other expedient, or may be connected by virtue of surrounding and encapsulating the frame. Desirably, the devices provide in-vivo adjustability via endoscopic means. Symmetry of the spherical shape allows for multiple endoscopic access points, for easier navigation during in-vivo endoscopic adjustments. Finally, there is a reduced risk of the devices passing through the pylorus during the course of implantation. Even when collapsed, the frame provides enough bulk to prevent the device from passing from the stomach.
As mentioned, the devices may or may not allow material to enter the internal volume. If a mesh material is used, the device will exhibit a generally higher compliance than a device which contains a set volume of an incompressible fluid. If a fluid is used to fill the device, once must consider the added complexity of filling and emptying the device during implantation/explantation as well as the effects of the added mass within the stomach. Either approach is largely dependent on the biological mechanisms which drive satiety. If stimulation of the stomach walls is the intent, a device which does not reduce overall stomach volume (significantly) may be preferred. If the volume occupying characteristics of these types of devices is desired, a device which can be filled with a fluid is selected. The drape component may or may not be elastic. However, it is important the material be relatively compliant such that it takes the shape of the wireframe and generally conforms to the shape of the stomach (insomuch as the wireframe will allow).
The core components of the device 100 are multiple wires 106 (or equivalent polymer fiber, e.g. PEEK) that gives the device its spherical shape. An exemplary embodiment uses Nitinol (NiTi, Nickel Titanium) due to the shape-memory characteristics of the material, but the wires 106 can be made of any material with properties equivalent to Nitinol. Each separate wire 106 of the wireframe 102 consists of a circle projected onto a spherical surface. This circular form is evident in the top-down perspective of
The wireframe 102 may consist of wires 106 aligned in the same direction (clockwise vs. counter-clockwise) or both directions, and the total number of wires can be adjusted. A single orientation (CW vs. CCW) lends itself to easier collapse, however a dual orientation (CW and CCW) creates a more robust, braided structure. Note that if a dual direction (CW and CCW) approach is taken, consideration must be made regarding how the wires interact with each other at the intersection points when collapsing. A single direction approach makes this shape much more realistic. In this configuration, the device can be easily collapsed into a cylindrical form and passed through the esophagus during implantation and explantation procedures as it is allowed to flex slightly along its long axis. Many wires add to the complexity of the device, but give it a more spherical form, while fewer wires simplify the device, but create sharper “edges” where a draped fabric bends around the wires. Various examples are shown in
In the embodiment of
As mentioned,
The intragastric device 130 illustrated features two primary access points for endoscopic adjustment. The strut elements 138 are preferably hollow tubes, and the device 130 desirably incorporates in-vivo adjustability via elements that run through the lumens of, or parallel with, the struts. These elements would then be accessed via points, such as at the poles 142, on the frame using an endoscopic accessory (not shown). For instance, flexible cables could run through the hollow strut elements 138 and through apertures in each hinge 140, whereby tightening the cables pulls the struts straight and vice versa.
The compliance and flexibility of the frame are directly related to the length and number of individual strut elements 138, and configuration of the hinges 140.
The primary difference with the device 150 of
Another space-occupying satiety-inducing device 160 of the present application is shown in
In addition to the embodiment shown in
In the embodiment of
For insertion of the device in
The surgeon then wends the assembly transorally down through the esophagus and into the stomach. Once in place, the wire 171 is retracted and the obturator 168 removed from the fitting 170 in the proximal ball 162, thus permitting each ball to expand. In one embodiment, the balls 162 have expanded diameters of between 30-32 mm, and may be compressed by elongation to between 9-10 mm. The weight of the stainless steel ball 166 causes it to migrate through the pyloric sphincter and “seat” in the upper duodenum, thereby anchoring the distal end of the device 160.
For device removal, the operator re-introduces the obturator 168 along with its central wire 171 down the esophagus into the stomach. Radiopaque rings surrounding both the threads in the fitting 170 of the device 160 and threads 169 of the obturator 160 guide the operator so that the mating elements can be aligned and threaded together. The operator presses the wire 171 on the inside of the distal ball 162, thereby elongating and compressing the device 160 so it can be pulled comfortably up the esophagus and out the mouth, dragging the steel ball along.
The implantable devices described herein will be subjected to clinical testing in humans. The devices are intended to treat obesity, which is variously defined by different medical authorities. In general, the terms “overweight” and “obese” are labels for ranges of weight that are greater than what is generally considered healthy for a given height. The terms also identify ranges of weight that have been shown to increase the likelihood of certain diseases and other health problems. Applicants propose implanting the devices as described herein into a clinical survey group of obese patients in order to monitor weight loss.
The clinical studies will utilize the devices described above in conjunction with the following parameters.
Materials:
Silicone materials used include 3206 silicone for any shells, inflatable structures, or otherwise flexible hollow structures. Any fill valves will be made from 4850 silicone with 6% BaSo4. Tubular structures or other flexible conduits will be made from silicone rubber as defined by the Food and Drug Administration (FDA) in the Code of Federal Regulations (CFR) Title 21 Section 177.2600.
Purposes:
the devices are for human implant,
the devices are intended to occupy gastric space while also applying intermittent pressure to various and continually changing areas of the stomach;
the devices are intended to stimulate feelings of satiety, thereby functioning as a treatment for obesity.
General Implant Procedures:
The device is intended to be implanted transorally via endoscope into the corpus of the stomach.
Implantation of the medical devices will occur via endoscopy.
Nasal/Respiratory administration of oxygen and isoflurane to be used during surgical procedures to maintain anesthesia as necessary.
One exemplary implant procedure is listed below.
End Point Criteria:
Unless otherwise indicated, all numbers expressing quantities of ingredients, properties such as molecular weight, reaction conditions, and so forth used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained. At the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the disclosure are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical value, however, inherently contains certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
The terms “a,” “an,” “the” and similar referents used in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. Recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention.
Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member may be referred to and claimed individually or in any combination with other members of the group or other elements found herein. It is anticipated that one or more members of a group may be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
Certain embodiments are described herein, including the best mode known to the inventors for carrying out the invention. Of course, variations on these described embodiments will become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventor expects skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
Furthermore, references may have been made to patents and printed publications in this specification. Each of the above-cited references and printed publications are individually incorporated herein by reference in their entirety.
Specific embodiments disclosed herein may be further limited in the claims using “consisting of” or “consisting essentially of” language. When used in the claims, whether as filed or added per amendment, the transition term “consisting of” excludes any element, step, or ingredient not specified in the claims. The transition term “consisting essentially of” limits the scope of a claim to the specified materials or steps and those that do not materially affect the basic and novel characteristic(s). Embodiments of the invention so claimed are inherently or expressly described and enabled herein.
In closing, it is to be understood that the embodiments of the invention disclosed herein are illustrative of the principles of the present invention. Other modifications that may be employed are within the scope of the invention. Thus, by way of example, but not of limitation, alternative configurations of the present invention may be utilized in accordance with the teachings herein. Accordingly, the present invention is not limited to that precisely as shown and described.
The application is a divisional of U.S. Ser. No. 13/272,131, filed Oct. 12, 2011, and now issued as U.S. Pat. No. 8,864,840, which claims priority under 35 U.S.C. §119 to U.S. Provisional Application No. 61/485,009, filed May 11, 2011, and to 61/394,592, filed Oct. 19, 2010, the disclosures of all of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
1702974 | MacDonald | Feb 1929 | A |
2087604 | Mosher | Jul 1937 | A |
2163048 | McKee | Jun 1939 | A |
2619138 | Marler | Nov 1952 | A |
3667081 | Burger | Jun 1972 | A |
3719973 | Bell | Mar 1973 | A |
3840018 | Heifetz | Oct 1974 | A |
3919724 | Sanders | Nov 1975 | A |
4118805 | Reimels | Oct 1978 | A |
4364379 | Finney | Dec 1982 | A |
4416267 | Garren | Nov 1983 | A |
4430392 | Kelley | Feb 1984 | A |
4485805 | Foster | Dec 1984 | A |
4545367 | Tucci | Oct 1985 | A |
4586501 | Claracq | May 1986 | A |
4592355 | Antebi | Jun 1986 | A |
4598699 | Garren | Jul 1986 | A |
4607618 | Angelchik | Aug 1986 | A |
4636213 | Pakiam | Jan 1987 | A |
4648383 | Angelchik | Mar 1987 | A |
4694827 | Weiner | Sep 1987 | A |
4723547 | Kullas | Feb 1988 | A |
4739758 | Lai | Apr 1988 | A |
4773432 | Rydell | Sep 1988 | A |
4774956 | Kruse | Oct 1988 | A |
4844068 | Arata | Jul 1989 | A |
4881939 | Newman | Nov 1989 | A |
4899747 | Garren | Feb 1990 | A |
4925446 | Garay | May 1990 | A |
4930535 | Rinehold | Jun 1990 | A |
4950258 | Kawai | Aug 1990 | A |
4969899 | Cox | Nov 1990 | A |
5074868 | Kuzmak | Dec 1991 | A |
5084061 | Gau | Jan 1992 | A |
5211371 | Coffee | May 1993 | A |
5226429 | Kuzmak | Jul 1993 | A |
5255690 | Keith | Oct 1993 | A |
5259399 | Brown | Nov 1993 | A |
5289817 | Williams | Mar 1994 | A |
5308324 | Hammerslag | May 1994 | A |
5312343 | Krog | May 1994 | A |
5449368 | Kuzmak | Sep 1995 | A |
5514176 | Bosley | May 1996 | A |
5527340 | Vogel | Jun 1996 | A |
5540701 | Sharkey | Jul 1996 | A |
5547458 | Ortiz | Aug 1996 | A |
5601604 | Vincent | Feb 1997 | A |
5658298 | Vincent | Aug 1997 | A |
5693014 | Abele | Dec 1997 | A |
5725507 | Petrick | Mar 1998 | A |
5748200 | Funahashi | May 1998 | A |
5776160 | Pasricha | Jul 1998 | A |
5819749 | Lee | Oct 1998 | A |
5820584 | Crabb | Oct 1998 | A |
RE36176 | Kuzmak | Mar 1999 | E |
5938669 | Klaiber | Aug 1999 | A |
6074341 | Anderson | Jun 2000 | A |
6102678 | Peclat | Aug 2000 | A |
6102897 | Lang | Aug 2000 | A |
6102922 | Jakobsson | Aug 2000 | A |
6152922 | Ouchi | Nov 2000 | A |
6183492 | Hart | Feb 2001 | B1 |
6264700 | Kilcoyne | Jul 2001 | B1 |
6290575 | Shipp | Sep 2001 | B1 |
6322538 | Elbert | Nov 2001 | B1 |
6450946 | Forsell | Sep 2002 | B1 |
6454699 | Forsell | Sep 2002 | B1 |
6454785 | De Hoyos Garza | Sep 2002 | B2 |
6464628 | Forsell | Oct 2002 | B1 |
6470892 | Forsell | Oct 2002 | B1 |
6503264 | Birk | Jan 2003 | B1 |
6511490 | Robert | Jan 2003 | B2 |
6540789 | Silverman | Apr 2003 | B1 |
6547801 | Dargent | Apr 2003 | B1 |
6579301 | Bales | Jun 2003 | B1 |
6629776 | Bell | Oct 2003 | B2 |
6675809 | Stack | Jan 2004 | B2 |
6682473 | Matsuura | Jan 2004 | B1 |
6733512 | McGhan | May 2004 | B2 |
6733513 | Boyle | May 2004 | B2 |
6746460 | Gannoe | Jun 2004 | B2 |
6776783 | Frantzen | Aug 2004 | B1 |
6840257 | Dario | Jan 2005 | B2 |
6845776 | Stack | Jan 2005 | B2 |
6905471 | Leivseth | Jun 2005 | B2 |
6960233 | Berg | Nov 2005 | B1 |
6981978 | Gannoe | Jan 2006 | B2 |
6981980 | Sampson | Jan 2006 | B2 |
6994095 | Burnett | Feb 2006 | B2 |
7008419 | Shadduck | Mar 2006 | B2 |
7020531 | Colliou | Mar 2006 | B1 |
7033384 | Gannoe | Apr 2006 | B2 |
7037344 | Kagan | May 2006 | B2 |
7056305 | Garza Alvarez | Jun 2006 | B2 |
7090699 | Geitz | Aug 2006 | B2 |
7214233 | Gannoe | May 2007 | B2 |
7220237 | Gannoe | May 2007 | B2 |
7220284 | Kagan | May 2007 | B2 |
7223277 | DeLegge | May 2007 | B2 |
7320696 | Gazi | Jan 2008 | B2 |
7347875 | Levine | Mar 2008 | B2 |
7354454 | Stack | Apr 2008 | B2 |
7476256 | Meade | Jan 2009 | B2 |
7510559 | Deem | Mar 2009 | B2 |
7608114 | Levine | Oct 2009 | B2 |
7628442 | Spencer | Dec 2009 | B1 |
7682330 | Meade | Mar 2010 | B2 |
7695446 | Levine | Apr 2010 | B2 |
7699863 | Marco | Apr 2010 | B2 |
7753870 | Demarais | Jul 2010 | B2 |
7771382 | Levine | Aug 2010 | B2 |
7794447 | Dann | Sep 2010 | B2 |
7815589 | Meade | Oct 2010 | B2 |
7837643 | Levine | Nov 2010 | B2 |
7841503 | Sonnenschein | Nov 2010 | B2 |
7883525 | DeLegge | Feb 2011 | B2 |
7931693 | Binmoeller | Apr 2011 | B2 |
7981162 | Stack | Jul 2011 | B2 |
8029455 | Stack | Oct 2011 | B2 |
8032223 | Imran | Oct 2011 | B2 |
8075582 | Lointier | Dec 2011 | B2 |
8162969 | Brister | Apr 2012 | B2 |
8187297 | Makower | May 2012 | B2 |
8216266 | Hively | Jul 2012 | B2 |
20020019577 | Arabia | Feb 2002 | A1 |
20020055757 | Torre | May 2002 | A1 |
20020095181 | Beyar | Jul 2002 | A1 |
20020139208 | Yatskov | Oct 2002 | A1 |
20020183782 | Tsugita | Dec 2002 | A1 |
20030045896 | Murphy | Mar 2003 | A1 |
20030073880 | Polsky | Apr 2003 | A1 |
20030074054 | Duerig | Apr 2003 | A1 |
20030100822 | Lew | May 2003 | A1 |
20030106761 | Taylor | Jun 2003 | A1 |
20030109935 | Geitz | Jun 2003 | A1 |
20030144575 | Forsell | Jul 2003 | A1 |
20030153905 | Edwards | Aug 2003 | A1 |
20030158570 | Ferrazzi | Aug 2003 | A1 |
20040044357 | Gannoe | Mar 2004 | A1 |
20040092892 | Kagan | May 2004 | A1 |
20040117031 | Stack | Jun 2004 | A1 |
20040122452 | Deem | Jun 2004 | A1 |
20040122453 | Deem | Jun 2004 | A1 |
20040143342 | Stack | Jul 2004 | A1 |
20040148034 | Kagan | Jul 2004 | A1 |
20040172142 | Stack | Sep 2004 | A1 |
20040186503 | DeLegge | Sep 2004 | A1 |
20050033332 | Burnett | Feb 2005 | A1 |
20050049718 | Dann | Mar 2005 | A1 |
20050055039 | Burnett | Mar 2005 | A1 |
20050085923 | Levine | Apr 2005 | A1 |
20050096692 | Linder | May 2005 | A1 |
20050110280 | Guy | May 2005 | A1 |
20050131485 | Knudson | Jun 2005 | A1 |
20050190070 | Rudduck | Sep 2005 | A1 |
20050192614 | Binmoeller | Sep 2005 | A1 |
20050192615 | Torre | Sep 2005 | A1 |
20050197714 | Sayet | Sep 2005 | A1 |
20050228504 | Demarais | Oct 2005 | A1 |
20050240279 | Kagan | Oct 2005 | A1 |
20050250979 | Coe | Nov 2005 | A1 |
20050256533 | Roth | Nov 2005 | A1 |
20050261711 | Okada | Nov 2005 | A1 |
20050267595 | Chen | Dec 2005 | A1 |
20050267596 | Chen | Dec 2005 | A1 |
20050273060 | Levy | Dec 2005 | A1 |
20050277975 | Saadat | Dec 2005 | A1 |
20060020278 | Burnett | Jan 2006 | A1 |
20060025799 | Basu | Feb 2006 | A1 |
20060069403 | Shalon | Mar 2006 | A1 |
20060106288 | Roth | May 2006 | A1 |
20060142700 | Sobelman | Jun 2006 | A1 |
20060178691 | Binmoeller | Aug 2006 | A1 |
20060190019 | Gannoe | Aug 2006 | A1 |
20060217762 | Maahs | Sep 2006 | A1 |
20060229702 | Agnew | Oct 2006 | A1 |
20060252983 | Lembo | Nov 2006 | A1 |
20070010864 | Dann | Jan 2007 | A1 |
20070016262 | Gross | Jan 2007 | A1 |
20070021761 | Phillips | Jan 2007 | A1 |
20070078476 | Hull | Apr 2007 | A1 |
20070083224 | Hively | Apr 2007 | A1 |
20070100368 | Quijano | May 2007 | A1 |
20070118168 | Lointier | May 2007 | A1 |
20070135803 | Belson | Jun 2007 | A1 |
20070135829 | Paganon | Jun 2007 | A1 |
20070147170 | Hood | Jun 2007 | A1 |
20070149994 | Sosnowski | Jun 2007 | A1 |
20070156013 | Birk | Jul 2007 | A1 |
20070156248 | Marco | Jul 2007 | A1 |
20070173881 | Birk | Jul 2007 | A1 |
20070185374 | Kick | Aug 2007 | A1 |
20070239284 | Skerven | Oct 2007 | A1 |
20070250020 | Kim | Oct 2007 | A1 |
20070265598 | Karasik | Nov 2007 | A1 |
20070276428 | Haller | Nov 2007 | A1 |
20070288033 | Murature | Dec 2007 | A1 |
20070293716 | Baker | Dec 2007 | A1 |
20080015618 | Sonnenschein | Jan 2008 | A1 |
20080058840 | Albrecht | Mar 2008 | A1 |
20080058887 | Griffin | Mar 2008 | A1 |
20080065122 | Stack | Mar 2008 | A1 |
20080071305 | DeLegge | Mar 2008 | A1 |
20080097513 | Kaji | Apr 2008 | A1 |
20080167606 | Dann | Jul 2008 | A1 |
20080172079 | Birk | Jul 2008 | A1 |
20080208240 | Paz | Aug 2008 | A1 |
20080208241 | Weiner | Aug 2008 | A1 |
20080221595 | Surti | Sep 2008 | A1 |
20080228205 | Sharkey | Sep 2008 | A1 |
20080234718 | Paganon | Sep 2008 | A1 |
20080234834 | Meade | Sep 2008 | A1 |
20080243071 | Quijano | Oct 2008 | A1 |
20080243166 | Paganon | Oct 2008 | A1 |
20080249635 | Weitzner | Oct 2008 | A1 |
20080255601 | Birk | Oct 2008 | A1 |
20080255678 | Cully | Oct 2008 | A1 |
20080262529 | Jacques | Oct 2008 | A1 |
20080306506 | Leatherman | Dec 2008 | A1 |
20090012553 | Swain | Jan 2009 | A1 |
20090082644 | Li | Mar 2009 | A1 |
20090093767 | Kelleher | Apr 2009 | A1 |
20090093837 | Dillon | Apr 2009 | A1 |
20090131968 | Birk | May 2009 | A1 |
20090132031 | Cook | May 2009 | A1 |
20090149879 | Dillon | Jun 2009 | A1 |
20090177215 | Stack | Jul 2009 | A1 |
20090187206 | Binmoeller et al. | Jul 2009 | A1 |
20090198210 | Burnett | Aug 2009 | A1 |
20090216337 | Egan | Aug 2009 | A1 |
20090259246 | Eskaros | Oct 2009 | A1 |
20090275973 | Chen | Nov 2009 | A1 |
20090287231 | Brooks | Nov 2009 | A1 |
20090299327 | Tilson | Dec 2009 | A1 |
20090299486 | Shohat | Dec 2009 | A1 |
20090312597 | Bar | Dec 2009 | A1 |
20100030017 | Baker | Feb 2010 | A1 |
20100049224 | Vargas | Feb 2010 | A1 |
20100081991 | Swisher | Apr 2010 | A1 |
20100082047 | Cosgrove | Apr 2010 | A1 |
20100087843 | Bertolote | Apr 2010 | A1 |
20100100079 | Berkcan | Apr 2010 | A1 |
20100100115 | Soetermans | Apr 2010 | A1 |
20100121371 | Brooks | May 2010 | A1 |
20100168782 | Hancock | Jul 2010 | A1 |
20100168783 | Murature | Jul 2010 | A1 |
20100174307 | Birk | Jul 2010 | A1 |
20100198249 | Sabliere | Aug 2010 | A1 |
20100234937 | Wang | Sep 2010 | A1 |
20100249822 | Nihalani | Sep 2010 | A1 |
20100249825 | Nihalani | Sep 2010 | A1 |
20100256775 | Belhe | Oct 2010 | A1 |
20100256776 | Levine | Oct 2010 | A1 |
20100261390 | Gardner | Oct 2010 | A1 |
20100274194 | Sobelman | Oct 2010 | A1 |
20100286628 | Gross | Nov 2010 | A1 |
20100305590 | Holmes | Dec 2010 | A1 |
20100331756 | Meade | Dec 2010 | A1 |
20100332000 | Forsell | Dec 2010 | A1 |
20110009897 | Forsell | Jan 2011 | A1 |
20110106113 | Tavakkolizadeh | May 2011 | A1 |
20110307075 | Sharma | Dec 2011 | A1 |
20120022561 | Forsell | Jan 2012 | A1 |
20120095483 | Babkes | Apr 2012 | A1 |
20120221037 | Birk | Aug 2012 | A1 |
Number | Date | Country |
---|---|---|
1250382 | Apr 2000 | CN |
2007027812 | Apr 2000 | CN |
1367670 | Sep 2002 | CN |
2007053556 | Sep 2002 | CN |
8804765 | Jun 1989 | DE |
2007076021 | Jun 1989 | DE |
102007025312 | Nov 2008 | DE |
1396242 | Mar 2004 | EP |
1396243 | Mar 2004 | EP |
1397998 | Mar 2004 | EP |
2007092390 | Mar 2004 | EP |
1774929 | Apr 2007 | EP |
2095798 | Sep 2009 | EP |
2797181 | Feb 2001 | FR |
2008101048 | Feb 2001 | FR |
2823663 | Oct 2002 | FR |
2008112894 | Oct 2002 | FR |
2852821 | Oct 2004 | FR |
2008132745 | Oct 2004 | FR |
2855744 | Dec 2004 | FR |
2892297 | Apr 2007 | FR |
2941617 | Aug 2010 | FR |
2086792 | May 1982 | GB |
2010074712 | May 1982 | GB |
63264078 | Oct 1988 | JP |
2006111961 | Oct 1988 | JP |
2010117641 | Nov 1988 | JP |
S63279854 | Nov 1988 | JP |
1049572 | Feb 1989 | JP |
2010087757 | Feb 1989 | JP |
8800027 | Jan 1988 | WO |
0015158 | Mar 2000 | WO |
0032092 | Jun 2000 | WO |
0110359 | Feb 2001 | WO |
0149245 | Jul 2001 | WO |
0166166 | Sep 2001 | WO |
0235980 | May 2002 | WO |
03055419 | Jul 2003 | WO |
03105732 | Dec 2003 | WO |
2004019671 | Mar 2004 | WO |
2005007231 | Jan 2005 | WO |
2005094257 | Oct 2005 | WO |
2005097012 | Oct 2005 | WO |
2005110280 | Nov 2005 | WO |
2006020370 | Feb 2006 | WO |
2006044640 | Apr 2006 | WO |
8800027 | Jun 2006 | WO |
2006063593 | Jun 2006 | WO |
2006090018 | Aug 2006 | WO |
2006118744 | Nov 2006 | WO |
2007110866 | Oct 2007 | WO |
2010042062 | Apr 2010 | WO |
Entry |
---|
‘Living With the Bib/BioEnterics Intragastric Balloon Program,’ Inamed Health; 1-10 Patient Information Brochure; pp.; May 1, 2005. |
Baggio et al. ‘Biology of Integrins: GLP-1 and GIP’; Gastroenterology; V. 132; pp. 2131-2157; 2007. |
Berne et al; ‘Physiology’; V. 5; pp. 55-57, 210, 428, 540, 554, 579, 584, 591; 2004. |
BIB Bioenterics Intragastric Balloon Program, ‘Take Control of Your Weight and Your Life/The Solution for You,’ Inamed Health, pp. 1-2; Jan. 19, 2004. |
BIB Bioenterics Intragastric Balloon Program, ‘Taking the Next Step/Take Control of Your Weight and Your Life,’ Inamed Health, pp. 1-9; Apr. 29, 2004. |
BIB Data Sheet Directions for Use, ‘BioEnterics Intragastric Balloon System,’ Inamed Health, 1-12 pp. |
Boulant et al.; ‘Cholecystokinin in Transient Lower Oesophageal Sphincter Relation Due to Gastric Distension in Humans’; Gut; V. 40; pp. 575-581; 1997. |
Bradjewin et al; ‘Dose Ranging Study of the Effects of Cholecystokinin in Healthy Volunteers’; J. Psychiatr. Neurosci.; V. 16 (2); pp. 91-95; 1991. |
Chaudhri; ‘Can Gut Hormones Control Appetite and Prevent Obesity?’ Diabetes Care; V. 31; Supp 2; pp. S284-S289; Feb. 2008. |
Cohen et al.; ‘Oxyntomodulin Suppresses Appetite and Reduces Food Intake in Humans’; J. Clin. Endocrinol. Metab.; V. 88; No. 10; pp. 4696-4701; 2003. |
Dakin et al.; ‘Oxyntomodulin Inhibits Food Intake in the Rat’; Endocrinology; V. 142; No. 10; pp. 4244-4250; 2001. |
Dakin et al.; ‘Peripheral Oxyntomodulin Reduces Food Intake and Body Weight gain in Rats’; Endocrinology; V. 145; No. 6; pp. 2687-2695; Jun. 2004. |
Davison; ‘Activation of Vagal-Gastric Mechanoreceptors by Cholecystokinin’; Proc. West. Pharmocol. Soc; V. 29; pp. 363-366; 1986. |
Ekblad et al.; ‘Distribution of Pancreatic Peptide and Peptide-YY’; Peptides; V. 23; pp. 251-261;2002. |
Greenough et al.; ‘Untangling the Effects of Hunger, Anxiety and Nausea on Energy Intake During Intravenous Cholecystokinin Octapeptide (CCK-8) Infusion’ Physiology and Behavior; V. 65 (2); pp. 303-310; 1998. |
Hallden et al. “Evidence for a Role of the Gut Hormone PYY in the Regulation of Intestinal Fatty Acid Binding Protein Transcripts in Differentiated Subpopulations of Intestinal Epithelial Cell Hybrids”; Journal of Biological Chemistry; V. 272 (19); pp. 125916-126000; 1997. |
Houpt; ‘Gastrointestinal Factors in Hunger and Satiety’; Neurosci. and Behav. Rev.; V. 6; pp. 145-164; 1982. |
Kissileff et al.; ‘Peptides that Regulate Food Intake: Cholecystokinin and Stomach Distension Combine to Reduce Food Intake in Humans’; Am. J. Physiol. Regul. Integr. Comp. Physiol.; V. 285; pp. 992-998; 2003. |
Naslund et al. ‘Pranidal subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects’; British Journal of Nutrition; V. 91; pp. 439-446; 2004. |
Renshaw et al. ‘Peptide YY: A Potential Therapy for Obesity’; Current Drug Targets; V. 6; pp. 171-179; 2005. |
Verdich et al. ‘A Meta-Analysis of the Effect of Glucagon-Like-Peptide-1 (7-36) Amide on ad Libitum Energy Intake in Humans’; J. Clin. Endocrinal. Metab. V. 86; pp. 4382-4389; Sep. 2001. |
Wynne et al.; ‘Subcutaneous Oxyntomodulin Reduces Body Weight in Overweight and Obese Subiects: A Double-Blind Randomized, Controlled Trial’: Diabetes; V. 54; pp. 2390-2395; 2005. |
Xanthakos et al.; ‘Bariatric Surgery for Extreme Adolescent Obesity: Indications, Outcomes, and Physiologic Effects on the Gut-Brain Axis’; Pathophysiology; V. 15; pp. 135-146; 2008. |
Number | Date | Country | |
---|---|---|---|
20150094753 A1 | Apr 2015 | US |
Number | Date | Country | |
---|---|---|---|
61485009 | May 2011 | US | |
61394592 | Oct 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13272131 | Oct 2011 | US |
Child | 14519692 | US |