Field of the Invention
Embodiments of the present invention relate to devices, tools and methods for providing reinforcement of bones. More specifically, the present invention relates to devices, tools and methods for providing reconstruction and reinforcement of bones, including diseased, osteoporotic and/or fractured bones.
Description of the Related Art
The number and diversity of sports and work related fractures are being driven by several sociological factors. The diversity of high energy sports has increased and the participation in these sports has followed the general trend of affluence and the resultant amount of time for leisure. High energy sports include skiing, motorcycle riding, snow mobile riding, snowboarding, mountain biking, road biking, kayaking, and all terrain vehicle (ATV) riding. As the general affluence of the economically developed countries has increased the number (or amount) and age of people participating in these activities has increased. Lastly, the acceptance and ubiquitous application of passive restraint systems, airbags, in automobiles has created greater numbers of non-life threatening fractures. In the past, a person that might expire from a serious automobile accident now survives with multiple traumas and resultant fractures.
Bone fractures are a common medical condition both in the young and old segments of the population. However, with an increasingly aging population, osteoporosis has become more of a significant medical concern in part due to the risk of osteoporotic fractures. Osteoporosis and osteoarthritis are among the most common conditions to affect the musculoskeletal system, as well as frequent causes of locomotor pain and disability. Osteoporosis can occur in both human and animal subjects (e.g. horses). Osteoporosis (OP) and osteoarthritis (OA) occur in a substantial portion of the human population over the age of fifty. The National Osteoporosis Foundation estimates that as many as 44 million Americans are affected by osteoporosis and low bone mass, leading to fractures in more than 300,000 people over the age of 65. In 1997 the estimated cost for osteoporosis related fractures was $13 billion. That figure increased to $17 billion in 2002 and is projected to increase to $210-240 billion by 2040. Currently it is expected that one in two women, and one in four men, over the age of 50 will suffer an osteoporosis-related fracture. Osteoporosis is the most important underlying cause of fracture in the elderly. Also, sports and work-related accidents account for a significant number of bone fractures seen in emergency rooms among all age groups.
One current treatment of bone fractures includes surgically resetting the fractured bone. After the surgical procedure, the fractured area of the body (i.e., where the fractured bone is located) is often placed in an external cast for an extended period of time to ensure that the fractured bone heals properly. This can take several months for the bone to heal and for the patient to remove the cast before resuming normal activities.
In some instances, an intramedullary (IM) rod or nail is used to align and stabilize the fracture. In that instance, a metal rod is placed inside a canal of a bone and fixed in place, typically at both ends. See, for example, Fixion™ IM (Nail), www.disc-o-tech.com. Placement of conventional IM rods are typically a “line of sight” and require access collinear with the center line of the IM canal. Invariably, this line of sight access violates, disrupts, and causes damage to important soft tissue structures such as ligaments, tendons, cartilage, fascia, and epidermis. This approach requires incision, access to the canal, and placement of the IM nail. The nail can be subsequently removed or left in place. A conventional IM nail procedure requires a similar, but possibly larger, opening to the space, a long metallic nail being placed across the fracture, and either subsequent removal, and or when the nail is not removed, a long term implant of the IM nail. The outer diameter of the IM nail must be selected for the minimum inside diameter of the space. Therefore, portions of the IM nail may not be in contact with the canal. Further, micro-motion between the bone and the IM nail may cause pain or necrosis of the bone. In still other cases, infection can occur. The IM nail may be removed after the fracture has healed. This requires a subsequent surgery with all of the complications and risks of a later intrusive procedure. In general, rigid IM rods or nails are difficult to insert, can damage the bone and require additional incisions for cross-screws to attach the rods or nails to the bone.
In view of the foregoing, it would be desirable to have a device, system and method for providing effective and minimally invasive bone reinforcement and fracture fixation to treat fractured or diseased bones, while improving the ease of insertion, eliminating cross-screw incisions and minimizing trauma.
As used herein, the term “aspect” may be used interchangeably with the term “embodiment.” Aspects of the invention relate to embodiments of a bone fixation device and to methods for using such a device for repairing a bone fracture. The bone fixation device may include an elongate body with a longitudinal axis, and/or having a flexible state and a rigid state. The device further may include a plurality of grippers disposed at longitudinally-spaced locations along the elongate body, a rigid hub connected to the elongate body, and an actuator that is operably-connected to the grippers to deploy the grippers from a first shape to an expanded second shape. In various embodiments, the elongate body and the rigid hub may or may not be collinear or parallel.
In one embodiment, a bone fixation device is provided with an elongate body; an oblong aperture in the elongate body configured to accept a screw; an bone engaging mechanism disposed within the elongate body; an actuator operably connected to the bone engaging mechanism to actuate the bone engaging mechanism from a disengaged configuration to an engaged configuration, wherein the actuator comprises a ramped surface that is slideably coupled to an interior surface of the bone engaging mechanism, wherein proximally moving the ramped surface of the actuator causes the ramped surface to slideably engage the interior surface of the bone engaging mechanism at an angle thereby pivoting the bone engaging mechanism away from the elongate body to deploy the bone engaging mechanism into the engaged configuration; and wherein the screw is configured to be pushed from a first position within the oblong aperture to a second position within the oblong aperture to reduce a fracture.
A screw driver configured to engage with a corresponding hex socket, the screw driver is provided with a shaft having a proximal end and a distal end; the distal end having a hex tip comprising at least six flats and a slot bisecting at least two of the six flats; and wherein the hex tip is deformed outward to create an interference with the corresponding hex socket.
Methods of repairing a bone fracture are also disclosed. One such method comprises providing an elongate fixation device having a proximal end, a distal end, an oblong aperture, and a radially expandable gripper; extending the radially expandable gripper away from the elongate fixation device by moving a ramped surface of an actuator head toward the proximal end thereby engaging the radially expandable gripper with a surface of an intramedullary canal of a first bone segment; inserting a first screw into a second bone segment and through the oblong aperture; and translating the first screw to reduce a distance between the first bone segment and the second bone segment.
A system for installing a screw is provided including a bone fixation device having an elongate body; an oblong aperture in the elongate body configured to accept the screw, a bone engaging mechanism, and an actuator operably coupled to the bone engaging mechanism to actuate the bone engaging mechanism from a disengaged configuration to an engaged configuration; and a combination tool operably connected to the elongate body, wherein the combination tool comprises at least one bore configured to align with the oblong aperture in the elongate body.
Methods of repairing a bone fracture between a first bone segment and a second bone segment of a bone are also disclosed. One such method comprises providing an elongate body having an oblong aperture and a bone engaging mechanism; coupling the elongate body with a combination tool having a first bore configured to accept a K-wire; extending the elongate body into a canal of the bone of the first bone segment; extending the K-wire through the first bore and into the second bone segment; and manipulating the combination tool to reposition the first bone segment relative to the second bone segment. One such method comprises extending a first K-wire into the first bone segment and a second K-wire into the second bone segment; coupling the first K-wire and the second K-wire to a distractor; manipulating the distractor to reposition the first bone segment relative to the second bone segment; reaming a canal in the first bone segment and the second bone segment; coupling an elongate body having an oblong aperture with a combination tool; and inserting the elongate body into the canal.
A reamer configured to be used with bone is provided with a shaft having a proximal end and a distal end; the distal end having at least one spiral cutting edge having a first diameter; the proximal end having a handle; and wherein a portion of the shaft has a diameter less than the first diameter.
A method of using a bone fixation device is provided including the steps of providing an elongate body having a bone engaging mechanism; extending the elongate body into a canal of a bone; and actuating the bone engaging mechanism from a disengaged configuration to an engaged configuration, wherein in the engaged configuration, the bone engaging mechanism pivots away from the elongate body to deploy the bone engaging mechanism against the wall of the canal.
In some embodiments, a method of inserting a device is provided. The method can include the step of inserting a device within the intramedullary canal of a fibula, the device comprising one or more apertures. The method can include the step of inserting a first fastener through the device in a lateral-medial direction. The method can include the step of inserting a second fastener through the device, the second screw angled from the first screw by angle alpha. The method can include the step of inserting a third fastener through the device, the third screw angled from the first screw by angle beta, wherein the third screw extends into the tibia. The method can include the step of actuating a mechanism of the device to grip the intramedullary canal of a fibula.
In some embodiments, angle alpha is between 45-75 degrees. In some embodiments, angle beta is between 10-40 degrees. The method can include the step of translating the first fastener within an aperture of the device toward the mechanism. The method can include the step of rotating the first fastener, wherein the rotation of the first fastener causes translation of the first fastener within an aperture of the device toward the mechanism. In some embodiments, actuating the mechanism comprises deflecting three members towards the intramedullary canal. In some embodiments, the first fastener and the second fastener are contained within the fibula. In some embodiments, the third fastener is a screw. The method can include the step of passing at least one of the first fastener, the second fastener, and the third fastener through an aperture in a tool aligned with an aperture in the device. The method can include the step of inserting K-wires within bones portion near a fracture and rotating the bone portions using the K-wires. In some embodiments, rotating the bone portions further comprises rotating a knob of a distractor.
In some embodiments, a device is provided. The device can include an elongate body comprising at least a first aperture, a second aperture and a third aperture. In some embodiments, the elongate body sized to be inserted within the fibula. The device can include a first fastener configured to be inserted through the first aperture in a lateral-medial direction. The device can include a second fastener configured to be inserted through the second aperture. In some embodiments, the second aperture angled from the first aperture by angle alpha. The device can include a third fastener configured to be inserted through the third aperture. In some embodiments, the third aperture angled from the first screw by angle beta. In some embodiments, the third fastener has a longer length than the first fastener and the second fastener. The device can include an actuator configured to actuate a portion of the device to grip the intramedullary canal of a fibula.
In some embodiments, angle alpha is 60 degrees. In some embodiments, angle beta is 25 degrees. In some embodiments, the first aperture is oblong, wherein the first fastener is configured to translate within the first aperture toward the actuator. In some embodiments, the portion comprises three members configured to deflect towards the intramedullary canal. In some embodiments, the first fastener and the second fastener are sized to be contained within the fibula. In some embodiments, the third fastener is sized to extend into the tibia. In some embodiments, the third fastener is a screw. The device can include a tool comprising at least a fourth aperture aligned with the first aperture, a fifth aperture aligned with the second aperture and a sixth aperture aligned with the third aperture.
These and other features and advantages of the present invention will be understood upon consideration of the following detailed description of the invention and the accompanying drawings.
The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
By way of background and to provide context for the invention, it may be useful to understand that bone is often described as a specialized connective tissue that serves three major functions anatomically. First, bone provides a mechanical function by providing structure and muscular attachment for movement. Second, bone provides a metabolic function by providing a reserve for calcium and phosphate. Finally, bone provides a protective function by enclosing bone marrow and vital organs. Bones can be categorized as long bones (e.g. radius, femur, tibia and humerus) and flat bones (e.g. skull, scapula and mandible). Each bone type has a different embryological template. Further each bone type contains cortical and trabecular bone in varying proportions. The devices of this invention can be adapted for use in any of the bones of the body as will be appreciated by those skilled in the art.
Cortical bone (compact) forms the shaft, or diaphysis, of long bones and the outer shell of flat bones. The cortical bone provides the main mechanical and protective function. The trabecular bone (cancellous) is found at the end of the long bones, or the epiphysis, and inside the cortex of flat bones. The trabecular bone consists of a network of interconnecting trabecular plates and rods and is the major site of bone remodeling and resorption for mineral homeostasis. During development, the zone of growth between the epiphysis and diaphysis is the metaphysis. Finally, woven bone, which lacks the organized structure of cortical or cancellous bone, is the first bone laid down during fracture repair. Once a bone is fractured, the bone segments are positioned in proximity to each other in a manner that enables woven bone to be laid down on the surface of the fracture. This description of anatomy and physiology is provided in order to facilitate an understanding of the invention. Persons of skill in the art will also appreciate that the scope and nature of the invention is not limited by the anatomy discussion provided. Further, it will be appreciated there can be variations in anatomical characteristics of an individual patient, as a result of a variety of factors, which are not described herein. Further, it will be appreciated there can be variations in anatomical characteristics between bones which are not described herein.
When implanted within a patient, the device can be held in place with suitable fasteners such as wire, screws, nails, bolts, nuts and/or washers. The device 3100 is used for fixation of fractures of the proximal or distal end of long bones such as intracapsular, intertrochanteric, intercervical, supracondular, or condular fractures of the femur; for fusion of a joint; or for surgical procedures that involve cutting a bone. The devices 3100 may be implanted or attached through the skin so that a pulling force (traction may be applied to the skeletal system).
In the embodiment shown in
During actuation, bendable members 3118 of gripper 3108 are urged radially outward by a ramped surface on actuator head 3124. Actuator head 3124 is formed on the distal end of actuator 3126. The proximal end of actuator 3126 is threaded to engage a threaded bore of drive member 3128. The proximal end of drive member 3128 is provided with a keyed socket 3130 for receiving the tip of a rotary driver tool 3132 (shown in
A hemispherical tip cover 3134 may be provided at the distal end of the device as shown to act as a blunt obturator. This arrangement facilitates penetration of bone (e.g. an intramedullary space) by device 3100 while keeping the tip of device 3100 from digging into bone during insertion.
As previously mentioned, device 3100 may include one or more flexible-to-rigid body portions 3114. This feature is flexible upon entry into bone and rigid upon application of compressive axial force provided by tensioning actuator 3126. Various embodiments of a flexible-to-rigid portion may be used, including dual helical springs whose inner and outer tubular components coil in opposite directions, a chain of ball bearings with flats or roughened surfaces, a chain of cylinders with flats, features, cones, spherical or pointed interdigitating surfaces, wavy-helical cut tubes, two helical cut tubes in opposite directions, linear wires with interdigitating coils, and bellows-like structures.
The design of the flexible-to-rigid tubular body portion 3114 allows a single-piece design to maximize the transformation of the same body from a very flexible member that minimizes strength in bending to a rigid body that maximizes strength in bending and torsion. The flexible member transforms to a rigid member when compressive forces are applied in the axial direction at each end, such as by an actuator similar to 3126. The body portion 3114 is made, for example, by a near-helical cut 3116 on a tubular member at an angle of incidence to the axis somewhere between 0 and 180 degrees from the longitudinal axis of the tubular body portion 3114. The near-helical cut or wavy-helical cut may be formed by the superposition of a helical curve added to a cyclic curve that produces waves of frequencies equal or greater than zero per turn around the circumference and with cyclic amplitude greater than zero. The waves of one segment nest with those on either side of it, thus increasing the torque, bending strength and stiffness of the tubular body when subjective to compressive forces. The tapered surfaces formed by the incident angle allow each turn to overlap or interdigitate with the segment on either side of it, thus increasing the bending strength when the body is in compression. Additionally, the cuts can be altered in depth and distance between the cuts on the longitudinal axis along the length of body portion 3114 to variably alter the flexible-to-rigid characteristics of the tubular body along its length.
The cuts 3116 in body portion 3114 allow an otherwise rigid member to increase its flexibility to a large degree during deployment. The tubular member can have constant or varying internal and external diameters. This design reduces the number of parts of the flexible-to-rigid body portion of the device and allows insertion and extraction of the device through a curved entry port in the bone while maximizing its rigidity once inserted. Application and removal of compressive forces provided by a parallel member such as wire(s), tension ribbons, a sheath, wound flexible cable, or actuator 3126 as shown will transform the body from flexible to rigid and vice versa.
In operation, as actuator 3126 is tightened, gripper members 3118 are extended radially outwardly. Once the distal ends of gripper members 3118 contact bone and stop moving outward, continued rotation of actuator 3126 draws the proximal end 3102 and the distal end 3104 of device 3100 closer together until cuts 3116 are substantially closed. In one embodiment, as this happens, body portion 3114 changes from being flexible to rigid to better secure the bone fracture. Rotating drive member 3128 in the opposite direction causes body portion 3114 to change from a rigid to a flexible state, such as for removing device 3100 if needed in the initial procedure or during a subsequent procedure after the bone fracture(s) have partially or completely healed. Body portion 3114 may be provided with a solid longitudinal portion 3136 (as seen in
Rotary driver 3132 may be used to actuate gripper 3108 and compress flexible-to-rigid body portion 3114 after device 3100 is inserted into bone 3106. Driver 3132 may also be used to allow body portion 3114 to decompress and gripper 3108 to retract if removal of device 3100 from bone 3106 is desired. In the embodiment shown, driver 3132 includes knob 3154, torsion spring 3156, hub 3158, bushing 3160 and shaft 3162. The distal end of shaft 3162 is provided with a mating tip 3164, such as one having a hex-key shape, for engaging with keyed socket 3130 of device 3100 (seen in
The proximal end of shaft 3162 may be fitted with a bushing 3160, such as with a press-fit. Hub 3158 may be secured over bushing 3160, such as with a pin through bushing 3160 and shaft 3162. In this embodiment, knob 3154 is rotatably mounted over hub 3158 and bushing 3160 such that knob 3154 can rotate independently from shaft 3162. A torsion spring 3156 may be used to couple knob 3154 to hub 3158 as shown to create a torque limiting and/or torque measuring driver. With this indirect coupling arrangement, as knob 3154 is rotated about shaft 3162, spring 3156 urges hub 3158 and shaft 3162 to rotate in the same direction. Rotational resistance applied by device 3100 to shaft tip 3164 will increase in this embodiment as gripper 3108 engages bone 3106, and flexible-to-rigid body portion 3114 compresses. As more torque is applied to knob 3154, it will advance rotationally with respect to hub 3158 as torsion spring 3156 undergoes more stress. Markings may be provided on knob 3154 and hub 3158 to indicate the torque being applied. In this manner, a surgeon can use driver 3132 to apply torque to device 3100 in a predetermined range. This can help ensure that gripper 3108 is adequately set in bone 3106, body portion 3114 is sufficiently compressed, and excessive torque is not being applied that might damage device 3100, bone 3106 or cause slippage therebetween. A slip clutch or other mechanism may be provided to allow the applied torque to be limited or indicated. For example, driver 3132 may be configured to “click” into or out of a detent position when a desired torque is reached, thus allowing the surgeon to apply a desired torque without needing to observe any indicia on the driver. In alternative embodiments, the driver knob may be selectably or permanently coupled to shaft 3162 directly.
After device 3100 is inserted in bone 3106 and deployed with tool 3138 as described above, the approximating driver portion 3144 of tool 3138 may be used to compress one or more fractures in bone 3106. Approximating driver 3144 includes knob 3166 located on sleeve 3152. Knob 3166 may be knurled on an outer circumference, and have threads on at least a portion of its axial bore. The internal threads of knob 3166 engage with mating external threads on sleeve 3152 such that when knob 3166 is rotated it advances axially with respect to sleeve 3152. When device 3100 is anchored in bone 3106, sleeve 3152 is prevented from moving away from the bone. Accordingly, as knob 3166 is advanced axially toward bone 3106, it serves to approximate bone fractures located between gripper 3108 and knob 3166. Suitable thread pitch and knob circumference may be selected to allow a surgeon to supply a desired approximating force to bone 3106 by using a reasonable rotation force on knob 3166. In alternative embodiments (not shown), a torque indicating and/or torque limiting mechanism as described above may be incorporated into approximating driver 3144.
As previously indicated, tool 3138 may also include a screw alignment portion 3146. In the embodiment depicted in the figures, alignment portion 3146 includes a removable alignment tube 3168 and two bores 3170 and 3172 through tool body 3140. In alternative embodiments (not shown), a single bore or more than two bores may be used, with or without the use of separate alignment tube(s).
In operation, alignment tube 3168 is first received in bore 3170 as shown. In this position, tube 3168 is in axial alignment with angled hole 3174 at the distal end 3102 of device 3100. As described above, the mating semicircular steps of device 3100 and sleeve 3152 position angled hole 3174 in its desired orientation. With this arrangement, a drill bit, screw driver, screw and/or other fastening device or tool may be inserted through the bore of tube 3168 such that the device(s) are properly aligned with hole 3174. The outward end of alignment tube 3168 may also serve as a depth guide to stop a drill bit, screw and/or other fastener from penetrating bone 3106 beyond a predetermined depth.
Alignment tube 3168 may be withdrawn from bore 3170 as shown, and inserted in bore 3172. In this position, tube 3168 aligns with hole 3176 of device 3100. As described above, a drill bit, screw driver, screw and/or other fastening device may be inserted through the bore of tube 3168 such that the device(s) are properly aligned with hole 3176.
Once device 3100 is secured within bone 3106, combination tool 3138 may be removed by turning knob 3148 to disengage threads of tube 3150 from threads within the proximal end 3102 of device 3100. An end plug 3178 may be threaded into the proximal end 3102 of device 3100 to preventing growth of tissue into implanted device 3100. Device 3100 may be left in bone 3106 permanently, or it may be removed by performing the above described steps in reverse. In particular, plug 3178 is removed, tool 3138 is attached, screws 3110 are removed, gripper 3108 is retracted, and device 3100 is pulled out using tool 3138.
Tool 3138′ may be used to form screw hole(s) in flexible-to-rigid body portion 3114 by guiding a drill bit with alignment tube 3168. Screw hole(s) may also be formed directly in body portion 3114 without pre-forming or drilling holes in vivo, but by placing a screw directly into body portion 3114, such as with a self-tapping screw guided with alignment tube 3168.
Internal components within device 3100, such as actuator 3126, may be configured such that screw(s) pass though it or pass around it. For example, in some embodiments the actuator comprises one or more cables, leaving enough room within body portion 3114 so that a screw can avoid the actuator(s), or move it/them out of the way when passing into or through body portion 3114. In some embodiments, the one or more actuators are large enough to allow one or more screws to pass through it/them without impeding the operation of the actuator(s). In some embodiments, the screw(s) only enter one wall of tubular body portion 3114 without entering the interior space of the body portion.
In this exemplary embodiment, each of the two grippers 3204 and 3206 has four outwardly expanding arms 3214. These arms are spaced at 90 degree intervals around the circumference of the device body. The arms 3214 of gripper 3204 may be offset by 45 degrees from arms 3214 of gripper 3206 as shown in the figures to distribute the forces applied by grippers 3204 and 3206 on the bone 3202. As shown in
Referring to
When implanted within a patient, the device can be held in place with suitable fasteners such as wire, screws, nails, bolts, nuts and/or washers. The device 100 is used for fixation of fractures of the proximal or distal end of long bones such as intracapsular, intertrochanteric, intercervical, supracondular, or condular fractures of the fibula; for fusion of a joint; or for surgical procedures that involve cutting a bone. The devices 100 may be implanted or attached through the skin so that a pulling force (traction may be applied to the skeletal system).
In the embodiment shown in
Hub 158 is configured to abut the proximal end 102 of the device 100 (seen in
Device attachment portion 142 prevents removal of the hub 158 and the T-shaped body from the device 100. Device attachment portion 142 includes a knob 152 connected with a tube 160 (seen in
The rotary driver 132 can be partially inserted within the device attachment portion 142 prior to inserting the screw 110. The rotary driver 132 can be inserted within the device attachment portion 142 after inserting the screw 110. In some embodiments, the device attachment portion 142 has a lock that prevents translation of the rotatory driver 132 prior to inserting the screw 110. The lock can be released by rotating the lock within the device attachment portion 142 until the lock no longer prevents translation of the shaft 162. The lock can ensure that the shaft 162 is not obstructing the aperture 114 prior to inserting the screw 110.
The alignment tube 168 is shown in
In operation, alignment tube 168 is first received in bore 170 (seen in
The T-shaped body 140 includes other bores 172 that align with apertures 116. Alignment tube 168 may be withdrawn from bore 170 as shown, and inserted in another bore 172. The alignment tube 168 can be inserted within these bores 172 to align and insert other screws 110 into apertures 116. In this position, alignment tube 168 aligns with aperture 116 of device 100. As described above, a drill bit, screw driver, screw and/or other fastening device may be inserted through the bore of alignment tube 168 such that the device(s) are properly aligned with aperture 116.
Turning the knob 154 causes the shaft 162 to rotate and thereby translate within the device attachment portion 142. Rotation of the rotatory drive 132 causes the shaft 162 to translate toward the distal end 104 of the device 100 toward the screw 110. Further translation of the shaft 162 will push the screw 110 toward the distal end 104 of the device 100 while the screw 110 is within the aperture 114. Further rotation of the rotary driver 132 causes the screw 110 to translate within the aperture 114. The tool 138 is removed and the cap 128 is inserted within the proximal bore of the device 100.
The translation of the screw 110 may be used to compress one or more fractures in bone.
The screw 110 can be inserted with a combination tool 138. The screw 110 is aligned with the aperture 114. In some embodiments, the screw 110 is oriented perpendicular to the longitudinal axis of bone. The screw 110 penetrates bone segment 2. The screw 110 extends past the device 100 to rigidly fix the screw 110 to the bone segment 2. The aperture 114 has at least one dimension greater that the diameter of the screw 110. The at least one dimension can be aligned with the longitudinal axis of the bone and/or the longitudinal axis of the device 100.
The screw 110 can be translated with respect to the aperture 114. The shape of the aperture 114 allows the screw 110 to translate within the aperture 114. The screw 110 can be inserted into the aperture 114 near the proximal end 102 of the device 100. The screw can be translated toward the distal end 104 of the device 100 while within the aperture 114.
Referring back to
In the illustrated embodiments, the distal end 104 is secured by gripper 108. In this manner, any bone fractures located between the proximal screw 110 and distal gripper 108 may be approximated and rigidly held together by device 100. In alternative embodiments (not shown), more than one gripper may be used. For example, the device shown in
Once device 100 is secured within bone 106, combination tool 138 may be removed by turning device attachment portion 142 to disengage threads of tube 160 from threads within the proximal bore of device 100. The hub 158 can be disengaged from the proximal end 102 of the device 100. The cap 128 may be threaded into the proximal end 102 of device 100 to preventing growth of tissue into implanted device 100. Device 100 may be left in bone permanently, or it may be removed by performing the above described steps in reverse. In particular, cap 128 is removed, tool 138 is attached, one or more screws 110 are removed, gripper 108 is retracted, and device 100 is pulled out using tool 138.
The screw driver 300 includes a proximal end 302 and a distal end 304. The proximal end 302 can have a mating configuration such as a flattened surface. The mating surface can engage a knob to facilitate rotation. The mating surface can engage a power source such a drill. The mating configuration can be a hand grip. The screw driver 300 can be sized and shaped to fit within the proximal bore of the device 100. The screw driver 300 can be sized and shaped to fit within the alignment tube 168.
The distal end 304 includes a hex tip 306. All the hex flats 308 are sized to fit a female hex of the corresponding keyed socket 130, 148. In the illustrated embodiment, each flat 308 is 2.5 mm but other sizes are contemplated. The hex tip 306 includes a slot 310 across one pair of flats 308. In the illustrated embodiment, the slot 310 bisects the pair of flats 308. In the illustrated embodiment, the slot 310 extends into the screw driver 300, beyond the hex tip 306. The depth and width of the slot 310 depends on the retaining force with the actuator 126 or with the screw 110.
The hex tip 306 is then deformed outward to create an interference between the screw driver 300 and the keyed socket 130, 148. In the illustrated embodiment, the interference is on the order of 0.003″ (e.g., 0.002″, 003″, 0.004″, 0.005″, between 0.002″ and 0.005″, etc.). The material of the screw driver 300 is selected maintain the deformed state. One suitable material is heat treated stainless steel. The configuration of the screw driver 300 prevents stripping of the keyed socket 130, 148. In some embodiments (not shown), an elastomer could be inserted into the slot 310 to provide additional spring back if needed.
In accordance with the various embodiments of the present invention, the device may be made from a variety of materials such as metal, composite, plastic or amorphous materials, which include, but are not limited to, steel, stainless steel, cobalt chromium plated steel, titanium, nickel titanium alloy (nitinol), superelastic alloy, and polymethylmethacrylate (PMMA). The device may also include other polymeric materials that are biocompatible and provide mechanical strength, that include polymeric material with ability to carry and delivery therapeutic agents, that include bioabsorbable properties, as well as composite materials and composite materials of titanium and polyetheretherketone (PEEK), composite materials of polymers and minerals, composite materials of polymers and glass fibers, composite materials of metal, polymer, and minerals.
Within the scope of the present invention, each of the aforementioned types of device may further be coated with proteins from synthetic or animal source, or include collagen coated structures, and radioactive or brachytherapy materials. Furthermore, the construction of the supporting framework or device may include radio-opaque markers or components that assist in their location during and after placement in the bone or other region of the musculo-skeletal systems.
Further, the reinforcement device may, in one embodiment, be osteo incorporating, such that the reinforcement device may be integrated into the bone. In a further embodiment, there is provided a low weight to volume device deployed in conjunction with other suitable materials to form a composite structure in-situ. Examples of such suitable materials may include, but are not limited to, bone cement, high density polyethylene, Kapton™, polyetheretherketone (PEEK), and other engineering polymers.
Once deployed, the device may be electrically, thermally, or mechanically passive or active at the deployed site within the body. Thus, for example, where the device includes nitinol, the shape of the device may be dynamically modified using thermal, electrical or mechanical manipulation. For example, the nitinol device may be expanded or contracted once deployed, to move the bone or other region of the musculo-skeletal system or area of the anatomy by using one or more of thermal, electrical or mechanical approaches.
Distal end 104 of device 100 can be inserted into the bone before the proximal end 102 of the device 100. Device 100 is inserted into bone segments 2 and 4. Bone segment 2 is near the proximal end 102 of the device 100 and bone segment 4 is near the distal end 104 of the device 100.
Device 100 is in the undeployed state during insertion. In the undeployed state, gripper 108 is not actuated by actuator 126. Distal ends 122 of bendable gripping members 118 do not contact the inside of the bone to anchor the distal portion 104 of device 100 to the bone. Device 100 can remain in the undeployed state until the fracture is reduced. The device 100 is inserted into the bone until the device 100 is inserted into both bone segments 2, 4 and therefore spans the fracture.
In the illustrated embodiment, the bone is a fibula. Bone segment 2 is the distal portion of the fibula and bone segment 4 is a proximal segment of the fibula. In other methods, bone segment 2 is the proximal portion of the fibula and bone segment 4 is a distal segment of the fibula. The method described herein can be used with other bones, such as the femur, humerus, tibia, radius, ulna, and clavicle.
In some methods, the insertion of the device 100 does not align the fracture. For instance, one fragment of the bone (e.g., bone segment 2) may not be aligned with another fragment of the bone (e.g., bone segment 204). Further manipulation of the bone segment 2 and/or the bone segment 204 may be necessary. In some factures, the bone segments 2, 4 may be misaligned posteriorly or anteriorly, as those terms are commonly understood anatomically. In some factures, the bone segments 2, 4 may be misaligned distally or proximally, as those terms are commonly understood anatomically.
Bores 176 and thus K-wires 178 inserted through bores 176 are positioned on either side of a proximal-distal line. K-wires 178 pass through the bone segment 2 on either side of the device 100. In some methods, one or more K-wires 178 pass on the anterior side of the device 100. In some methods, one or more K-wires 178 pass on the posterior side of the device 100. The location and number of K-wires will depend on the nature of the fracture.
In some methods it is desirable to maintain the position of the bone segments 2, 4. In some methods, one or more K-wires 178 are driven through the bone segment 2. K-wires 178 can be driven into the talus (not shown) to maintain the position of the bone segment 2. K-wires 178 can be driven into any stable surface to maintain the position.
During actuation, bendable gripping members 118 of gripper 108 are urged radially outward by a ramped surface on actuator head 124. Actuator head 124 is threaded onto the distal end of actuator 126. As screw driver 155 turns actuator 126, a threaded surface of the actuator 126 rotates in relation to the actuator head 124. This causes the actuator head 124 to be drawn in a proximal direction toward the proximal end 102 of the device 100 as the actuator head 124 traverses the threaded surface of the actuator 126. The ramped surface on the actuator head 124 outwardly actuates gripper members 118. The device 100 may include a stop to prevent translation of the actuator 126. Gripper 108 is deployed in the bone segment 4 to lock the position of the device 100.
In some methods, screw 110 (not shown) is inserted into aperture 114 of device 100. Screw 110 may be guided by removable alignment tube 168 as shown in
The bone segments 2, 4 have been previously aligned by manipulating K-wires 178. In some methods, shaft 162 (
In some methods it is desirable prepare the bone segments 2, 4 for the device 100.
When implanted within a patient, the device can be held in place with suitable fasteners such as wire, screws, nails, bolts, nuts and/or washers. The device 200 is used for fixation of fractures of the proximal or distal end of long bones such as intracapsular, intertrochanteric, intercervical, supracondular, or condular fractures of the fibula; for fusion of a joint; or for surgical procedures that involve cutting a bone. The devices 200 may be implanted or attached through the skin so that a pulling force (traction may be applied to the skeletal system).
The design of the fixation device 200 depicted is adapted to provide a bone engaging mechanism or gripper 208 adapted to engage target bone of a patient from the inside of the bone. As configured for this anatomical application, the device 200 is designed to facilitate bone healing when placed in the intramedullary space within a post fractured bone. This device 200 has a gripper 208 positioned distally and shown deployed radially outward against the wall of the intramedullary cavity in
The screws 20 are distal screws. The screws 20 have a length between 12 mm and 20 mm. The screws 20 have a diameter of 2.7 mm. The screws 20 are locking screws. The screws 20 engage cortical bone. The screws 20 are multi-planar. The screws 20 are locking screws which can resist back-out. Multi-planar screws 20 are stronger in pull out, torsions, tension and compression. Two screws 20 can have the same orientation. Aperture 10 and 14 can have the same orientation. Apertures 10 and 14 can position screws 20 in the lateral-medial directions, as described herein. One screws 20 can have a different orientation. Aperture 12 can have a different orientation than apertures 10 and 14. Apertures 12 can position screw 20 in the anterior-posterior direction. The aperture 12 is externally rotated in relation to the transepicondylar axis. The aperture 12 is rotated anteriorly from the coronal plane. The screw 20 through aperture 12 is placed obliquely an angle alpha. The angle alpha is approximately 60 degrees from anteromedial to posterolateral in the transverse plane. The aperture 12 is oriented 60 degree anteriorly.
In alternative embodiments (not shown), the device may comprise a 40 degree, 45 degree, 50 degree, 55 degree, 60 degree, 65 degree, 70 degree, 75 degree, 80 degree, or different anterior angle similar to angle of the aperture 12 shown. The aperture 12, may form an anterior angle of, for example, approximately 30 degrees, approximately 35 degrees, approximately 40 degrees, approximately 45 degrees, approximately 50 degrees, approximately 55 degrees, approximately 60 degrees, approximately 65 degrees, approximately 70 degrees, approximately 75 degrees, approximately 80 degrees, approximately 85 degrees, approximately 90 degrees etc. The aperture 12, may form an angle of, for example, between 50-60 degrees, between 55-65 degrees, between 60-70 degrees, between 65-75 degrees, etc. The aperture 12, may form an angle of, for example, between 40-60 degrees, between 45-65 degrees, between 50-70 degrees, between 55-75 degrees, between 60-80 degrees, between 65-85 degrees etc. The aperture 12, may form an angle of, for example, between 50-70 degrees, between 45-75 degrees, or between 40-80 degrees, etc.
The screws 22 are syndesmotic screws. The screws 22 have a length between 40 mm and 70 mm. The screws 22 have a diameter of 3.5 mm. The screws 22 are non-locking screws. The screws 22 engage cortical bone. The screws 22 are double-lead threads, which rotate twice as fast to engage bone.
In alternative embodiments (not shown), the device may comprise 10 degree, 15 degree, 20 degree, 25 degree, 30 degree, 35 degree, 40 degree, 45 degree, 50 degree, or different degree posteriorangle similar to angle of the apertures 16 and 18 shown. The apertures 16 and 18, may form a posterior angle of, for example, approximately 10 degrees, approximately 15 degrees, approximately 20 degrees, approximately 25 degrees, approximately 30 degrees, approximately 35 degrees, approximately 40 degrees, approximately 45 degrees, approximately 50 degrees, etc. The apertures 16 and 18, may form a posterior angle of, for example, between 15-25 degrees, between 20-30 degrees, between 25-35 degrees, between 30-40 degrees, etc. The apertures 16 and 18, may form a posterior angle of, for example, between 5-25 degrees, between 10-30 degrees, between 15-35 degrees, between 20-40 degrees, between 25-45 degrees, or between 30-50 degrees, etc. The apertures 16 and 18, may form a posterior angle of, for example, between 20-30 degrees, between 15-35 degrees, between 10-40 degrees, or between 5-45 degrees, etc.
The device 200 has a 6 degree bend between the hub 212 and the distal end 204 as shown in
Distal end 204 of device 200 can be inserted into the bone before the proximal end 202 of the device 200. Device 200 is in the un-deployed state during insertion as shown in
The screw driver 320 includes a proximal end 322 and a distal end 324. The proximal end 322 can have a mating configuration such as a flattened surface. The mating surface can engage a knob to facilitate rotation. The mating surface can engage a power source such a drill. The mating configuration can be a hand grip. The screw driver 320 can be sized and shaped to fit within the proximal bore of the device 200. The screw driver 320 can be sized and shaped to fit within the alignment tube 168, 268, as described herein.
The hex tip 326 is machined with a lip 332. The hex tip is manufactures such that the hex surface is larger than the corresponding socket. The lip 332 creates an interference between the screw driver 320 and the keyed socket 130, 148, 230. In the illustrated embodiment, the interference is on the order of 0.0002″−0.001″ (e.g., 0.0002″, 0003″, 0.0004″, 0.0005″, 0.0006″, 0.0007″, 0.0008″, 0.0009″, 0.001″, between 0.002″ and 0.005″, etc.). The material of the screw driver 320 is selected maintain the shape of the lip 322. One suitable material is heat treated stainless steel. The configuration of the screw driver 320 prevents stripping of the keyed socket 130, 148, 230. In some embodiments (not shown), an elastomer could be inserted into the slot 330 to provide additional spring back if needed.
The alignment tube 268 is shown in
In operation, alignment tube 268 is first received in aperture 18′. In this position, alignment tube 268 is in axial alignment with aperture 18 of device 200. The mating configuration of device 200 and hub 258 positions aperture 18 in its desired orientation. With this arrangement, a drill bit, screw driver 270, screw 22 and/or other fastening device or tool may be inserted through the bore of alignment tube 268 such that the device(s) are properly aligned with aperture 18. While screw 22 is shown, the alignment tube 268 can be used with screw 20, 24 in the same manner. The outward end of alignment tube 268 may also serve as a depth guide to stop a drill bit, screw 22 and/or other fastener from penetrating bone beyond a predetermined depth. Inserting the screw 22 through the alignment tube 268 ensures that the screw 22 will have the placement as shown in
The T-shaped body 240 includes other apertures 10′, 12′, 14′, 16′ that align with apertures 10, 12, 14, 16, as described herein. Alignment tube 268 may be withdrawn from aperture 18′ as shown, and inserted in another aperture 10′, 12′, 14′, 16. The alignment tube 268 can be inserted within these apertures to align and insert other screws 20, 22.
The alignment tube 268 is removed in
It is contemplated that the inventive implantable device, tools and methods may be used in many locations within the body. Where the proximal end of a device in the anatomical context is the end closest to the body midline and the distal end in the anatomical context is the end further from the body midline, for example, on the humerus, at the head of the humerus (located proximal, or nearest the midline of the body) or at the lateral or medial epicondyle (located distal, or furthest away from the midline); on the radius, at the head of the radius (proximal) or the radial styloid process (distal); on the ulna, at the head of the ulna (proximal) or the ulnar styloid process (distal); for the femur, at the greater trochanter (proximal) or the lateral epicondyle or medial epicondyle (distal); for the tibia, at the medial condyle (proximal) or the medial malleolus (distal); for the fibula, at the neck of the fibula (proximal) or the lateral malleoulus (distal); the ribs; the clavicle; the phalanges; the bones of the metacarpus; the bones of the carpus; the bones of themetatarsus; the bones of the tarsus; the sternum and other bones, the device may be adapted and configured with adequate internal dimension to accommodate mechanical fixation of the target bone and to fit within the anatomical constraints. As will be appreciated by those skilled in the art, access locations other than the ones described herein may also be suitable depending upon the location and nature of the fracture and the repair to be achieved. Additionally, the devices taught herein are not limited to use on the long bones listed above, but can also be used in other areas of the body as well, without departing from the scope of the invention. It is within the scope of the invention to adapt the device for use in flat bones as well as long bones.
While various embodiments of the present invention have been shown and described herein, it will be noted by those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions may occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications, alterations, and combinations can be made by those skilled in the art without departing from the scope and spirit of the invention. Accordingly, it is not intended that the invention be limited, except as by the appended claims.
The present application claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 62/057,913 filed on Sep. 30, 2014, the disclosures of this application is incorporated by reference herein in its entirety. All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference. For example, U.S. patent application Ser. No. 13/615,078, filed Sep. 13, 2012 is incorporated by reference in its entirety, including all applications to which it claims priority. For example, U.S. patent application Ser. No. 13/614,523, filed Sep. 13, 2012 is incorporated by reference in its entirety, including all applications to which it claims priority.
Number | Name | Date | Kind |
---|---|---|---|
958127 | Hufrud | May 1910 | A |
1169635 | Grimes | Jan 1916 | A |
1790841 | Rosen | Feb 1931 | A |
2502267 | McPherson | Mar 1950 | A |
2685877 | Dobelle | Aug 1954 | A |
2998007 | Herzog | Aug 1961 | A |
3118444 | Serrato, Jr. | Jan 1964 | A |
3441017 | Kaessmann | Apr 1969 | A |
3626935 | Pollock et al. | Dec 1971 | A |
3710789 | Ersek | Jan 1973 | A |
3759257 | Fischer et al. | Sep 1973 | A |
3760802 | Fischer et al. | Sep 1973 | A |
3779239 | Fischer et al. | Dec 1973 | A |
3791380 | Dawidowski | Feb 1974 | A |
3846846 | Fischer | Nov 1974 | A |
3955565 | Johnson, Jr. | May 1976 | A |
3978528 | Crep | Sep 1976 | A |
3986504 | Avila | Oct 1976 | A |
4007528 | Shea et al. | Feb 1977 | A |
4011602 | Rybicki et al. | Mar 1977 | A |
4016874 | Maffei et al. | Apr 1977 | A |
4050646 | Hall | Sep 1977 | A |
4064567 | Burstein et al. | Dec 1977 | A |
4065816 | Sawyer | Jan 1978 | A |
4091806 | Aginsky | May 1978 | A |
4146022 | Johnson et al. | Mar 1979 | A |
4164794 | Spector et al. | Aug 1979 | A |
4190044 | Wood | Feb 1980 | A |
D255048 | Miller | May 1980 | S |
4204531 | Aginsky | May 1980 | A |
4227518 | Aginsky | Oct 1980 | A |
4236512 | Aginsky | Dec 1980 | A |
4237875 | Tennanini | Dec 1980 | A |
4246662 | Pastrick | Jan 1981 | A |
4262665 | Roalstad et al. | Apr 1981 | A |
4275717 | Bolesky | Jun 1981 | A |
4293962 | Fuson | Oct 1981 | A |
4294251 | Greenwald et al. | Oct 1981 | A |
4312336 | Danieletto et al. | Jan 1982 | A |
4313434 | Segal | Feb 1982 | A |
4338926 | Kummer et al. | Jul 1982 | A |
4351069 | Ballintyn et al. | Sep 1982 | A |
4352212 | Greene et al. | Oct 1982 | A |
4353358 | Emerson | Oct 1982 | A |
4379451 | Getscher | Apr 1983 | A |
4409974 | Freedland | Oct 1983 | A |
4453539 | Raftopoulos et al. | Jun 1984 | A |
4457301 | Walker | Jul 1984 | A |
4459708 | Buttazzoni | Jul 1984 | A |
4462394 | Jacobs | Jul 1984 | A |
4467794 | Maffei et al. | Aug 1984 | A |
RE31809 | Danieletto et al. | Jan 1985 | E |
4492226 | Belykh et al. | Jan 1985 | A |
4503847 | Mouradian | Mar 1985 | A |
4519100 | Wills et al. | May 1985 | A |
4520511 | Gianezio et al. | Jun 1985 | A |
4522200 | Stednitz | Jun 1985 | A |
4541423 | Barber | Sep 1985 | A |
4552136 | Kenna | Nov 1985 | A |
4589883 | Kenna | May 1986 | A |
4590930 | Kurth et al. | May 1986 | A |
4604997 | De Bastiani et al. | Aug 1986 | A |
4621627 | De Bastiani et al. | Nov 1986 | A |
4622959 | Marcus | Nov 1986 | A |
4624673 | Meyer | Nov 1986 | A |
4628920 | Mathys, Jr. et al. | Dec 1986 | A |
4632101 | Freedland | Dec 1986 | A |
4643177 | Sheppard et al. | Feb 1987 | A |
4651724 | Berentey et al. | Mar 1987 | A |
4653487 | Maale | Mar 1987 | A |
4662887 | Tuner et al. | May 1987 | A |
4667663 | Miyata | May 1987 | A |
D290399 | Kitchens | Jun 1987 | S |
4681590 | Tansey | Jul 1987 | A |
4697585 | Williams | Oct 1987 | A |
4705027 | Klaue | Nov 1987 | A |
4705032 | Keller | Nov 1987 | A |
4721103 | Freedland | Jan 1988 | A |
4735625 | Davidson | Apr 1988 | A |
4753657 | Lee et al. | Jun 1988 | A |
4776330 | Chapman et al. | Oct 1988 | A |
4781181 | Tanguy | Nov 1988 | A |
4805595 | Kanbara | Feb 1989 | A |
4805607 | Engelhardt et al. | Feb 1989 | A |
4813963 | Hori et al. | Mar 1989 | A |
4817591 | Klaue et al. | Apr 1989 | A |
4827919 | Barbarito et al. | May 1989 | A |
4828277 | De Bastiani et al. | May 1989 | A |
4854312 | Raftopoulos et al. | Aug 1989 | A |
4858602 | Seidel et al. | Aug 1989 | A |
4862883 | Freeland | Sep 1989 | A |
4871369 | Muller | Oct 1989 | A |
4875474 | Border | Oct 1989 | A |
4875475 | Comte et al. | Oct 1989 | A |
4896662 | Noble | Jan 1990 | A |
4921499 | Hoffman et al. | May 1990 | A |
4927424 | McConnell et al. | May 1990 | A |
4932969 | Frey et al. | Jun 1990 | A |
4943291 | Tanguy | Jul 1990 | A |
4946179 | De Bastiani et al. | Aug 1990 | A |
4959066 | Dunn et al. | Sep 1990 | A |
4969889 | Greig | Nov 1990 | A |
4976258 | Richter et al. | Dec 1990 | A |
4978349 | Frigg | Dec 1990 | A |
4978358 | Bobyn | Dec 1990 | A |
4988349 | Pennig | Jan 1991 | A |
5002547 | Poggie et al. | Mar 1991 | A |
5002580 | Noble et al. | Mar 1991 | A |
5006120 | Carter et al. | Apr 1991 | A |
5013314 | Firica et al. | May 1991 | A |
5019077 | De Bastiani et al. | May 1991 | A |
5026374 | Dezza et al. | Jun 1991 | A |
5027799 | Laico et al. | Jul 1991 | A |
5030222 | Calandruccio et al. | Jul 1991 | A |
5034012 | Frigg | Jul 1991 | A |
5034013 | Kyle et al. | Jul 1991 | A |
5035697 | Frigg | Jul 1991 | A |
5037423 | Kenna | Aug 1991 | A |
5041114 | Chapman et al. | Aug 1991 | A |
5041115 | Frigg et al. | Aug 1991 | A |
5053035 | McLaren | Oct 1991 | A |
5057103 | Davis | Oct 1991 | A |
5062854 | Noble et al. | Nov 1991 | A |
5066296 | Chapman et al. | Nov 1991 | A |
5084050 | Draenert | Jan 1992 | A |
5092892 | Ashby | Mar 1992 | A |
5098433 | Freedland | Mar 1992 | A |
5100404 | Hayes | Mar 1992 | A |
5102413 | Poddar | Apr 1992 | A |
5108404 | Scholten et al. | Apr 1992 | A |
5112333 | Fixel | May 1992 | A |
5116335 | Hannon et al. | May 1992 | A |
5116380 | Hewka et al. | May 1992 | A |
5122141 | Simpson et al. | Jun 1992 | A |
5122146 | Chapman et al. | Jun 1992 | A |
5124106 | Morr et al. | Jun 1992 | A |
5147408 | Noble et al. | Sep 1992 | A |
5152766 | Kirkley | Oct 1992 | A |
5163963 | Hewka et al. | Nov 1992 | A |
5171324 | Campana et al. | Dec 1992 | A |
5176681 | Lawes et al. | Jan 1993 | A |
5178621 | Cook et al. | Jan 1993 | A |
5190544 | Chapman et al. | Mar 1993 | A |
5190546 | Jervis | Mar 1993 | A |
5192281 | de la Caffiniere | Mar 1993 | A |
5197966 | Sommerkamp | Mar 1993 | A |
5197990 | Lawes et al. | Mar 1993 | A |
5201735 | Chapman et al. | Apr 1993 | A |
5201767 | Caldarise et al. | Apr 1993 | A |
5211664 | Tepic et al. | May 1993 | A |
5217049 | Forsyth | Jun 1993 | A |
5263955 | Baumgart et al. | Nov 1993 | A |
5268000 | Ottieri et al. | Dec 1993 | A |
5281224 | Faccioli et al. | Jan 1994 | A |
5281225 | Vicenzi | Jan 1994 | A |
5292322 | Faccioli et al. | Mar 1994 | A |
5295991 | Frigg | Mar 1994 | A |
5303718 | Krajicek | Apr 1994 | A |
5314489 | Hoffman et al. | May 1994 | A |
5320622 | Faccioli et al. | Jun 1994 | A |
5320623 | Pennig | Jun 1994 | A |
5326376 | Warner et al. | Jul 1994 | A |
5334184 | Bimman | Aug 1994 | A |
5342360 | Faccioli et al. | Aug 1994 | A |
5342362 | Kenyon et al. | Aug 1994 | A |
5346496 | Pennig | Sep 1994 | A |
5350379 | Spievack | Sep 1994 | A |
5352227 | O'Hara | Oct 1994 | A |
5358534 | Dudasik et al. | Oct 1994 | A |
5364398 | Chapman et al. | Nov 1994 | A |
5368594 | Martin et al. | Nov 1994 | A |
5376090 | Pennig | Dec 1994 | A |
5376123 | Klaue et al. | Dec 1994 | A |
5380328 | Morgan | Jan 1995 | A |
5383932 | Wilson et al. | Jan 1995 | A |
5387243 | Devanathan | Feb 1995 | A |
5397328 | Behrens et al. | Mar 1995 | A |
5403321 | DiMarco | Apr 1995 | A |
5411503 | Hollstien et al. | May 1995 | A |
5415660 | Campbell et al. | May 1995 | A |
5417695 | Axelson, Jr. | May 1995 | A |
RE34985 | Pennig | Jun 1995 | E |
5423848 | Washizuka et al. | Jun 1995 | A |
5423850 | Berger | Jun 1995 | A |
5433718 | Brinker | Jul 1995 | A |
5433720 | Faccioli et al. | Jul 1995 | A |
5441500 | Seidel et al. | Aug 1995 | A |
5443477 | Marin et al. | Aug 1995 | A |
5445642 | McNulty et al. | Aug 1995 | A |
5454813 | Lawes | Oct 1995 | A |
5454816 | Ashby | Oct 1995 | A |
5458599 | Adobbati | Oct 1995 | A |
5458651 | Lawes | Oct 1995 | A |
5458653 | Davidson | Oct 1995 | A |
5468242 | Reisberg | Nov 1995 | A |
5472444 | Huebner et al. | Dec 1995 | A |
5478341 | Cook et al. | Dec 1995 | A |
5480400 | Berger | Jan 1996 | A |
5484438 | Pennig | Jan 1996 | A |
5484446 | Burke et al. | Jan 1996 | A |
5488761 | Leone | Feb 1996 | A |
5490852 | Azer et al. | Feb 1996 | A |
5505734 | Caniggia et al. | Apr 1996 | A |
5514137 | Coutts | May 1996 | A |
5516335 | Kummer et al. | May 1996 | A |
5520695 | Luckman | May 1996 | A |
5527316 | Stone et al. | Jun 1996 | A |
5531748 | de la Caffiniere | Jul 1996 | A |
5534004 | Santangelo | Jul 1996 | A |
5545162 | Huebner | Aug 1996 | A |
5549610 | Russell et al. | Aug 1996 | A |
5549706 | McCarthy | Aug 1996 | A |
5554192 | Crowninshield | Sep 1996 | A |
5556433 | Gabriel et al. | Sep 1996 | A |
5562667 | Shuler et al. | Oct 1996 | A |
5562673 | Koblish et al. | Oct 1996 | A |
5562674 | Stalcup et al. | Oct 1996 | A |
5562675 | McNulty et al. | Oct 1996 | A |
5569249 | James et al. | Oct 1996 | A |
5571189 | Kuslich | Nov 1996 | A |
5571204 | Nies | Nov 1996 | A |
5573536 | Grosse et al. | Nov 1996 | A |
5578035 | Lin | Nov 1996 | A |
5586985 | Putnam et al. | Dec 1996 | A |
5591169 | Benoist | Jan 1997 | A |
5591196 | Marin et al. | Jan 1997 | A |
5593451 | Averill et al. | Jan 1997 | A |
5593452 | Higham et al. | Jan 1997 | A |
5605713 | Boltong | Feb 1997 | A |
5607431 | Dudasik et al. | Mar 1997 | A |
5613970 | Houston et al. | Mar 1997 | A |
5618286 | Brinker | Apr 1997 | A |
5618300 | Marin et al. | Apr 1997 | A |
5620449 | Faccioli et al. | Apr 1997 | A |
5624440 | Huebner et al. | Apr 1997 | A |
5624447 | Myers | Apr 1997 | A |
5626580 | Brosnahan | May 1997 | A |
5643258 | Robioneck et al. | Jul 1997 | A |
5645545 | Bryant | Jul 1997 | A |
5645599 | Samani | Jul 1997 | A |
5658283 | Huebner | Aug 1997 | A |
5658287 | Hofmann et al. | Aug 1997 | A |
5658292 | Axelson, Jr. | Aug 1997 | A |
5658293 | Vanlaningham | Aug 1997 | A |
5658351 | Dudasik et al. | Aug 1997 | A |
5662648 | Faccioli et al. | Sep 1997 | A |
5662649 | Huebner | Sep 1997 | A |
5662712 | Pathak et al. | Sep 1997 | A |
5665090 | Rockwood et al. | Sep 1997 | A |
5665091 | Noble et al. | Sep 1997 | A |
5681289 | Wilcox et al. | Oct 1997 | A |
5681316 | DeOrio et al. | Oct 1997 | A |
5681318 | Pennig et al. | Oct 1997 | A |
5683389 | Orsak | Nov 1997 | A |
5683460 | Persoons | Nov 1997 | A |
5688271 | Faccioli et al. | Nov 1997 | A |
5688279 | McNulty et al. | Nov 1997 | A |
5690634 | Muller et al. | Nov 1997 | A |
5693047 | Meyers et al. | Dec 1997 | A |
5693048 | Stalcup et al. | Dec 1997 | A |
5695729 | Chow et al. | Dec 1997 | A |
5697930 | Itoman et al. | Dec 1997 | A |
5702215 | Li | Dec 1997 | A |
5702481 | Lin | Dec 1997 | A |
5702487 | Averill et al. | Dec 1997 | A |
5707370 | Berki et al. | Jan 1998 | A |
5718704 | Medoff | Feb 1998 | A |
5725595 | Gustilo | Mar 1998 | A |
5728096 | Faccioli et al. | Mar 1998 | A |
5741256 | Bresina | Apr 1998 | A |
5741266 | Moran et al. | Apr 1998 | A |
5749872 | Kyle et al. | May 1998 | A |
5749880 | Banas et al. | May 1998 | A |
5759184 | Santangelo | Jun 1998 | A |
5766174 | Perry | Jun 1998 | A |
5766176 | Duncan | Jun 1998 | A |
5766178 | Michielli et al. | Jun 1998 | A |
5766179 | Faccioli et al. | Jun 1998 | A |
5766180 | Winquist | Jun 1998 | A |
5772662 | Chapman et al. | Jun 1998 | A |
5772663 | Whiteside et al. | Jun 1998 | A |
5776194 | Mikol et al. | Jul 1998 | A |
5776204 | Noble et al. | Jul 1998 | A |
5779703 | Benoist | Jul 1998 | A |
5779705 | Matthews | Jul 1998 | A |
5782921 | Colleran et al. | Jul 1998 | A |
5785057 | Fischer | Jul 1998 | A |
5788703 | Mittelmeier et al. | Aug 1998 | A |
5807241 | Heimberger | Sep 1998 | A |
5810750 | Buser | Sep 1998 | A |
5810820 | Santori et al. | Sep 1998 | A |
5810826 | Åkerfeldt et al. | Sep 1998 | A |
5810830 | Noble et al. | Sep 1998 | A |
5814047 | Emilio et al. | Sep 1998 | A |
5814681 | Hino et al. | Sep 1998 | A |
5816812 | Kownacki et al. | Oct 1998 | A |
5827282 | Pennig | Oct 1998 | A |
5827289 | Reiley et al. | Oct 1998 | A |
5829081 | Pearce | Nov 1998 | A |
5836949 | Campbell, Jr. et al. | Nov 1998 | A |
5837909 | Bill et al. | Nov 1998 | A |
5849004 | Bramlet | Dec 1998 | A |
5849014 | Mastrorio et al. | Dec 1998 | A |
5849035 | Pathak et al. | Dec 1998 | A |
5855581 | Koblish et al. | Jan 1999 | A |
5858020 | Johnson et al. | Jan 1999 | A |
5863295 | Averill et al. | Jan 1999 | A |
5876459 | Powell | Mar 1999 | A |
5879352 | Filoso et al. | Mar 1999 | A |
5881878 | Faccioli et al. | Mar 1999 | A |
5882351 | Fox | Mar 1999 | A |
5893850 | Cachia | Apr 1999 | A |
5895390 | Moran et al. | Apr 1999 | A |
5897560 | Johnson | Apr 1999 | A |
5902302 | Berki et al. | May 1999 | A |
5906210 | Herbert | May 1999 | A |
5908422 | Bresina | Jun 1999 | A |
5908423 | Kashuba et al. | Jun 1999 | A |
5912410 | Cordell | Jun 1999 | A |
5913867 | Dion | Jun 1999 | A |
5919194 | Anderson | Jul 1999 | A |
5925048 | Ahmad et al. | Jul 1999 | A |
5928235 | Friedl | Jul 1999 | A |
5928240 | Johnson | Jul 1999 | A |
5928259 | Tovey | Jul 1999 | A |
5931830 | Jacobsen et al. | Aug 1999 | A |
5931839 | Medoff | Aug 1999 | A |
5948000 | Larsen et al. | Sep 1999 | A |
5948001 | Larsen | Sep 1999 | A |
5951556 | Faccioli et al. | Sep 1999 | A |
5951557 | Luter | Sep 1999 | A |
5951561 | Pepper et al. | Sep 1999 | A |
5954722 | Bono | Sep 1999 | A |
5954728 | Heller et al. | Sep 1999 | A |
5961553 | Coty et al. | Oct 1999 | A |
5964770 | Flomenblit et al. | Oct 1999 | A |
5968047 | Reed | Oct 1999 | A |
5971986 | Santori et al. | Oct 1999 | A |
5976134 | Huebner | Nov 1999 | A |
5976147 | LaSalle et al. | Nov 1999 | A |
5976188 | Dextradeur et al. | Nov 1999 | A |
5989260 | Yao | Nov 1999 | A |
5989261 | Walker et al. | Nov 1999 | A |
5993459 | Larsen et al. | Nov 1999 | A |
6004348 | Banas et al. | Dec 1999 | A |
6010505 | Asche et al. | Jan 2000 | A |
6010506 | Gosney et al. | Jan 2000 | A |
6013081 | Burkinshaw et al. | Jan 2000 | A |
6015413 | Faccioli et al. | Jan 2000 | A |
6017350 | Long | Jan 2000 | A |
6018094 | Fox | Jan 2000 | A |
6019761 | Gustilo | Feb 2000 | A |
6019762 | Cole | Feb 2000 | A |
6020396 | Jacobs | Feb 2000 | A |
6024745 | Faccioli et al. | Feb 2000 | A |
6027506 | Faccioli et al. | Feb 2000 | A |
6027534 | Wack et al. | Feb 2000 | A |
6033407 | Behrens | Mar 2000 | A |
6039742 | Krettek et al. | Mar 2000 | A |
6045556 | Cohen | Apr 2000 | A |
6053922 | Krause et al. | Apr 2000 | A |
6056756 | Eng et al. | May 2000 | A |
6074392 | Durham | Jun 2000 | A |
6077264 | Chemello | Jun 2000 | A |
6080159 | Vichard | Jun 2000 | A |
6083522 | Chu et al. | Jul 2000 | A |
6093209 | Sanders | Jul 2000 | A |
6096040 | Esser | Aug 2000 | A |
6102911 | Faccioli et al. | Aug 2000 | A |
6106528 | Durham et al. | Aug 2000 | A |
6120504 | Brumback et al. | Sep 2000 | A |
6120509 | Wheeler | Sep 2000 | A |
6126661 | Faccioli et al. | Oct 2000 | A |
6126691 | Kasra et al. | Oct 2000 | A |
6127597 | Beyar et al. | Oct 2000 | A |
6129756 | Kugler et al. | Oct 2000 | A |
6129762 | Li | Oct 2000 | A |
6139583 | Johnson | Oct 2000 | A |
6143012 | Gausepohl | Nov 2000 | A |
6143033 | Paul et al. | Nov 2000 | A |
6162223 | Orsak et al. | Dec 2000 | A |
6162226 | DeCarlo et al. | Dec 2000 | A |
6168595 | Durham et al. | Jan 2001 | B1 |
6168632 | Moser et al. | Jan 2001 | B1 |
6171309 | Huebner | Jan 2001 | B1 |
6176871 | Pathak et al. | Jan 2001 | B1 |
6179839 | Weiss et al. | Jan 2001 | B1 |
6179842 | Spotomo et al. | Jan 2001 | B1 |
6183470 | Booth, Jr. et al. | Feb 2001 | B1 |
6197029 | Fujimori et al. | Mar 2001 | B1 |
6197031 | Barrette et al. | Mar 2001 | B1 |
6200321 | Orbay et al. | Mar 2001 | B1 |
6206880 | Karladani | Mar 2001 | B1 |
6221036 | Lucas | Apr 2001 | B1 |
6221074 | Cole et al. | Apr 2001 | B1 |
6224600 | Protogirou | May 2001 | B1 |
6224609 | Ressemann et al. | May 2001 | B1 |
6228123 | Dezzani | May 2001 | B1 |
6231576 | Frigg et al. | May 2001 | B1 |
6235029 | Faccioli et al. | May 2001 | B1 |
6235043 | Reiley et al. | May 2001 | B1 |
6241734 | Scribner et al. | Jun 2001 | B1 |
6248110 | Reiley et al. | Jun 2001 | B1 |
6258093 | Edwards | Jul 2001 | B1 |
6261289 | Levy | Jul 2001 | B1 |
6270499 | Leu et al. | Aug 2001 | B1 |
6273876 | Klima et al. | Aug 2001 | B1 |
6273892 | Orbay et al. | Aug 2001 | B1 |
6280456 | Scribner et al. | Aug 2001 | B1 |
6280474 | Cassidy et al. | Aug 2001 | B1 |
6283969 | Grusin et al. | Sep 2001 | B1 |
6287310 | Fox | Sep 2001 | B1 |
6290725 | Weiss et al. | Sep 2001 | B1 |
6296603 | Turnlund et al. | Oct 2001 | B1 |
6296645 | Hover et al. | Oct 2001 | B1 |
6299642 | Chan | Oct 2001 | B1 |
6309396 | Ritland | Oct 2001 | B1 |
6319253 | Ackeret et al. | Nov 2001 | B1 |
6325830 | Mastorio et al. | Dec 2001 | B1 |
6332886 | Green et al. | Dec 2001 | B1 |
6336929 | Justin | Jan 2002 | B1 |
6348053 | Cachia | Feb 2002 | B1 |
6355042 | Winquist et al. | Mar 2002 | B2 |
6355044 | Hair | Mar 2002 | B1 |
6355069 | DeCarlo et al. | Mar 2002 | B1 |
6358250 | Orbay | Mar 2002 | B1 |
6358283 | Hogfors et al. | Mar 2002 | B1 |
6364824 | Fitzsimmons | Apr 2002 | B1 |
6364882 | Orbay | Apr 2002 | B1 |
6364909 | McGee | Apr 2002 | B1 |
6379359 | Dahners | Apr 2002 | B1 |
6379360 | Ackeret et al. | Apr 2002 | B1 |
6383188 | Kuslich et al. | May 2002 | B2 |
6395004 | Dye et al. | May 2002 | B1 |
6402753 | Cole et al. | Jun 2002 | B1 |
6406477 | Fujiwara | Jun 2002 | B1 |
6416516 | Stauch et al. | Jul 2002 | B1 |
6423083 | Reiley et al. | Jul 2002 | B2 |
6423096 | Musset et al. | Jul 2002 | B1 |
6425923 | Stalcup et al. | Jul 2002 | B1 |
6436148 | DeCarlo, Jr. et al. | Aug 2002 | B1 |
6440135 | Orbay et al. | Aug 2002 | B2 |
6443954 | Bramlet et al. | Sep 2002 | B1 |
6443992 | Lubinus | Sep 2002 | B2 |
6447513 | Griggs | Sep 2002 | B1 |
6447514 | Stalcup et al. | Sep 2002 | B1 |
6447515 | Meldrum | Sep 2002 | B1 |
6447518 | Krause et al. | Sep 2002 | B1 |
6461358 | Faccioli | Oct 2002 | B1 |
6461360 | Adam | Oct 2002 | B1 |
6468278 | Muckter | Oct 2002 | B1 |
6488684 | Bramlet et al. | Dec 2002 | B2 |
6491694 | Orsak | Dec 2002 | B1 |
6500209 | Kolb | Dec 2002 | B1 |
6508819 | Orbay | Jan 2003 | B1 |
6508820 | Bales | Jan 2003 | B2 |
6511481 | von Hoffmann et al. | Jan 2003 | B2 |
6520994 | Nogarin | Feb 2003 | B2 |
6524313 | Fassier et al. | Feb 2003 | B1 |
6527775 | Warburton | Mar 2003 | B1 |
6530925 | Boudard et al. | Mar 2003 | B2 |
6533788 | Orbay | Mar 2003 | B1 |
6537275 | Venturini et al. | Mar 2003 | B2 |
6540752 | Hicken et al. | Apr 2003 | B1 |
6544265 | Lieberman | Apr 2003 | B2 |
6551319 | Lieberman | Apr 2003 | B2 |
6551321 | Burkinshaw et al. | Apr 2003 | B1 |
6554833 | Levy | Apr 2003 | B2 |
6554862 | Hays et al. | Apr 2003 | B2 |
6558388 | Bartsch et al. | May 2003 | B1 |
6562042 | Nelson | May 2003 | B2 |
6565573 | Ferrante et al. | May 2003 | B1 |
6572620 | Schon et al. | Jun 2003 | B1 |
6575973 | Shekalim | Jun 2003 | B1 |
6575986 | Overaker | Jun 2003 | B2 |
6575994 | Marin et al. | Jun 2003 | B1 |
6582453 | Tran et al. | Jun 2003 | B1 |
6592578 | Henniges et al. | Jul 2003 | B2 |
6607531 | Frigg | Aug 2003 | B2 |
6613052 | Kinnett | Sep 2003 | B1 |
6616667 | Steiger et al. | Sep 2003 | B1 |
6616742 | Lin et al. | Sep 2003 | B2 |
6620197 | Maroney | Sep 2003 | B2 |
6623487 | Goshert | Sep 2003 | B1 |
6629976 | Gnos et al. | Oct 2003 | B1 |
6632224 | Cachia et al. | Oct 2003 | B2 |
6632235 | Weikel et al. | Oct 2003 | B2 |
6641596 | Uzardi | Nov 2003 | B1 |
6648889 | Bramlet et al. | Nov 2003 | B2 |
6648890 | Culbert et al. | Nov 2003 | B2 |
6648893 | Dudasik | Nov 2003 | B2 |
6652529 | Swanson | Nov 2003 | B2 |
6652591 | Serbousek et al. | Nov 2003 | B2 |
6656189 | Wilson et al. | Dec 2003 | B1 |
6663647 | Reiley et al. | Dec 2003 | B2 |
6679890 | Margulies et al. | Jan 2004 | B2 |
6682568 | Despres, III et al. | Jan 2004 | B2 |
6685679 | Merdan | Feb 2004 | B2 |
6685706 | Padget et al. | Feb 2004 | B2 |
6688822 | Ritter et al. | Feb 2004 | B2 |
6692530 | Doubler et al. | Feb 2004 | B2 |
6694667 | Davis | Feb 2004 | B2 |
6695844 | Bramlet et al. | Feb 2004 | B2 |
6699251 | Venturini | Mar 2004 | B1 |
6699253 | McDowell et al. | Mar 2004 | B2 |
6706046 | Orbay et al. | Mar 2004 | B2 |
6706072 | Dwyer et al. | Mar 2004 | B2 |
6709436 | Hover et al. | Mar 2004 | B1 |
6712820 | Orbay | Mar 2004 | B2 |
6719793 | McGee | Apr 2004 | B2 |
6722368 | Shaikh | Apr 2004 | B1 |
6723129 | Dwyer et al. | Apr 2004 | B2 |
6730087 | Butsch | May 2004 | B1 |
6730090 | Orbay et al. | May 2004 | B2 |
6736818 | Perren et al. | May 2004 | B2 |
6749611 | Venturini et al. | Jun 2004 | B2 |
6749614 | Teitelbaum et al. | Jun 2004 | B2 |
6755831 | Putnam et al. | Jun 2004 | B2 |
6755862 | Keynan | Jun 2004 | B2 |
6755866 | Southworth | Jun 2004 | B2 |
6767350 | Lob | Jul 2004 | B1 |
6767351 | Orbay et al. | Jul 2004 | B2 |
6780185 | Frei et al. | Aug 2004 | B2 |
6783529 | Hover et al. | Aug 2004 | B2 |
6783530 | Levy | Aug 2004 | B1 |
6783533 | Green et al. | Aug 2004 | B2 |
6786908 | Hover et al. | Sep 2004 | B2 |
6790210 | Cragg et al. | Sep 2004 | B1 |
6793655 | Orsak | Sep 2004 | B2 |
6793659 | Putnam | Sep 2004 | B2 |
6808527 | Lower et al. | Oct 2004 | B2 |
6821277 | Teitelbaum | Nov 2004 | B2 |
6821299 | Kirking et al. | Nov 2004 | B2 |
6827739 | Griner et al. | Dec 2004 | B2 |
6827741 | Reeder | Dec 2004 | B2 |
6840939 | Venturini et al. | Jan 2005 | B2 |
6855146 | Frigg et al. | Feb 2005 | B2 |
6855167 | Shimp et al. | Feb 2005 | B2 |
6863692 | Meulink | Mar 2005 | B2 |
6866455 | Hasler | Mar 2005 | B2 |
6866665 | Orbay | Mar 2005 | B2 |
6875212 | Shaolian et al. | Apr 2005 | B2 |
6887243 | Culbert | May 2005 | B2 |
6887271 | Justin et al. | May 2005 | B2 |
6887276 | Gerbec et al. | May 2005 | B2 |
6890333 | von Hoffmann et al. | May 2005 | B2 |
6893444 | Orbay | May 2005 | B2 |
6899713 | Shaolian et al. | May 2005 | B2 |
6899719 | Reiley et al. | May 2005 | B2 |
6902583 | Gerbec et al. | Jun 2005 | B2 |
6908465 | von Hoffmann et al. | Jun 2005 | B2 |
6916323 | Kitchens | Jul 2005 | B2 |
6921397 | Corcoran et al. | Jul 2005 | B2 |
6926720 | Castaneda | Aug 2005 | B2 |
6926741 | Kolb | Aug 2005 | B2 |
6929692 | Tas | Aug 2005 | B2 |
6942666 | Overaker et al. | Sep 2005 | B2 |
6942668 | Padget et al. | Sep 2005 | B2 |
6949100 | Venturini | Sep 2005 | B1 |
6949124 | Serbousek et al. | Sep 2005 | B2 |
6951561 | Warren et al. | Oct 2005 | B2 |
6974482 | Zhu | Dec 2005 | B2 |
6981981 | Reiley et al. | Jan 2006 | B2 |
6986771 | Paul et al. | Jan 2006 | B2 |
6999819 | Swoyer et al. | Feb 2006 | B2 |
7001386 | Sohngen et al. | Feb 2006 | B2 |
7001388 | Orbay et al. | Feb 2006 | B2 |
D518174 | Venturini et al. | Mar 2006 | S |
7008425 | Phillips | Mar 2006 | B2 |
7008428 | Cachia et al. | Mar 2006 | B2 |
7008451 | Justin et al. | Mar 2006 | B2 |
7011664 | Haney et al. | Mar 2006 | B2 |
7012106 | Yuan et al. | Mar 2006 | B2 |
7029476 | Hansson | Apr 2006 | B2 |
7029478 | Hollstien et al. | Apr 2006 | B2 |
7033363 | Powell | Apr 2006 | B2 |
7033365 | Powell et al. | Apr 2006 | B2 |
7041104 | Cole et al. | May 2006 | B1 |
7044978 | Howie et al. | May 2006 | B2 |
7052498 | Levy et al. | May 2006 | B2 |
7056322 | Davison et al. | Jun 2006 | B2 |
7060075 | Govari et al. | Jun 2006 | B2 |
7070601 | Culbert et al. | Jul 2006 | B2 |
7070616 | Majercak et al. | Jul 2006 | B2 |
7074224 | Daniels et al. | Jul 2006 | B2 |
7081119 | Stihl | Jul 2006 | B2 |
7083624 | Irving | Aug 2006 | B2 |
7090676 | Huebner et al. | Aug 2006 | B2 |
7097648 | Globerman et al. | Aug 2006 | B1 |
7097664 | Despres, III et al. | Aug 2006 | B2 |
RE39301 | Bertin | Sep 2006 | E |
7101376 | Semet | Sep 2006 | B2 |
7118574 | Patel et al. | Oct 2006 | B2 |
7122056 | Dwyer et al. | Oct 2006 | B2 |
7137987 | Patterson et al. | Nov 2006 | B2 |
7141052 | Manderson | Nov 2006 | B2 |
7141067 | Jones et al. | Nov 2006 | B2 |
7144399 | Hayes et al. | Dec 2006 | B2 |
7147639 | Berki et al. | Dec 2006 | B2 |
7147640 | Huebner et al. | Dec 2006 | B2 |
7153309 | Huebner et al. | Dec 2006 | B2 |
7156852 | Dye et al. | Jan 2007 | B2 |
7160302 | Warburton | Jan 2007 | B2 |
7160333 | Plouhar et al. | Jan 2007 | B2 |
7163563 | Schwartz et al. | Jan 2007 | B2 |
7175625 | Culbert | Feb 2007 | B2 |
7175631 | Wilson et al. | Feb 2007 | B2 |
7179260 | Gerlach et al. | Feb 2007 | B2 |
7188687 | Rudd et al. | Mar 2007 | B2 |
7189237 | Huebner | Mar 2007 | B2 |
7632277 | Woll et al. | Dec 2009 | B2 |
7846162 | Nelson et al. | Dec 2010 | B2 |
7909825 | Saravia et al. | Mar 2011 | B2 |
7914533 | Nelson et al. | Mar 2011 | B2 |
7942875 | Nelson et al. | May 2011 | B2 |
8287541 | Nelson | Oct 2012 | B2 |
20010011174 | Reiley et al. | Aug 2001 | A1 |
20010034526 | Kuslich et al. | Oct 2001 | A1 |
20010049531 | Reiley et al. | Dec 2001 | A1 |
20020004685 | White | Jan 2002 | A1 |
20020029041 | Hover et al. | Mar 2002 | A1 |
20020032444 | Mische | Mar 2002 | A1 |
20020041896 | Straub et al. | Apr 2002 | A1 |
20020068939 | Levy et al. | Jun 2002 | A1 |
20020068981 | Hajianpour | Jun 2002 | A1 |
20020095214 | Hyde, Jr. | Jul 2002 | A1 |
20020099385 | Ralph et al. | Jul 2002 | A1 |
20020103488 | Lower et al. | Aug 2002 | A1 |
20020143344 | Taylor | Oct 2002 | A1 |
20020161369 | Bramlet et al. | Oct 2002 | A1 |
20020165544 | Perren et al. | Nov 2002 | A1 |
20020173792 | Sevems et al. | Nov 2002 | A1 |
20020177866 | Weikel et al. | Nov 2002 | A1 |
20020188297 | Dakin et al. | Dec 2002 | A1 |
20020198526 | Shaolian et al. | Dec 2002 | A1 |
20030032960 | Dudasik | Feb 2003 | A1 |
20030040752 | Kitchens | Feb 2003 | A1 |
20030045919 | Swoyer et al. | Mar 2003 | A1 |
20030073999 | Putnam | Apr 2003 | A1 |
20030074075 | Thomas, Jr. et al. | Apr 2003 | A1 |
20030078669 | Martin et al. | Apr 2003 | A1 |
20030097136 | Hajianpour | May 2003 | A1 |
20030109932 | Keynan | Jun 2003 | A1 |
20030130660 | Levy et al. | Jun 2003 | A1 |
20030130664 | Boucher et al. | Jul 2003 | A1 |
20030139802 | Wulfman et al. | Jul 2003 | A1 |
20030181918 | Smothers et al. | Sep 2003 | A1 |
20030216738 | Azar | Nov 2003 | A1 |
20030236529 | Shluzas et al. | Dec 2003 | A1 |
20040006341 | Shaolian et al. | Jan 2004 | A1 |
20040010263 | Boucher et al. | Jan 2004 | A1 |
20040098017 | Saab et al. | May 2004 | A1 |
20040098134 | Meulink | May 2004 | A1 |
20040133204 | Davies | Jul 2004 | A1 |
20040133280 | Trieu | Jul 2004 | A1 |
20040153114 | Reiley et al. | Aug 2004 | A1 |
20040153115 | Reiley et al. | Aug 2004 | A1 |
20040167561 | Boucher et al. | Aug 2004 | A1 |
20040193255 | Shanley et al. | Sep 2004 | A1 |
20040193267 | Jones et al. | Sep 2004 | A1 |
20040213825 | Levy | Oct 2004 | A1 |
20040214311 | Levy | Oct 2004 | A1 |
20040215193 | Shaolian et al. | Oct 2004 | A1 |
20040230193 | Cheung et al. | Nov 2004 | A1 |
20040236327 | Paul et al. | Nov 2004 | A1 |
20040260398 | Kelman | Dec 2004 | A1 |
20040267269 | Middleton et al. | Dec 2004 | A1 |
20040267271 | Scribner et al. | Dec 2004 | A9 |
20050015154 | Lindsey et al. | Jan 2005 | A1 |
20050027294 | Woll et al. | Feb 2005 | A1 |
20050027301 | Stihl | Feb 2005 | A1 |
20050043737 | Reiley et al. | Feb 2005 | A1 |
20050043757 | Arad et al. | Feb 2005 | A1 |
20050047892 | Bremner | Mar 2005 | A1 |
20050055023 | Sohngen et al. | Mar 2005 | A1 |
20050055024 | James et al. | Mar 2005 | A1 |
20050080425 | Bhatnagar et al. | Apr 2005 | A1 |
20050090852 | Layne et al. | Apr 2005 | A1 |
20050107883 | Goodfried et al. | May 2005 | A1 |
20050119662 | Reiley et al. | Jun 2005 | A1 |
20050131386 | Freeman et al. | Jun 2005 | A1 |
20050143827 | Globerman et al. | Jun 2005 | A1 |
20050149022 | Shaolian et al. | Jul 2005 | A1 |
20050149024 | Ferrante et al. | Jul 2005 | A1 |
20050149025 | Ferrante et al. | Jul 2005 | A1 |
20050159749 | Levy | Jul 2005 | A1 |
20050165395 | Orbay et al. | Jul 2005 | A1 |
20050171552 | Johnson et al. | Aug 2005 | A1 |
20050171563 | Heinrich et al. | Aug 2005 | A1 |
20050177158 | Doubler et al. | Aug 2005 | A1 |
20050203510 | Sohngen et al. | Sep 2005 | A1 |
20050209595 | Karmon | Sep 2005 | A1 |
20050216007 | Woll et al. | Sep 2005 | A1 |
20050228391 | Levy et al. | Oct 2005 | A1 |
20050234453 | Shaolian et al. | Oct 2005 | A1 |
20050234559 | Fernandez et al. | Oct 2005 | A1 |
20050251140 | Shaolian et al. | Nov 2005 | A1 |
20050261781 | Sennett et al. | Nov 2005 | A1 |
20050267481 | Carl et al. | Dec 2005 | A1 |
20050267483 | Middleton | Dec 2005 | A1 |
20050267586 | Sidebotham | Dec 2005 | A1 |
20050283250 | Coon et al. | Dec 2005 | A1 |
20050288678 | Reilley et al. | Dec 2005 | A1 |
20060004465 | Bergin et al. | Jan 2006 | A1 |
20060015101 | Warburton et al. | Jan 2006 | A1 |
20060015123 | Fencl et al. | Jan 2006 | A1 |
20060030945 | Wright | Feb 2006 | A1 |
20060036248 | Ferrante | Feb 2006 | A1 |
20060052788 | Thelen et al. | Mar 2006 | A1 |
20060064094 | Levy et al. | Mar 2006 | A1 |
20060084997 | Dejardin | Apr 2006 | A1 |
20060084998 | Levy et al. | Apr 2006 | A1 |
20060122601 | Tandon | Jun 2006 | A1 |
20060200143 | Warburton | Sep 2006 | A1 |
20060200144 | Warburton | Sep 2006 | A1 |
20060247638 | Trieu et al. | Nov 2006 | A1 |
20060264951 | Nelson et al. | Nov 2006 | A1 |
20060229617 | Meller et al. | Dec 2006 | A1 |
20070123876 | Czartoski | May 2007 | A1 |
20070123878 | Shaver et al. | May 2007 | A1 |
20070142916 | Olson et al. | Jun 2007 | A1 |
20070260257 | Phan | Nov 2007 | A1 |
20080077154 | Edwards et al. | Mar 2008 | A1 |
20080132896 | Bowen et al. | Jun 2008 | A1 |
20080140078 | Nelson et al. | Jun 2008 | A1 |
20080149115 | Hauck et al. | Jun 2008 | A1 |
20080221620 | Krause et al. | Sep 2008 | A1 |
20080234678 | Gutierrez et al. | Sep 2008 | A1 |
20080243132 | Tipirneni et al. | Oct 2008 | A1 |
20080255560 | Myers et al. | Oct 2008 | A1 |
20080262495 | Doubler et al. | Oct 2008 | A1 |
20080269751 | Matityahu | Oct 2008 | A1 |
20080287949 | Keith | Nov 2008 | A1 |
20080287951 | Stoneburner et al. | Nov 2008 | A1 |
20090018542 | Saravia et al. | Jan 2009 | A1 |
20090182336 | Brenzel et al. | Jul 2009 | A1 |
20090187116 | Noishiki et al. | Jul 2009 | A1 |
20090228007 | Justin et al. | Sep 2009 | A1 |
20090228008 | Justin et al. | Sep 2009 | A1 |
20100023010 | Nelson et al. | Jan 2010 | A1 |
20100094347 | Nelson et al. | Apr 2010 | A1 |
20110087227 | Mazur et al. | Apr 2011 | A1 |
20110144645 | Saravia et al. | Jun 2011 | A1 |
20110178520 | Taylor et al. | Jul 2011 | A1 |
20110190832 | Taylor et al. | Aug 2011 | A1 |
20110218585 | Krinke et al. | Sep 2011 | A1 |
20110218626 | Krinke et al. | Sep 2011 | A1 |
20110282346 | Pham et al. | Nov 2011 | A1 |
20110282347 | Gordon et al. | Nov 2011 | A1 |
20130012942 | Nelson et al. | Jan 2013 | A1 |
20130116693 | Nelson | May 2013 | A1 |
Number | Date | Country |
---|---|---|
2561552 | Nov 2005 | CA |
1582163 | Nov 2003 | EP |
1815813 | Aug 2007 | EP |
1753354 | Sep 2010 | EP |
WO 1997018769 | May 1997 | WO |
WO 1998027876 | Jul 1998 | WO |
WO 199856301 | Dec 1998 | WO |
WO 1999020195 | Apr 1999 | WO |
WO 2000028906 | May 2000 | WO |
WO 0128443 | Apr 2001 | WO |
WO 2002000270 | Jan 2002 | WO |
WO 2002000275 | Jan 2002 | WO |
WO 2002002158 | Jan 2002 | WO |
WO 2005112804 | Dec 2005 | WO |
WO 2006053210 | May 2006 | WO |
WO 2007009123 | Jan 2007 | WO |
WO2011112619 | Sep 2011 | WO |
Entry |
---|
US 6,030,385, 02/2000, Faccioli et al. (withdrawn) |
Andermahr et al., “Anatomy of the clavicle and the intramedullary nailing of midclavicular fractures,” Clinical Anatomy, vol. 20; pp. 48-56; 2007. |
The Titanium Flexible Humeral Nail System (Quick reference for surgical technique), Synthes, 1999. |
The Titanium Flexible Humeral Nail System (Technique Guide), Synthes, 1999. |
Extended European Search Report for European Application No. 15187485.6, dated Feb. 10, 2016 in 6 pages. |
Number | Date | Country | |
---|---|---|---|
20160089189 A1 | Mar 2016 | US |
Number | Date | Country | |
---|---|---|---|
62057913 | Sep 2014 | US |