Depositing drug on the olfactory region of the nasal cavity is difficult to accomplish due to the complex architecture of the nasal cavity and the turbinate guided air path for inhaled breath through the nose. These natural structures act to prevent materials from depositing on the olfactory region as a way to protect this entry way into the central nervous system (CNS). Existing nasal drop or spray devices are designed to saturate the lower nasal cavity. Drug deposited on the lower nasal cavity is absorbed into the blood stream instead of the CNS, eliminating an advantage of using the nasal route for CNS delivery.
A more elegant approach to the intranasal delivery of compounds or mixtures is needed.
A device for delivering a compound to the olfactory region of the nasal cavity is described. In one embodiment, the device includes an actuator body and a tip configured to removably couple to the actuator body. The actuator body comprises a propellant channel that is configured to be in fluid communication with a canister containing a propellant. The tip comprises a tip stem, a dip tube, a delivery channel, one or more puncture members, and an outlet orifice. The tip stem comprises a cavity and an opening such that the cavity is in fluid communication with the propellant channel, where the cavity is configured to receive a compound container containing the compound and where the compound container is configured to move between a sealed state and an unsealed state within the cavity. The dip tube is positioned within the cavity, and the dip tube comprises the delivery channel that extends from a proximal end to a distal end of the dip tube. The one or more puncture members are each configured to puncture the compound container when the shuttle is in the unsealed state such that the punctured compound container is in fluid communication with the propellant channel and the delivery channel. The outlet orifice is in fluid communication with the delivery channel, such that propellant released from the canister travels through the propellant channel and into the cavity, through the plurality of openings and into the compound container, thereby contacting the compound and propelling the compound through the delivery channel and out the outlet orifice.
In one embodiment, at least one puncture member is disposed at a distal end of the dip tube. In one embodiment, the device further comprises a collar that includes one or more of the puncture members, where the collar includes one or more bypass openings that are in fluid communication with the propellant channel such that released propellant is introduced into the compound container. In one embodiment, the puncture member(s) of the dip tube puncture the compound container first, and the puncture member(s) of the collar puncture the compound container second.
The invention will best be understood by reference to the following detailed description of various embodiments, taken in conjunction with any accompanying drawings. The discussion below is descriptive, illustrative and exemplary and is not to be taken as limiting the scope defined by any appended claims.
The figures depict embodiments of the present disclosure for purposes of illustration only. One skilled in the art will readily recognize from the following description that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles, or benefits touted, of the disclosure described herein.
Unless stated otherwise, the following terms and phrases as used herein are intended to have the following meanings:
When trade names are used herein, applicants intend to independently include the trade name product formulation, the generic drug, and the active pharmaceutical ingredient(s) of the trade name product.
For clarity of disclosure, and not by way of limitation, the detailed description of the invention is divided into the subsections which follow.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art pertinent to the methods and compositions described. The following references provide one of skill with a non-exclusive guide to a general definition of many of the terms used herein: Hale & Margham, The Harper Collins Dictionary of Biology (Harper Perennial, New York, N.Y., 1991); King & Stansfield, A Dictionary of Genetics (Oxford University Press, 4th ed. 1990); Hawley's Condensed Chemical Dictionary (John Wiley & Sons, 13th ed. 1997); and Stedmans' Medical Dictionary (Lippincott Williams & Wilkins, 27th ed. 2000). As used herein, the following terms and phrases have the meanings ascribed to them unless specified otherwise.
The actuator body 105 is designed to be held in a hand of a user for administering the compound to an olfactory region of the user. In the embodiment of
As shown in
The propellant canister 110 may have a capacity for distributing propellant for a certain number of doses. In one embodiment, the device 100 may be shipped without a canister 110 and the canister 110 may be loaded into the actuator body 105 by the user. In some embodiments, the canister 110 may be replaced with a new propellant canister, such that the device 100 may be reused. In one aspect, when the MDI device is actuated, a discrete amount of pressurized HFA fluid is released. The MDI may contain between about 30 to about 300 actuations, inclusive of endpoints, of HFA propellant. The amount of fluid propellant released upon actuation may be between about 20 μl and about 200 μl inclusive of endpoints, of liquid propellant.
The tip 115 delivers the compound to the olfactory region of the user. In the embodiment of
As shown in
The shuttle 305 receives the compound container containing the compound. In some embodiments, the compound container may be a blow fill sealed (BFS) ampoule. In one example, the BFS ampoule is a polyethylene liquid dose capsule, and in other embodiments, the ampoule may be composed of other types of suitable plastic. A film is blow molded into a defined geometry, filled with a designated liquid dose, and sealed. The ampoule provides a liquid and vapor barrier for the intranasal formulation within. The BFS ampoule containing the liquid dose, also shown in
Referring to
Referring back to
The collar 320 is positioned about the proximal end of the dip tube 310 within the tip cone 130. The collar 320 is designed to puncture the compound container 340 to create a flow path between the propellant channel and the compound container 340 such that propellant released from the canister 110 flows into the punctured compound container 340. Referring also to
Referring back to
The actuator body 105, shown in
The propellant canister 110 provides the propulsion for the device. The canister 110 is inserted into the actuator body 105. During use, the canister 110 is depressed, releasing a metered volume of liquid propellant. As the propellant vaporizes and expands, the propellant travels through the propellant channel of the actuator body and into the tip stem 205 through the slots 210. Since the tip stem 205 is pressurized, the propellant forces the liquid dose out of the compound container 340 and out through the nozzle 325 and the outlet orifice 335. In one embodiment, the propellant fills the tip stem (e.g., traveling through the cavity 345, through the bypass openings 810, into the nose cone 130), such that the displaced air volume forces the liquid dose out of the compound container 340. In one embodiment, the propellant fills the tip stem 205 and then enters the compound container 340 through the punctured openings, where the propellant and compound mix together before exiting through the outlet orifice 335. The canister 110 may contain enough propellant for multiple doses. Propellant type and volume may be selected by one of skill in the art based on performance data.
Additional Configuration Information
The foregoing description of the embodiments of the disclosure has been presented for the purpose of illustration; it is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Persons skilled in the relevant art can appreciate that many modifications and variations are possible in light of the above disclosure.
The language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the disclosure be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments is intended to be illustrative, but not limiting, of the scope of the disclosure, which is set forth in the following claims.
This application claims the benefit of U.S. Provisional Application No. 62/589,306, filed on Nov. 21, 2017, which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2933259 | Raskin | Apr 1960 | A |
3425414 | Roche | Feb 1969 | A |
3888253 | Watt et al. | Jun 1975 | A |
3906950 | Cocozza | Sep 1975 | A |
3908654 | Lhoest et al. | Sep 1975 | A |
3971377 | Damani | Jul 1976 | A |
4095596 | Grayson | Jun 1978 | A |
4187985 | Goth | Feb 1980 | A |
4227522 | Carris | Oct 1980 | A |
4353365 | Hallworth et al. | Oct 1982 | A |
4412573 | Zdeb | Nov 1983 | A |
4620670 | Hughes | Nov 1986 | A |
4702415 | Hughes | Oct 1987 | A |
4896832 | Howlett | Jan 1990 | A |
4995385 | Valentini et al. | Feb 1991 | A |
5224471 | Marelli et al. | Jul 1993 | A |
5307953 | Regan | May 1994 | A |
5331954 | Rex et al. | Jul 1994 | A |
5349947 | Newhouse et al. | Sep 1994 | A |
5382236 | Otto et al. | Jan 1995 | A |
5398850 | Sancoff et al. | Mar 1995 | A |
5435282 | Haber et al. | Jul 1995 | A |
5505193 | Ballini et al. | Apr 1996 | A |
5516006 | Meshberg | May 1996 | A |
5711488 | Lund | Jan 1998 | A |
5715811 | Ohki et al. | Feb 1998 | A |
5797390 | McSoley | Aug 1998 | A |
5814020 | Gross | Sep 1998 | A |
5819730 | Stone et al. | Oct 1998 | A |
5823183 | Casper et al. | Oct 1998 | A |
5881719 | Gottenauer et al. | Mar 1999 | A |
5901703 | Ohki et al. | May 1999 | A |
5906198 | Flickinger | May 1999 | A |
5910301 | Farr et al. | Jun 1999 | A |
5954696 | Ryan | Sep 1999 | A |
6062213 | Fuisz et al. | May 2000 | A |
6079634 | Noakes et al. | Jun 2000 | A |
6092522 | Calvert et al. | Jul 2000 | A |
6145703 | Opperman | Nov 2000 | A |
6158676 | Hughes | Dec 2000 | A |
6180603 | Frey | Jan 2001 | B1 |
6186141 | Pike et al. | Feb 2001 | B1 |
6189739 | von Schuckmann | Feb 2001 | B1 |
6294153 | Modi | Sep 2001 | B1 |
6302101 | Py | Oct 2001 | B1 |
6313093 | Frey | Nov 2001 | B1 |
6347789 | Rock | Feb 2002 | B1 |
6367471 | Genosar et al. | Apr 2002 | B1 |
6367473 | Käfer | Apr 2002 | B1 |
6382465 | Greiner Perth | May 2002 | B1 |
6410046 | Lerner | Jun 2002 | B1 |
6491940 | Levin | Dec 2002 | B1 |
6540983 | Adjei et al. | Apr 2003 | B1 |
6569463 | Patel et al. | May 2003 | B2 |
6585172 | Arghyris | Jul 2003 | B2 |
6585957 | Adjei et al. | Jul 2003 | B1 |
6585958 | Keller et al. | Jul 2003 | B1 |
6595202 | Gañán Calvo | Jul 2003 | B2 |
6622721 | Vedrine et al. | Sep 2003 | B2 |
6644305 | MacRae et al. | Nov 2003 | B2 |
6644309 | Casper et al. | Nov 2003 | B2 |
6647980 | Gizurarson | Nov 2003 | B1 |
6681767 | Patton et al. | Jan 2004 | B1 |
6684879 | Coffee et al. | Feb 2004 | B1 |
6701916 | Mezzoli | Mar 2004 | B2 |
6715485 | Djupesland | Apr 2004 | B1 |
6734162 | Van Antwerp et al. | May 2004 | B2 |
6810872 | Ohki et al. | Nov 2004 | B1 |
6923988 | Patel et al. | Aug 2005 | B2 |
7033598 | Lerner | Apr 2006 | B2 |
7051734 | Casper et al. | May 2006 | B2 |
7163013 | Harrison | Jan 2007 | B2 |
7182277 | Vedrine et al. | Feb 2007 | B2 |
7200432 | Lerner et al. | Apr 2007 | B2 |
7214209 | Mazzoni | May 2007 | B2 |
7231919 | Giroux | Jun 2007 | B2 |
7258119 | Mazzoni | Aug 2007 | B2 |
7296566 | Alchas | Nov 2007 | B2 |
7347201 | Djupesland | Mar 2008 | B2 |
7377901 | Djupesland et al. | May 2008 | B2 |
7476689 | Santus et al. | Jan 2009 | B2 |
7481218 | Djupesland | Jan 2009 | B2 |
7543581 | Djupesland | Jun 2009 | B2 |
7655619 | During et al. | Feb 2010 | B2 |
7740014 | Djupesland | Jun 2010 | B2 |
7784460 | Djupesland et al. | Aug 2010 | B2 |
7799337 | Levin | Sep 2010 | B2 |
7832394 | Schechter et al. | Nov 2010 | B2 |
7841337 | Djupesland | Nov 2010 | B2 |
7841338 | Dunne et al. | Nov 2010 | B2 |
7854227 | Djupesland | Dec 2010 | B2 |
7866316 | Giroux | Jan 2011 | B2 |
7905229 | Giroux et al. | Mar 2011 | B2 |
7934503 | Djupesland et al. | May 2011 | B2 |
7975690 | Djupesland | Jul 2011 | B2 |
7994197 | Cook et al. | Aug 2011 | B2 |
8001963 | Giroux | Aug 2011 | B2 |
8047202 | Djupesland | Nov 2011 | B2 |
8119639 | Cook et al. | Feb 2012 | B2 |
8122881 | Giroux | Feb 2012 | B2 |
8146589 | Djupesland | Apr 2012 | B2 |
8171929 | Djupesland et al. | May 2012 | B2 |
8327844 | Djupesland | Dec 2012 | B2 |
8408427 | Wong | Apr 2013 | B2 |
8448637 | Giroux | May 2013 | B2 |
8511303 | Djupesland | Aug 2013 | B2 |
8517026 | Amon | Aug 2013 | B2 |
8522778 | Djupesland | Sep 2013 | B2 |
8550073 | Djupesland | Oct 2013 | B2 |
8555877 | Djupesland | Oct 2013 | B2 |
8555878 | Djupesland | Oct 2013 | B2 |
8596278 | Djupesland | Dec 2013 | B2 |
8733342 | Giroux et al. | May 2014 | B2 |
8757146 | Hoekman et al. | Jun 2014 | B2 |
8800555 | Djupesland | Aug 2014 | B2 |
8839790 | Beck Arnon | Sep 2014 | B2 |
8875794 | Carlsen et al. | Nov 2014 | B2 |
8899229 | Djupesland et al. | Dec 2014 | B2 |
8899230 | Immel | Dec 2014 | B2 |
8910629 | Djupesland et al. | Dec 2014 | B2 |
8925544 | Flickinger | Jan 2015 | B2 |
8978647 | Djupesland et al. | Mar 2015 | B2 |
8987199 | Abdel Maksoud et al. | Mar 2015 | B2 |
9010325 | Djupesland et al. | Apr 2015 | B2 |
9038630 | Djupesland et al. | May 2015 | B2 |
9067034 | Djupesland et al. | Jun 2015 | B2 |
9072857 | Djupesland | Jul 2015 | B2 |
9101539 | Nagata et al. | Aug 2015 | B2 |
9119932 | Djupesland | Sep 2015 | B2 |
9180264 | Young et al. | Nov 2015 | B2 |
9272104 | Djupesland | Mar 2016 | B2 |
9446207 | Jung | Sep 2016 | B2 |
20020017294 | Py | Feb 2002 | A1 |
20020054856 | Jones | May 2002 | A1 |
20020092520 | Casper et al. | Jul 2002 | A1 |
20020174864 | Alchas | Nov 2002 | A1 |
20030017119 | Rabinowitz et al. | Jan 2003 | A1 |
20030158527 | Mezzoli | Aug 2003 | A1 |
20030217748 | Giroux | Nov 2003 | A1 |
20040068222 | Brian | Apr 2004 | A1 |
20040153033 | Mazzoni | Aug 2004 | A1 |
20040238574 | Merk et al. | Dec 2004 | A1 |
20050000514 | Sullivan | Jan 2005 | A1 |
20050023376 | Anderson | Feb 2005 | A1 |
20050028812 | Djupesland | Feb 2005 | A1 |
20050036985 | Ensoli | Feb 2005 | A1 |
20050098172 | Anderson | May 2005 | A1 |
20050142072 | Birch et al. | Jun 2005 | A1 |
20050274378 | Bonney et al. | Dec 2005 | A1 |
20060107957 | Djupesland | May 2006 | A1 |
20060219813 | Morrison | Oct 2006 | A1 |
20060240092 | Breitenkamp et al. | Oct 2006 | A1 |
20070056585 | Davies et al. | Mar 2007 | A1 |
20070068514 | Giroux | Mar 2007 | A1 |
20070074722 | Giroux et al. | Apr 2007 | A1 |
20070119451 | Wang et al. | May 2007 | A1 |
20070131224 | Giroux | Jun 2007 | A1 |
20070172517 | Ben Sasson et al. | Jul 2007 | A1 |
20070202051 | Schuschnig | Aug 2007 | A1 |
20080054099 | Giroux et al. | Mar 2008 | A1 |
20080163874 | Djupesland | Jul 2008 | A1 |
20080178871 | Genova et al. | Jul 2008 | A1 |
20080305077 | Frey et al. | Dec 2008 | A1 |
20090320832 | Djupesland | Dec 2009 | A1 |
20110053859 | Deadwyler et al. | Mar 2011 | A1 |
20110057055 | Wong | Mar 2011 | A1 |
20120195959 | Ishii | Aug 2012 | A1 |
20140083424 | Haekman et al. | Mar 2014 | A1 |
20140170220 | Cartt et al. | Jun 2014 | A1 |
20140343494 | Hoekman et al. | Nov 2014 | A1 |
20150057287 | Cook et al. | Feb 2015 | A1 |
20150128971 | Verleur | May 2015 | A1 |
20150216823 | Chatterjee | Aug 2015 | A1 |
20150258178 | Gong | Sep 2015 | A1 |
20160058960 | Papania | Mar 2016 | A1 |
20160101245 | Hoekman | Apr 2016 | A1 |
20160228433 | Haruta et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
19518580 | Nov 1996 | DE |
102013100473 | Jul 2014 | DE |
1165044 | Jan 2002 | EP |
806284 | Dec 1958 | GB |
1517642 | Jul 1978 | GB |
H08322934 | Dec 1996 | JP |
2016520378 | Jul 2016 | JP |
WO 1986001731 | Mar 1986 | WO |
WO 1999013930 | Mar 1999 | WO |
WO 2000054887 | Sep 2000 | WO |
WO 2001036033 | May 2001 | WO |
WO 2002009707 | Feb 2002 | WO |
WO 2007012853 | Feb 2007 | WO |
WO 2008059385 | May 2008 | WO |
WO-2017044897 | Mar 2017 | WO |
Entry |
---|
Appasaheb, et al., “Review on Intranasal Drug Delivery System”, Journal of Advanced Pharmacy Education and Research, vol. 3, Issue 4, Oct. 2013, 14 pages. |
Baron, “Orally Inhaled Dihydroergotamine; Reviving and Improving a Classic”, Future Neurology, May 2011, 11 pages. |
Constantino, et al., “Intranasal administration of acetylcholinesterase inhibitors”, BMC Neuroscience, Dec. 10, 2008, 3 pages. |
EP Office Action for 14727320.5, dated Nov. 9, 2016, 6 pages. |
EP Search Report for 09707800.0 dated Jul. 1, 2015, 12 pages. |
EP Search Report for 11818832.5 dated Sep. 24, 2014, 6 pages. |
Hanson, et al., “Intranasal delivery of growth differentiation factor 5 to the central nervous system”, Drug Delivery, 19(3):149-54, Feb. 2012, 7 pages. |
Hoekman, J.D., “The Impact of Enhanced Olfactory Deposition and Retention on Direct Nose-to-Brain Drug Delivery”, UMI Dissertation Publishing, Apr. 11, 2011, 181 pages. |
International Search Report for PCT/US/2009/033468 dated Dec. 2, 2009, 5 pages. |
Kumar, et al., “Nasal Drug Delivery: A Potential Route for Brain Targeting” The Pharma Innovation Journal, vol. 2, No. 1, Mar. 2013. 9 pages. |
Ozsoy, et al., “Nasal Delivery of High Molecular Weight Drugs”, Molecules Journal, Sep. 23, 2009, 26 pages. |
Parvathi, “Intranasal Drug Delivery to Brain: An Overview,” published in the International Journal of Research in Pharmacy and Chemistry 2012, 2(3), 7 pages. |
PCT International Search Report and Written Opinion, PCT Application No. PCT/US2018/62296, dated Mar. 11, 2019, 15 pages. |
Renner, et al., “Intranasal delivery of growth differentiation factor 5 to the central nervous system,” Drug Delivery, Feb. 2012, 7 pages. |
Stevens, et al., “Systemic and Direct Nose-to-Brain Transport Pharmacokinetic Model for Remoxipride after Intravenous and Intranasal Administration”, in “Drug Metabolism and Disposition”, The American Society for Pharmacology and Experimental Therapeutics, 2011, vol. 39, No. 12, 8 pages. |
Talegaonkar, et al., “Intranasal delivery: an approach to bypass the blook brain barrier”, Indian J Pharmacol, Jun. 2004, vol. 36, Issue 3, 8 pages. |
The PCT Search Report and Written Opinion dated Mar. 27, 2012 for PCT application No. PCT/US2011/048435, 14 pages. |
Westin et al., “Direct Nose to Brain Transfer of Morphine After Nasal Administration to Rats”, Pharmaceutical Research, vol. 23, No. 3, Mar. 2006, 8 pgs. |
Westin, “Olfactory Transfer of Analgesic Drugs After Nasal Administration”, Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Pharmacy 55, May 11, 2007, 66 pages. |
Yamada, et al., “Nose-to-brain delivery of TS-002, prostaglandin D2 analogue”, Journal of Drug Targeting, Jan. 2007, 9 pages. |
Yimam, et al., “Effects of lipid association on lomustine (CCNU) administered intracerebrally to syngeneic 36B-10 rat brain tumors”, Cancer Letters 244(2), Dec. 2006, 9 pages. |
Ying, “The nose may help the brain: intranasal drug delivery for treating neurological diseases” Future Medicine, 3(1), Jan. 2008, 4 pages. |
Zhang, et al., “The brain targeting efficiency following nasally applied MPEG-PLA nanoparticles in rats”, Journal of Drug Targeting, Jun. 2006, 11 pages. |
The Japan Patent Office, Notice of Rejection, Japanese Patent Application No. 2020-528005, dated Apr. 26, 2022, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20190151579 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62589306 | Nov 2017 | US |