Intraocular implant with removable optic

Information

  • Patent Grant
  • 11364110
  • Patent Number
    11,364,110
  • Date Filed
    Tuesday, May 7, 2019
    5 years ago
  • Date Issued
    Tuesday, June 21, 2022
    2 years ago
  • Inventors
    • Webb; R. Kyle (Carlsbad, CA, US)
  • Original Assignees
  • Examiners
    • Blanco; Javier G
    Agents
    • Knobbe, Martens, Olson & Bear, LLP
Abstract
Intraocular implants and methods of forming intraocular implants are described herein. The intraocular implant can include a powered optic and a lens holder. The optic can be mechanically coupled to an inner periphery of the lens holder to form the intraocular implant. A portion of the lens holder can include a mask disposed about the optic to increase depth of focus in a human patient.
Description
BACKGROUND
Field

This application relates generally to the field of intraocular devices.


Description of the Related Art

The human eye functions to provide vision by transmitting and focusing light through a clear outer portion called the cornea, and further refining the focus of the image onto a retina by way of a crystalline lens. The quality of the focused image depends on many factors including the size and shape of the eye, and the transparency of the cornea and the lens.


The optical power of the eye is determined by the optical power of the cornea and the crystalline lens. In a normal, healthy eye, sharp images of distant objects are formed on the retina (emmetropia). In many eyes, images of distant objects are either formed in front of the retina because the eye is abnormally long or the cornea is abnormally steep (myopia), or formed in back of the retina because the eye is abnormally short or the cornea is abnormally flat (hyperopia).


Some people suffer from cataracts in which the crystalline lens undergoes a loss of transparency. In such cases, the crystalline lens can be removed and replaced with an intraocular lens (IOL). However, some intraocular lenses may leave defects in a patient's non-distance eyesight.


SUMMARY

Intraocular lenses are often uniquely molded and then machined to include the appropriate optical properties. However, if the intraocular lens is not perfectly milled across the entire anterior and posterior surfaces of the intraocular lens, the intraocular lens can have the incorrect power and become unusable. To remove this manufacturing complexity, an intraocular lens, or implant, can be formed where only a central region of the intraocular implant has optical power. This powered portion of the implant (also referred to herein as a lens or optic) can interface or mechanically couple with a lens holder having negligible (e.g., less than 0.25 diopters) or no optical power. In this configuration, the same lens holder can interface with different powered lenses. Because the lens holder has negligible or no power, the anterior and posterior surfaces of the lens holder do not need to be perfectly milled to specification. This reduces the number of unique steps needed to create an intraocular lens and, in particular, an IOL with a small aperture to increase depth of focus.


As an example, the intraocular implant can include a lens holder and an optic. The lens holder can include an outer periphery and an inner periphery. The inner periphery of the lens holder can define an aperture extending from an anterior surface of the lens holder to a posterior surface of the lens holder. At least a portion of the lens holder can be substantially opaque to visible light. The substantially opaque portion can be disposed about the aperture. An optic can be positioned in the aperture and mechanically coupled or interlocked with the inner periphery of the lens holder. The aperture may be configured to increase depth of focus in a human patient when the intraocular implant is implanted in an eye of the human patient.


As another example, the intraocular implant can include a lens holder and a powered optic. The lens holder can include an outer periphery and an inner periphery. The inner periphery of the lens holder can define an aperture extending from an anterior surface of the lens holder to a posterior surface of the lens holder. The lens holder can have negligible or no power, or can be powered. The powered optic can be positioned in the aperture and mechanically coupled or interlocked with the lens holder. The aperture may be configured to increase depth of focus in a human patient when the intraocular implant is implanted in an eye of the human patient.


A method of manufacturing the intraocular implant can include forming a lens holder. The lens holder can include an outer periphery and an inner periphery. The inner periphery of the lens holder can include an aperture extending from an anterior surface of the lens holder to a posterior surface of the lens holder. The method can also include forming an optic. After forming the lens holder and the optic, the method can include inserting the optic into the aperture and mechanically coupling or interlocking the optic with the inner periphery of the lens holder.


Any feature, structure, or step disclosed herein can be replaced with or combined with any other feature, structure, or step disclosed herein, or omitted. Further, for purposes of summarizing the disclosure, certain aspects, advantages, and features of the inventions have been described herein. It is to be understood that not necessarily any or all such advantages are achieved in accordance with any particular embodiment of the inventions disclosed herein. No aspects of this disclosure are essential or indispensable.





BRIEF DESCRIPTION OF THE DRAWINGS

Various embodiments are depicted in the accompanying drawings for illustrative purposes and should in no way be interpreted as limiting the scope of the embodiments. Furthermore, various features of different disclosed embodiments can be combined to form additional embodiments, which are part of this disclosure.



FIG. 1 illustrates a perspective view of an intraocular implant including an optic mechanically coupled with a lens holder.



FIG. 2 illustrates a partial exploded view of the intraocular implant shown in FIG. 1.



FIG. 3 illustrates a side view of the intraocular implant shown in FIG. 1.



FIG. 4 illustrates a top view of the intraocular implant shown in FIG. 1.



FIGS. 5A-5C illustrate various views of the optic shown in FIG. 2.



FIG. 6 illustrates a cross-section of the intraocular implant taken across line 6-6 in FIG. 4.



FIG. 7 illustrates an enlarged partial view taken along section line 7 in FIG. 6.



FIG. 8 illustrates a top view of another intraocular implant including an optic mechanically coupled with a lens holder.



FIG. 9 illustrates a side view of the intraocular implant shown in FIG. 8.



FIGS. 10A-10C illustrate various view of the optic shown in FIG. 8.



FIG. 11 illustrates a cross-section of the intraocular implant taken across line 11-11 in FIG. 8.



FIG. 12 illustrates an enlarged partial view taken along section line 12 in FIG. 11.





DETAILED DESCRIPTION

Patients who undergo intraocular lens (IOL) implantation surgery may still suffer from defects in their non-distance eyesight. One technique for treating such defects is by including a small aperture within the IOL that allows light to pass through to the retina to increase depth of focus. The light rays that pass through the mask within the IOL converge at a single focal point on the retina, while the light rays that would not converge at the single point on retina are blocked by the mask. This disclosure describes methods for manufacturing an implant, such as an IOL, having an aperture. The intraocular implant may be implanted in the anterior chamber or the posterior chamber of the eye. In the posterior chamber, the implant may be fixated in the ciliary sulcus, in the capsular bag, or anywhere an intraocular implant is fixated.



FIGS. 1-7 illustrate an intraocular implant 100 having a lens holder 102 and an optic 108. As shown in FIG. 2, the lens holder 102 and the optic 108 are separate components that can be coupled together to form the intraocular implant 100 shown in FIG. 1. The optic 108 can be inserted through an aperture 116 of the lens holder 102 such that an interfacing structure of the optic 108 mechanically couples or interlocks with a corresponding interfacing structure of the lens holder 102.


As shown in FIG. 2, the lens holder 102 includes a main body 134 having an inner periphery 130 and an outer periphery 132. The main body 134 can be generally circular with an outer diameter between about 5 mm and about 10 mm, for example about 6 mm. The inner periphery 130 of the main body 134 defines the aperture 116 through which the optic 108 is inserted. At any axial position of the aperture 116, the aperture 116 can have a diameter of at least about 0.85 mm and/or less than or equal to about 2.2 mm, at least about 1.1 mm and/or less than or equal to about 2.0 mm, or at least about 1.4 mm and/or less than or equal to about 1.8 mm.


The lens holder 102 can have an anterior surface 112 and a posterior surface 114. Each of the anterior and posterior surfaces 112, 114 can be curved or planar. For example, as shown FIG. 6, the lens holder 102 can be biconvex. The lens holder 102 can have negligible or no optical power. Because the lens holder 102 has negligible or no optical power, manufacture of the IOL 100 is simplified compared to an IOL in which the entire main body 134 is optically powered.


Although some of the embodiments described herein are discussed with respect to a lens holder 102 having negligible or no optical power, in other configurations, the lens holder 102 may have optical power, for example the same or different optical power as the optic 108.


The intraocular implant 100 can include haptics 110 for positioning the intraocular implant 100 in the eye. The haptics 110 can be separately attached to the lens holder 102 or integrally formed with and include a same material as the main body 134. The main body 134 and haptics 110 can take on any of the configurations described in U.S. Pat. No. 9,492,272, which is hereby incorporated by reference in its entirety herein.


The aperture 116 can extend from the anterior surface 112 of the main body 134 to the posterior surface 114 of the main body 134. A diameter of the aperture 116 at the anterior surface 112 and/or the posterior surface 114 can be greater than a diameter of the aperture 116 taken at a transverse midline of the aperture 116. As shown in FIGS. 6 and 7, the aperture 116 can have an anterior region 136, a central region 138, and a posterior region 140. A diameter D2 of the central region 138 can be less than a diameter D1 of the anterior region 136 and/or the posterior region 140 (see FIG. 6). The lens holder 102 can include a projection 118 that defines the reduced diameter section of the aperture 116. The projection 118 can be an annular projecting rib in a central region 138 of the aperture 116. When viewed in cross-section, the projection 118 can form a stepped profile. For example, the projection 118 can include an anterior ledge, a posterior ledge, and a sidewall therebetween. As described in further detail below, the projection 118 can mechanically couple or mechanically interlock with the optic 108.


Alternatively, a diameter of the central region can be greater than a diameter of the anterior region and/or the posterior region of the aperture. The lens holder can include a recess that defines the increased diameter section of the aperture. The recess can be an annular recess in a central region of the aperture that receives a projection on the optic.


The lens holder 102 can include one or more materials. For example, the lens holder material can include a hydrophobic material and/or a low-viscosity material. The lens holder material can include polymers (e.g. PMMA, PVDF, polypropylene, polycarbonate, PEEK, polyethylene, acrylic, acrylic copolymers, polystyrene, PVC, polysulfone, silicone) or hydrogels. The main body 134 of the lens holder 102 can be substantially transparent to visible light. In some embodiments, the main body 134 of the lens holder 102 can be substantially opaque to visible light and substantially transparent to near infrared (IR) light. Further near-IR details are disclosed in U.S. Pat. No. 9,545,303, which is hereby incorporated by reference in its entirety herein.


The lens holder material can include an ultraviolet light absorber to protect the eye from ultraviolet light. The lens holder material can also include a light-sensitive initiator to allow the lens holder material to be photo-cured by exposure to light. The light-sensitive initiator can include various biocompatible initiators, including, but not limited to, acylphosphine oxide initiators, such as Irgacure® 819.


At least a portion of the main body 134 adjacent to and surrounding the aperture 116 can include opacity to prevent substantially all or all visible light from being transmitted through the portion of the main body 134. For example, the portion having opacity can prevent transmission of at least about 92 percent, at least about 95 percent, or at least about 99 percent of all incident, visible light.


At least a partial or entire thickness of the main body 134 can include the opacity. For example, the lens holder 102 can include a mask 104 that is substantially or completely opaque to visible light. The mask 104 can be positioned on a posterior or anterior surface of the main body 134 or embedded within the main body 134. For example, the mask 104 can be centrally embedded in the main body 134. As shown in FIGS. 6 and 7, the mask 104 can be positioned around the central region 138 of the aperture 116. An inner periphery of the mask 104 abuts or forms a part of the inner periphery 130 of the main body 134. The mask 104 can take on any of the configurations or positions described in U.S. Pat. No. 9,492,272, which is hereby incorporated by reference in its entirety herein. The mask 104 may also be formed using any of the methods described in U.S. Publication No. 2019/0076235, which is hereby incorporated by reference in its entirety herein.


The mask 104 can be symmetrical about a central axis. For example the mask 104 can be circular. The mask 104 can have an outer diameter of at least about 3 mm and/or less than about 6 mm, such as at least about 3 mm and/or less than or equal to about 4 mm, for example about 3.2 mm. An inner diameter of the mask 104 can be any size that is effective to increase the depth of focus of an eye of a patient. The mask 104 can include an aperture with a diameter of at least about 0.85 mm and/or less than or equal to about 2.2 mm, at least about 1.1 mm and/or less than or equal to about 2.0 mm, or at least about 1.4 mm and/or less than or equal to about 1.8 mm. In other configurations, the inner diameter of the mask 104 may be sized for any suitable optic.


A thickness of the mask 104 can be within a range from greater than zero to about 0.6 mm, about 1 micron to about 40 microns, about 5 microns to about 20 microns, about 5 microns to about 15 microns, or otherwise. For example, the thickness of the mask 104 can be about 15 microns, about 10 microns, about 8 microns, about 5 microns, or otherwise.


The mask material can be naturally opaque or treated with a dye or other pigmentation agent to render the mask 104 substantially or completely opaque. The mask material can be the same material or a different material than the lens holder material. For example, the mask material can include a polymeric material (e.g. PMMA, PVDF, polypropylene, polycarbonate, PEEK, polyethylene, acrylic, acrylic copolymers, polystyrene, PVC, polysulfone), hydrogels, or fibrous materials.


As another example, the mask can include a photochromic material. When implanted, the photochromic material can temporarily or permanently darken to enhance near vision. Further photochromic material details are disclosed in U.S. Pat. Nos. 9,204,962 and 9,545,303, which are hereby incorporated by reference in their entireties herein.


As another example, the mask can block the transmission of substantially all visible light while remaining transparent to the near IR light used in ocular imaging. The mask can permit the transmission of electromagnetic radiation with a wavelength between about 750 nm and about 1500 nm through mask 104. The mask 104 can be dyed or otherwise treated to provide these transmissivity properties. Further near-IR details are disclosed in U.S. Pat. No. 9,545,303, which is hereby incorporated by reference in its entirety herein.


The mask 104 can be molded, printed, formed, etched, laser-created, heat- or light-created, or otherwise created in or attached to the main body 134. For example, the main body 134 can be cast molded around the mask 104. During the molding process, the mask 104 can be centered on a protruding pin in the mold. When the main body 134 is removed from the mold, the protruding pin leaves behind a void that is the aperture 116. The mold can be shaped to form an interfacing structure in the inner periphery 130 of the lens holder 102, or after molding, the lens holder 102 can be machined to form the interfacing structure in the inner periphery 130 of the lens holder 102. Formation of the lens holder 102 and centration of the mask 104 can also be performed using any of the techniques described in U.S. Pat. Nos. 9,492,272 and 9,427,922, which are hereby incorporated by reference in their entireties herein.



FIGS. 5A-5C illustrate different views of a powered optic 108. Because the lens holder 102 may have negligible or no optical power, different powered optics 108 can be used with the same lens holder 102. For example, a kit could be provided with different powered optics 108 and a single lens holder 102. As another example, a kit could be provided with different powered optics 108 and different-sized lens holders 102. Each of the powered optics 108 can be shaped to interface with any one of the different-sized lens holders 102.


The optic 108 can include an anterior region 122, a central region 120, and a posterior region 124. A diameter of the anterior region 122 and the posterior region 124 can be greater than a diameter of the central region 120. For example, the central region 120 can include an annular recess configured to interface with and mechanically interlock with the protrusion 118 on the inner periphery 130 of the lens holder 102. A thickness of the central region 120 can be the same or different than a thickness of the anterior region 122 and/or the posterior region 124. For example, the thickness of the central region 120 can be greater than the thickness of the anterior region 122 and the posterior region 124. Alternatively, the outer profile of the optic 108 can be inverted such that a diameter of the central region 120 is greater than a diameter of the anterior region 122 and the posterior region 124.


As shown in FIG. 5C, the optic 108 can be biconvex. The anterior and posterior surfaces 108 can include the same or different curvatures. The lens holder 102 can be shaped such that curvatures of the anterior surface 112 and the exterior surface 114 of the main body 134 are continuous with the curvatures of the anterior and posterior surfaces of the optic 108. When the optic 108 is inserted into the lens holder 102, the anterior and posterior surfaces of the optic 108 can be flush with the anterior and posterior surfaces of the main body 134 (see FIG. 6). The anterior and posterior surfaces of the intraocular implant 100 can include a continuous profile, such as a continuous curvature without any steps or breaks. A side wall 126 of the anterior region 122 and/or a side wall 128 of the posterior region 124 can be vertical, beveled, stepped, or otherwise shaped.


The optic 108 can include a same or different material than the main body 134 and/or the mask 134. The optic material can include a hydrophobic material and/or a low-viscosity material. The optic material can include polymers (e.g. PMMA, PVDF, polypropylene, polycarbonate, PEEK, polyethylene, acrylic, acrylic copolymers, polystyrene, PVC, polysulfone, silicone) or hydrogels.


The optic 108 and/or the lens holder 102 may include indicia, for example on an anterior surface thereof, to assist in placement of the optic 108 in the lens holder 102 and/or in the eye. For example, the indicia can be configured to align the optic 108 with particular ocular anatomy.


The main body 134 can be more flexible than the optic 108 to facilitate insertion of the optic 108 into the main body 134. In this configuration, the aperture 116 flexes to permit insertion of the optic 108. As an example, the main body 108 can include PMMA and the main body 134 can include hydrophobic acrylic.


As described above, the optic 108 is coupled to the lens holder 102. Rather than being integrally molded or formed, the optic 108 can be separately formed and mechanically coupled the lens holder 102. For example, the optic 108 and the lens holder 102 can be mechanically interlocked by a press-fit, snap-fit, threaded interface, or otherwise.


As shown in FIGS. 6 and 7, the recess in the central region 120 of the optic 108 can interface and mechanically interlock with the protrusion 118 in the central region 138 of the aperture 116. The recess can be an annular recess in the central region 120 of the optic 108 (see FIGS. 5A-5C). The protrusion 118 can be an annular rib in the central region 118 of the aperture 116. When the optic 108 is inserted into the aperture 116, the optic 108 and/or the aperture 116 can undergo some deflection and recover to its original mechanical and optical state when properly assembled.


Alternatively, the optic 108 can include an annular rib projecting from a central region of the optic 108, and the lens holder 102 can include a recess in a central region of the inner periphery 130 of the lens holder 102. Although FIGS. 6 and 7 illustrate the optic 108 including one recess and the main body 134 including one protrusion 118, the interfacing structures of the intraocular implant 100 could include multiple, longitudinally spaced apart recesses and protrusions. Further, the recess and protrusion could be shaped differently than shown in the figures. For example, the recess and the protrusion could include corresponding v-shaped profiles, such that anterior and posterior edges of each of the recess and the protrusion meet at an apex.


When coupled together, the anterior region 136, central region 138, and posterior region 140 of the aperture 116 can receive the corresponding anterior region 122, central region 120, and posterior region 124 of the optic 108. A posterior edge of the anterior region 122 of the optic 108 can abut an anterior edge of the central region 138 of the aperture 116. An anterior edge of the posterior region 128 of the optic 108 can abut a posterior edge of the central region 138 of the aperture.


With reference to FIGS. 8-12, another example intraocular implant 200 is shown. The intraocular implant 200 resembles or is identical to the intraocular implant 100 discussed above in many respects. Accordingly, numerals used to identify features of the intraocular implant 100 are incremented by a factor of one hundred (100) to identify like features of the intraocular implant 200. This numbering convention generally applies to the remainder of the figures. Any component or step disclosed in any embodiment in this specification can be used in other embodiments.


Similar to the intraocular implant 100 shown in FIGS. 1-7, the intraocular implant 200 includes an optic 208 mechanically coupled or mechanically interlocked with a lens holder 202. These two components can mechanically couple or mechanically interlock in the same manner described above with respect to FIGS. 1-7. The optic 208 shown in FIGS. 10A-10C can include the similar or identical features to the optic 108 shown in FIGS. 5A-5C. However, unlike the lens holder 102, the lens holder 202 does not include a mask.


The entire main body 234, from an anterior surface 212 of the main body 234 to a posterior surface 214 of the main body 234, includes opacity to prevent substantially all or all visible light from being transmitted through the any portion of the main body 234. For example, the main body 234 can prevent transmission of at least about 92 percent, at least about 95 percent, or at least about 99 percent of all incident, visible light.


The entire main body 234 can be constructed from the same material(s). The main body material can be naturally opaque or treated with a dye or other pigmentation agent to render the main body 234 substantially or completely opaque. The main body material can include a polymeric material (e.g. PMMA, PVDF, polypropylene, polycarbonate, PEEK, polyethylene, acrylic, acrylic copolymers, polystyrene, PVC, polysulfone), hydrogels, or fibrous materials.


As another example, the main body material can include a photochromic material. When implanted, the photochromic material can temporarily or permanently darken to enhance near vision. Further photochromic material details are disclosed in U.S. Pat. Nos. 9,204,962 and 9,545,303, which are hereby incorporated by reference in their entireties herein.


As another example, the main body 234 can block the transmission of substantially all visible light while remaining transparent to the near IR light used in ocular imaging. For example, the main body 234 can permit the transmission of electromagnetic radiation with a wavelength between about 750 nm and about 1500 nm through mask 104. The main body 234 be dyed or otherwise treated to achieve these transmissivity properties. Further near IR details are disclosed in U.S. Pat. No. 9,545,303, which is hereby incorporated by reference in its entirety herein.


The intraocular implant 200 can include haptics 210 for positioning the intraocular implant 200 in the eye. The haptics 210 can be separately attached to the lens holder 202 or integrally formed with and include the same material(s) as the lens holder 202. For example, the haptics 210 can include the same opacity as the main body 234.


Terminology


Although certain intraocular implants have been described herein in connection with specific optics or lenses, the optic may be any suitable optic for an intraocular lens, including but not limited to, a spherical lens, a monofocal lens, a multifocal lens, an aspheric lens, a photochromic lens, or a toric lens.


Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.


The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list.


The terms “approximately,” “about,” and “substantially” as used herein represent an amount close to the stated amount that still performs a desired function or achieves a desired result. For example, unless otherwise defined herein, the terms “approximately,” “about,” and “substantially” may refer to an amount that is within less than 10% of the stated amount, as the context may dictate.


The ranges disclosed herein also encompass any and all overlap, sub-ranges, and combinations thereof. Language such as “up to,” “at least,” “greater than,” “less than,” “between” and the like includes the number recited. Numbers preceded by a term such as “about” or “approximately” include the recited numbers. For example, “about 3 mm” includes “3 mm.”


Although certain embodiments and examples have been described herein, it will be understood by those skilled in the art that many aspects of the methods and IOLs shown and described in the present disclosure may be differently combined and/or modified to form still further embodiments or acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. A wide variety of designs and approaches are possible. No feature, structure, or step disclosed herein is essential or indispensable.


For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. It is to be understood that not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.


Moreover, while illustrative embodiments have been described herein, the scope of any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations as would be appreciated by those skilled in the art based on the present disclosure. The limitations in the claims are to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive. Further, the actions of the disclosed processes and methods may be modified in any manner, including by reordering actions and/or inserting additional actions and/or deleting actions. It is intended, therefore, that the specification and examples be considered as illustrative only, with a true scope and spirit being indicated by the claims and their full scope of equivalents.

Claims
  • 1. An intraocular lens (IOL) comprising: a lens holder comprising an outer periphery and an inner periphery, the inner periphery defining an aperture, the aperture extending from an anterior surface of the lens holder to a posterior surface of the lens holder, an annular portion of the lens holder being substantially opaque to visible light, the substantially opaque annular portion being disposed about the aperture and embedded within the lens holder; andan optic positioned in the aperture and mechanically coupled with the inner periphery of the lens holder;wherein the aperture comprises a diameter of between about 0.85 mm to about 2.2 mm;wherein the aperture is sized and configured to increase depth of focus in a human patient when the intraocular lens is implanted in an eye of the human patient;wherein the optic includes an anterior region, a central region, and a posterior region, a diameter of the anterior region and a diameter of the posterior region are greater than a diameter of the central region of the optic;wherein the aperture includes an anterior region, a central region, and a posterior region, a diameter of the anterior region of the aperture and a diameter of the posterior region of the aperture are greater than a diameter of the central region of the aperture;wherein the central region of the optic is sized and configured to interface and mechanically interlock with the central region of the aperture.
  • 2. The intraocular lens of claim 1, wherein the lens holder is powered.
  • 3. The intraocular lens of claim 1, wherein the entire lens holder is substantially opaque to visible light.
  • 4. The intraocular lens of claim 1, wherein the substantially opaque portion of the lens holder is substantially transparent to at least some non-visible electromagnetic radiation with a wavelength between 750 nm and about 1500 nm to facilitate examining ocular tissue posterior to the intraocular implant.
  • 5. The intraocular lens of claim 1, wherein the optic comprises acrylic.
  • 6. The intraocular lens of claim 1, wherein the lens holder comprises acrylic.
  • 7. The intraocular lens of claim 1, wherein the lens holder comprises a first material and the optic comprises a second material, the second material being different from the first material.
  • 8. The intraocular lens of claim 1, wherein the lens holder comprises haptics.
  • 9. The intraocular lens of claim 1, wherein the lens holder is integrally formed as one piece.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2019/031189 5/7/2019 WO 00
Publishing Document Publishing Date Country Kind
WO2019/217471 11/14/2019 WO A
US Referenced Citations (461)
Number Name Date Kind
2350421 Schoder et al. Jun 1944 A
2470927 Hale, Jr. May 1949 A
3034403 Neefe May 1962 A
3270099 Camp Aug 1966 A
3458870 Stone Aug 1969 A
3578850 Grant May 1971 A
3776230 Neefe Dec 1973 A
3794414 Wesley Feb 1974 A
3877502 Hunckler Apr 1975 A
3996627 Deeg et al. Dec 1976 A
4010496 Neefe Mar 1977 A
4104338 Guerrieri Aug 1978 A
4116439 Chavarria et al. Sep 1978 A
4210391 Cohen Jul 1980 A
4298996 Barnet Nov 1981 A
4340283 Cohen Jul 1982 A
4402396 Graham Sep 1983 A
4402579 Poler Sep 1983 A
4423728 Lieberman Jan 1984 A
4435050 Poler Mar 1984 A
4450593 Poler May 1984 A
4470159 Peyman Sep 1984 A
4505855 Bruns et al. Mar 1985 A
4512039 Lieberman Apr 1985 A
4563565 Kampfer et al. Jan 1986 A
4575373 Johnson Mar 1986 A
4596578 Kelman Jun 1986 A
4607617 Choyce Aug 1986 A
4624669 Grendahl Nov 1986 A
4639105 Neefe Jan 1987 A
4646720 Peyman et al. Mar 1987 A
4655774 Choyce Apr 1987 A
4665913 Esperance, Jr. May 1987 A
4669466 L'Esperance Jun 1987 A
4669834 Richter Jun 1987 A
4676790 Kern Jun 1987 A
4676791 LeMaster et al. Jun 1987 A
4678422 York Jul 1987 A
4701038 Neefe Oct 1987 A
4715858 Lindstrom Dec 1987 A
4744647 Meshel et al. May 1988 A
4767647 Bree Aug 1988 A
4795462 Grendahl Jan 1989 A
4798608 Grendahl Jan 1989 A
4799784 Safir Jan 1989 A
4799931 Lindstrom Jan 1989 A
4807623 Lieberman Feb 1989 A
4813955 Achatz et al. Mar 1989 A
4815690 Shepherd Mar 1989 A
4817789 Paul Apr 1989 A
4830855 Stewart May 1989 A
4842599 Bronstein Jun 1989 A
4842782 Portney Jun 1989 A
4851003 Lindstrom Jul 1989 A
4863466 Schlegel Sep 1989 A
4881860 Kanazawa Nov 1989 A
4903695 Warner et al. Feb 1990 A
4907586 Bille et al. Mar 1990 A
4928815 Paul May 1990 A
4955904 Atebara et al. Sep 1990 A
4976732 Vorosmarthy Dec 1990 A
4994080 Shepard Feb 1991 A
5013319 Davis May 1991 A
5030230 White Jul 1991 A
5034166 Rawlings et al. Jul 1991 A
5041133 Sayano et al. Aug 1991 A
5055602 Melpolder Oct 1991 A
5087015 Galley Feb 1992 A
5090955 Simon Feb 1992 A
5092880 Ohmi Mar 1992 A
5094521 Jolson et al. Mar 1992 A
5098443 Parel et al. Mar 1992 A
5108427 Majercik et al. Apr 1992 A
5112328 Taboada et al. May 1992 A
5120120 Cohen Jun 1992 A
5120121 Rawlings et al. Jun 1992 A
5137441 Fogarty Aug 1992 A
5147395 Willis Sep 1992 A
5171318 Gibson et al. Dec 1992 A
5185107 Blake Feb 1993 A
5188494 Hatin Feb 1993 A
5192316 Ting Mar 1993 A
5196026 Barrett et al. Mar 1993 A
5213749 Huss et al. May 1993 A
5260727 Oksman et al. Nov 1993 A
5266241 Parekh Nov 1993 A
5269795 Arnott Dec 1993 A
5269812 White Dec 1993 A
5274404 Michael Dec 1993 A
5288436 Liu et al. Feb 1994 A
5290892 Namdaran et al. Mar 1994 A
5292514 Capecchi et al. Mar 1994 A
5300116 Chirila et al. Apr 1994 A
5312330 Klopotek May 1994 A
5314439 Sugita May 1994 A
5314961 Anton et al. May 1994 A
5332802 Kelman et al. Jul 1994 A
5336261 Barrett et al. Aug 1994 A
5354331 Schachar et al. Oct 1994 A
5358520 Patel Oct 1994 A
5372580 Simon et al. Dec 1994 A
5391201 Barrett et al. Feb 1995 A
5441511 Hanna Aug 1995 A
5474548 Knopp et al. Dec 1995 A
5507740 O'Donnell, Jr. Apr 1996 A
5507806 Blake Apr 1996 A
5547468 Simon et al. Apr 1996 A
D375245 Irving Nov 1996 S
5578080 McDonald Nov 1996 A
5603774 LeBoeuf et al. Feb 1997 A
5607437 Simon et al. Mar 1997 A
5624456 Hellenkamp Apr 1997 A
5627613 Kaneko May 1997 A
5628794 Lindstrom May 1997 A
5628795 Langerman May 1997 A
5647865 Swinger Jul 1997 A
5652638 Roffman et al. Jul 1997 A
5653752 Silvestrini et al. Aug 1997 A
5662706 Legerton et al. Sep 1997 A
5674284 Chang et al. Oct 1997 A
5693268 Widman et al. Dec 1997 A
5697923 Poler Dec 1997 A
5702440 Portney Dec 1997 A
5708049 Katagiri et al. Jan 1998 A
5713957 Steele et al. Feb 1998 A
5722971 Peyman Mar 1998 A
5725575 O'Donnell, Jr. Mar 1998 A
5728156 Gupta et al. Mar 1998 A
5746558 Nygren et al. May 1998 A
5752967 Kritzinger et al. May 1998 A
5757458 Miller et al. May 1998 A
5769889 Kelman Jun 1998 A
5774202 Abraham et al. Jun 1998 A
5786883 Miller et al. Jul 1998 A
5824086 Silvestrini Oct 1998 A
5837156 Cumming Nov 1998 A
5843105 Mathis et al. Dec 1998 A
5864128 Plesko Jan 1999 A
5870167 Knopp et al. Feb 1999 A
5876442 Lipshitz et al. Mar 1999 A
5895610 Chang et al. Apr 1999 A
5905561 Lee et al. May 1999 A
5910537 Feingold et al. Jun 1999 A
5913898 Feingold et al. Jun 1999 A
5919185 Peyman Jul 1999 A
5925294 Shibuya Jul 1999 A
5964748 Peyman Oct 1999 A
5964776 Peyman Oct 1999 A
5965330 Evans et al. Oct 1999 A
5980040 Xu et al. Nov 1999 A
6007579 Lipshitz Dec 1999 A
6017121 Chateau et al. Jan 2000 A
6063073 Peyman May 2000 A
6090141 Lindstrom Jul 2000 A
6102946 Nigam Aug 2000 A
6106553 Feingold et al. Aug 2000 A
6110166 Juhasz et al. Aug 2000 A
6138307 McDonald Oct 2000 A
6152959 Portney Nov 2000 A
6164777 Li et al. Dec 2000 A
6171336 Sawusch Jan 2001 B1
6178593 Carlson Jan 2001 B1
6197019 Peyman Mar 2001 B1
6201036 Fedorov et al. Mar 2001 B1
6203538 Peyman Mar 2001 B1
6210401 Lai Apr 2001 B1
6217571 Peyman Apr 2001 B1
6217596 Farah Apr 2001 B1
6221067 Peyman Apr 2001 B1
6228113 Kaufman May 2001 B1
6228114 Lee May 2001 B1
6228115 Hoffmann et al. May 2001 B1
6264648 Peyman Jul 2001 B1
6277146 Peyman Aug 2001 B1
6280470 Peyman Aug 2001 B1
6280471 Peyman et al. Aug 2001 B1
6302877 Ruiz Oct 2001 B1
6304390 Takanashi Oct 2001 B1
6308590 Berto Oct 2001 B1
6335190 Zhou et al. Jan 2002 B1
6361560 Nigam Mar 2002 B1
6376153 Uchikawa et al. Apr 2002 B2
6387379 Goldberg et al. May 2002 B1
6391230 Sarbadhikari May 2002 B1
6416179 Lieberman et al. Jul 2002 B1
6423093 Hicks et al. Jul 2002 B1
6432246 Blake Aug 2002 B1
6436092 Peyman Aug 2002 B1
6458141 Peyman Oct 2002 B1
6461384 Hoffmann et al. Oct 2002 B1
6469844 Iwase et al. Oct 2002 B1
6480346 Funakoshi Nov 2002 B2
6491637 Foster et al. Dec 2002 B2
6497700 LaHaye Dec 2002 B1
6515006 Horn Feb 2003 B2
6533416 Fermigier et al. Mar 2003 B1
6551307 Peyman Apr 2003 B2
6554424 Miller et al. Apr 2003 B1
6554860 Hoffmann et al. Apr 2003 B2
6555103 Leukel et al. Apr 2003 B2
6575573 Lai et al. Jun 2003 B2
6581993 Nigam Jun 2003 B2
6588902 Isogai Jul 2003 B2
6589280 Koziol Jul 2003 B1
6607527 Ruiz et al. Aug 2003 B1
6613088 Babizhayev Sep 2003 B1
6638304 Azar Oct 2003 B2
6649722 Rosenzweig et al. Nov 2003 B2
6655804 Streibig Dec 2003 B2
6692126 Xie et al. Feb 2004 B1
6702807 Peyman Mar 2004 B2
6726322 Andino et al. Apr 2004 B2
6740116 Morcher May 2004 B2
6755858 White Jun 2004 B1
6786926 Peyman Sep 2004 B2
6811256 Becherer et al. Nov 2004 B1
6855163 Peyman Feb 2005 B2
6874886 Miller et al. Apr 2005 B2
6899424 Miller et al. May 2005 B2
6949093 Peyman Sep 2005 B1
6951556 Epstein Oct 2005 B2
6966648 Miller et al. Nov 2005 B2
6989008 Peyman Jan 2006 B2
6997428 Andino et al. Feb 2006 B1
7001374 Peyman Feb 2006 B2
7008447 Koziol Mar 2006 B2
7025455 Roffman Apr 2006 B2
7061693 Zalevsky Jun 2006 B2
7099057 Parker et al. Aug 2006 B2
7276080 Murakami et al. Oct 2007 B2
7287852 Fiala Oct 2007 B2
7364674 Hoover Apr 2008 B1
7399811 Mentak et al. Jul 2008 B2
7404637 Miller et al. Jul 2008 B2
7404638 Miller et al. Jul 2008 B2
7446157 Mentak et al. Nov 2008 B2
7455404 Bandhauer et al. Nov 2008 B2
7455691 Feingold et al. Nov 2008 B2
7462193 Nagamoto Dec 2008 B2
7477452 Tsuruma Jan 2009 B2
7491350 Silvestrini Jan 2009 B2
7497866 Perez Mar 2009 B2
7628810 Christie et al. Dec 2009 B2
7632431 Ghazizadeh et al. Dec 2009 B2
7641337 Altmann Jan 2010 B2
7645299 Koziol Jan 2010 B2
7745555 Mentak et al. Jun 2010 B2
7780290 Zhao Aug 2010 B2
7842367 Mentak Nov 2010 B2
7976577 Silvestrini Jul 2011 B2
D645337 Hsu et al. Sep 2011 S
8043371 Paul et al. Oct 2011 B2
8048972 Mentak et al. Nov 2011 B2
8079706 Silvestrini et al. Dec 2011 B2
D656526 Christie et al. Mar 2012 S
8157374 Bandhauer et al. Apr 2012 B2
8241354 Hong et al. Aug 2012 B2
8287592 Silvestrini Oct 2012 B2
8343215 Miller et al. Jan 2013 B2
D681086 Christie et al. Apr 2013 S
8420753 Mentak et al. Apr 2013 B2
8439498 Zhao et al. May 2013 B2
8460374 Christie et al. Jun 2013 B2
8562131 Zhao Oct 2013 B2
8604098 Boydston et al. Dec 2013 B2
8740978 Weeber et al. Jun 2014 B2
8747466 Weeber et al. Jun 2014 B2
8752958 Miller et al. Jun 2014 B2
8633292 Hu et al. Jul 2014 B2
8814934 Geraghty Aug 2014 B2
8858624 Christie et al. Oct 2014 B2
8864824 Silvestrini et al. Oct 2014 B2
8955968 Zalevsky et al. Feb 2015 B2
9005281 Christie Apr 2015 B2
9138142 Christie et al. Sep 2015 B2
9204962 Silvestrini Dec 2015 B2
9358103 Wortz et al. Jun 2016 B1
9427311 Christie et al. Aug 2016 B2
9427922 Reboul et al. Aug 2016 B2
9492272 Christie et al. Nov 2016 B2
9545303 Vilupuru et al. Jan 2017 B2
9573328 Reboul et al. Feb 2017 B2
9603704 Silvestrini Mar 2017 B2
9744077 Zicker et al. Aug 2017 B2
9757227 Kushlin et al. Sep 2017 B2
9844919 Reboul et al. Dec 2017 B2
9848979 Vilupuru et al. Dec 2017 B2
9943403 Webb et al. Apr 2018 B2
9987127 Bogaert et al. Jun 2018 B2
10004593 Webb et al. Jun 2018 B2
10183453 Reboul et al. Jan 2019 B2
10342656 Vilupuru et al. Jul 2019 B2
10350058 Silvestrini Jul 2019 B2
10426600 Coleman et al. Oct 2019 B2
10449036 Christie et al. Oct 2019 B2
10548717 Webb et al. Feb 2020 B2
10583619 Reboul et al. Mar 2020 B2
10687935 Webb et al. Jun 2020 B2
10765508 Vilupuru et al. Sep 2020 B2
10869752 Christie et al. Dec 2020 B2
10932902 Reedy et al. Mar 2021 B2
10939995 Silvestrini Mar 2021 B2
20010027314 Peyman Oct 2001 A1
20010034516 Peyman Oct 2001 A1
20010050750 Breger Dec 2001 A1
20020010510 Silverstrini Jan 2002 A1
20020082288 Horn Jun 2002 A1
20020120329 Lang et al. Aug 2002 A1
20020128710 Eggleston Sep 2002 A1
20020167640 Francis et al. Nov 2002 A1
20020196409 Jani Dec 2002 A1
20030014042 Juhasz et al. Jan 2003 A1
20030060880 Feingold Mar 2003 A1
20030105521 Perez Jun 2003 A1
20030135272 Brady et al. Jul 2003 A1
20030149480 Shadduck Aug 2003 A1
20030204258 Graham et al. Oct 2003 A1
20030216763 Patel Nov 2003 A1
20040019379 Glick et al. Jan 2004 A1
20040056371 Liao et al. Mar 2004 A1
20040068317 Knight Apr 2004 A1
20040106929 Masket Jun 2004 A1
20040140578 Kelly et al. Jul 2004 A1
20050027355 Murakami et al. Feb 2005 A1
20050046794 Silvestrini et al. Mar 2005 A1
20050056954 Devlin Mar 2005 A1
20050090895 Peyman Apr 2005 A1
20050124983 Frey et al. Jun 2005 A1
20050134793 Roffman Jun 2005 A1
20050137703 Chen Jun 2005 A1
20050143751 Makker et al. Jun 2005 A1
20050143813 Hovey et al. Jun 2005 A1
20050182488 Peyman Aug 2005 A1
20050182489 Peyman Aug 2005 A1
20050187621 Brady Aug 2005 A1
20050288784 Peyman Dec 2005 A1
20060064077 Peyman Mar 2006 A1
20060079959 Christie et al. Apr 2006 A1
20060113054 Silvestrini Jun 2006 A1
20060135477 Haitjema et al. Jun 2006 A1
20060184243 Yilmaz Aug 2006 A1
20060232665 Schowengerdt et al. Oct 2006 A1
20060235428 Silvestrini Oct 2006 A1
20060235514 Silvestrini Oct 2006 A1
20060241751 Marmo et al. Oct 2006 A1
20060247659 Moeller et al. Nov 2006 A1
20060265058 Silvestrini Nov 2006 A1
20060268226 Christie et al. Nov 2006 A1
20060268227 Christie et al. Nov 2006 A1
20060268228 Christie et al. Nov 2006 A1
20060268229 Silvestrini et al. Nov 2006 A1
20060270946 Silvestrini et al. Nov 2006 A1
20060271026 Silvestrini et al. Nov 2006 A1
20060271178 Christie et al. Nov 2006 A1
20060271179 Christie et al. Nov 2006 A1
20060271180 Christie et al. Nov 2006 A1
20060271181 Christie et al. Nov 2006 A1
20060271182 Christie et al. Nov 2006 A1
20060271183 Christie et al. Nov 2006 A1
20060271184 Silvestrini Nov 2006 A1
20060271185 Silvestrini Nov 2006 A1
20060274264 Christie et al. Dec 2006 A1
20060274265 Christie et al. Dec 2006 A1
20070021832 Nordan Jan 2007 A1
20070032866 Portney Feb 2007 A1
20070091472 Alkemper et al. Apr 2007 A1
20070092592 Chiang Apr 2007 A1
20070129797 Lang et al. Jun 2007 A1
20070225691 Silvestrini et al. Sep 2007 A1
20080033546 Liang Feb 2008 A1
20080077238 Deacon et al. Mar 2008 A1
20080100921 Nishikawa May 2008 A1
20080151183 Altmann Jun 2008 A1
20080208335 Blum et al. Aug 2008 A1
20080212030 Bentley et al. Sep 2008 A1
20080220214 Uozu et al. Sep 2008 A1
20080221674 Blum et al. Sep 2008 A1
20080221676 Coleman Sep 2008 A1
20080255663 Akpek et al. Oct 2008 A1
20080269884 Vannoy Oct 2008 A1
20080288066 Cumming Nov 2008 A1
20080306587 Your Dec 2008 A1
20090012505 Chernyak Jan 2009 A1
20090021692 Miller et al. Jan 2009 A1
20090287306 Smith et al. Jan 2009 A1
20090036880 Bischoff et al. Feb 2009 A1
20090048608 Boukhny et al. Feb 2009 A1
20090059168 Miller et al. Mar 2009 A1
20090069817 Peyman Mar 2009 A1
20090164008 Hong et al. Jun 2009 A1
20090171458 Kellan et al. Jul 2009 A1
20090187242 Weeber et al. Jul 2009 A1
20090204207 Blum et al. Aug 2009 A1
20090213326 Zhao Aug 2009 A1
20090222086 Lui et al. Sep 2009 A1
20090234448 Weeber et al. Sep 2009 A1
20090279048 Hong et al. Nov 2009 A1
20090306773 Silvestrini et al. Dec 2009 A1
20090323020 Zhao et al. Dec 2009 A1
20100016961 Hong et al. Jan 2010 A1
20100016965 Hong et al. Jan 2010 A1
20100082017 Zickler et al. Apr 2010 A1
20100082100 Mikawa Apr 2010 A1
20100127412 Lake May 2010 A1
20100149618 Sprague Jun 2010 A1
20100208199 Levis et al. Aug 2010 A1
20100225014 Bille Sep 2010 A1
20100312336 Hong et al. Dec 2010 A1
20110029074 Reisin Feb 2011 A1
20110037184 Shoji et al. Feb 2011 A1
20110051080 Bandhauer et al. Mar 2011 A1
20110125261 Portney May 2011 A1
20110140333 Schaper et al. Jun 2011 A1
20110166652 Bogaert et al. Jul 2011 A1
20110172675 Danta et al. Jul 2011 A1
20110245919 Pettit Oct 2011 A1
20110251685 Chu Oct 2011 A1
20110292340 Shimizu et al. Dec 2011 A1
20120203239 Vukich et al. Aug 2012 A1
20120245683 Christie et al. Sep 2012 A1
20120309761 Chow et al. Dec 2012 A1
20120310338 Christie et al. Dec 2012 A1
20130053953 Silvestrini Feb 2013 A1
20130131795 Miller et al. May 2013 A1
20130147072 Bothe et al. Jun 2013 A1
20130190868 Kahook Jul 2013 A1
20130238091 Danta et al. Sep 2013 A1
20130289543 Mordaunt Oct 2013 A1
20130324983 Liang Dec 2013 A1
20140121767 Simpson May 2014 A1
20140131905 Webb May 2014 A1
20140200666 Phillips Jul 2014 A1
20140277437 Currie Sep 2014 A1
20140336625 Fernandez Nov 2014 A1
20140343541 Scott et al. Nov 2014 A1
20140379078 Trindade Dec 2014 A1
20150025627 Christie et al. Jan 2015 A1
20150046094 Chaudhary et al. Feb 2015 A1
20150073549 Webb et al. Mar 2015 A1
20150177422 Liu et al. Jun 2015 A1
20150183173 Linhardt et al. Jul 2015 A1
20150250583 Rosen et al. Sep 2015 A1
20150366658 Christie et al. Dec 2015 A1
20160100938 Bogaert et al. Apr 2016 A1
20160297107 Shim et al. Oct 2016 A1
20170049560 Cherne Feb 2017 A1
20170143477 Christie et al. May 2017 A1
20170156850 Silvestrini et al. Jun 2017 A1
20180296322 Webb et al. Oct 2018 A1
20180338826 Link et al. Nov 2018 A1
20190076241 Alarcon Heredia et al. Mar 2019 A1
20190193350 Gu et al. Jun 2019 A1
20190269499 Ellis Sep 2019 A1
20200000576 Christie et al. Jan 2020 A1
20200008932 Silvestrini Jan 2020 A1
20200179105 Waterhouse et al. Jun 2020 A1
20200253721 Cuevas et al. Aug 2020 A1
20200337831 Webb et al. Oct 2020 A1
20200337834 Webb et al. Oct 2020 A1
20210015604 Ma Jan 2021 A1
20210154002 Christie et al. May 2021 A1
Foreign Referenced Citations (143)
Number Date Country
2004201751 May 2004 AU
1734305 Feb 2006 CN
1875895 Dec 2006 CN
100368846 Feb 2008 CN
101322663 Dec 2008 CN
102448404 May 2012 CN
101341426 Jul 2012 CN
203647535 Jun 2014 CN
2727410 Dec 1978 DE
4134320 Apr 1992 DE
0165652 Dec 1985 EP
0443094 Aug 1991 EP
1173790 Jan 2002 EP
1674049 Jun 2006 EP
1548489 Aug 2006 EP
2111822 Oct 2009 EP
2319457 May 2011 EP
2243052 Sep 2011 EP
2365379 Sep 2011 EP
2455799 May 2012 EP
2823789 Jan 2015 EP
2364457 Aug 2015 EP
2993514 Mar 2016 EP
2349150 Jul 2016 EP
2620687 Mar 1989 FR
2649605 Jan 1991 FR
1276003 Jun 1972 GB
2507465 May 2014 GB
62-167343 Jul 1987 JP
64-002644 Jan 1989 JP
H01-195852 Aug 1989 JP
H02-7954 Jan 1990 JP
04-158859 Jun 1992 JP
06-509731 Mar 1993 JP
H05-65340 Sep 1993 JP
06-502782 Mar 1994 JP
H07-067896 Mar 1995 JP
07-265340 Oct 1995 JP
08-103457 Apr 1996 JP
H09-502542 Mar 1997 JP
11-503657 Aug 1997 JP
07-178125 Jul 1998 JP
2000-047145 Feb 2000 JP
2002-537895 Nov 2002 JP
2003-502109 Jan 2003 JP
2004-510199 Apr 2004 JP
2004-538034 Dec 2004 JP
2005-533576 Nov 2005 JP
2007-516794 Jun 2007 JP
2007-523720 Aug 2007 JP
2008-506710 Mar 2008 JP
S59-54527 May 2008 JP
2013-501598 Jan 2013 JP
2015-077412 Apr 2015 JP
10-0335722 May 2002 KR
10-2012-0093837 Aug 2012 KR
2138837 Sep 1999 RU
110978 Mar 2011 RU
2456968 Jul 2012 RU
2457812 Aug 2012 RU
2459598 Aug 2012 RU
2493801 Sep 2013 RU
134049 Nov 2013 RU
134784 Nov 2013 RU
2500368 Dec 2013 RU
2511081 Apr 2014 RU
2517488 May 2014 RU
1380743 Mar 1988 SU
201103518 Feb 2011 TW
WO 8705797 Oct 1987 WO
WO 9503747 Feb 1995 WO
WO 9508135 Mar 1995 WO
WO 9635397 Nov 1996 WO
WO 9848715 Nov 1998 WO
WO 00025704 May 2000 WO
WO 00038594 Jul 2000 WO
WO 0051682 Sep 2000 WO
WO 0052516 Sep 2000 WO
WO 0070388 Nov 2000 WO
WO 2001010641 Feb 2001 WO
WO 0115779 Mar 2001 WO
WO 0117460 Mar 2001 WO
WO 0119364 Mar 2001 WO
WO 01082815 Nov 2001 WO
WO 02076320 Oct 2002 WO
WO 02102241 Dec 2002 WO
WO 03020177 Mar 2003 WO
WO 03022168 Mar 2003 WO
WO 03061518 Jul 2003 WO
WO 2004014969 Feb 2004 WO
WO 2004034917 Apr 2004 WO
WO 2004105588 Dec 2004 WO
WO 2004113959 Dec 2004 WO
WO 2005023154 Mar 2005 WO
WO 2005082265 Sep 2005 WO
WO 2006014738 Feb 2006 WO
WO 2006020638 Feb 2006 WO
WO 2006047534 May 2006 WO
WO 2006060380 Jun 2006 WO
WO 2006069012 Jun 2006 WO
WO 2006113377 Oct 2006 WO
WO 2006113411 Oct 2006 WO
WO 2006113563 Oct 2006 WO
WO 2006113564 Oct 2006 WO
WO 2007057734 Oct 2007 WO
WO 2007133384 Nov 2007 WO
WO 2007142981 Dec 2007 WO
WO 2008036671 Mar 2008 WO
WO 2008102096 Aug 2008 WO
WO 2009050511 Apr 2009 WO
WO 2009122409 Oct 2009 WO
WO 2009140080 Nov 2009 WO
WO 2009149060 Dec 2009 WO
WO 2010002215 Jan 2010 WO
WO 2010059214 May 2010 WO
WO 2010118469 Oct 2010 WO
WO 2011020074 Feb 2011 WO
WO 2011020078 Feb 2011 WO
WO 2011047076 Apr 2011 WO
WO 2011069059 Jun 2011 WO
WO 2011088107 Jul 2011 WO
WO 2012170066 Dec 2012 WO
WO 2011030509 Feb 2013 WO
WO 2013019871 Feb 2013 WO
WO 2013082545 Jun 2013 WO
WO 2013101793 Jul 2013 WO
WO 2013112589 Aug 2013 WO
WO 2013123265 Aug 2013 WO
WO 2014054946 Apr 2014 WO
WO 2014074610 May 2014 WO
WO 2014158653 Oct 2014 WO
WO 2014164056 Oct 2014 WO
WO 2014195059 Dec 2014 WO
WO 2015021323 Feb 2015 WO
WO 2015069927 May 2015 WO
WO 2015073718 May 2015 WO
WO 2015078271 Jun 2015 WO
WO 2015086611 Jun 2015 WO
WO 2016081493 May 2016 WO
WO 2015108156 Mar 2017 WO
WO 2017062316 Apr 2017 WO
WO 2017091520 Jun 2017 WO
WO 2019010178 Jan 2019 WO
Non-Patent Literature Citations (8)
Entry
Internet Archive Wayback Machine; Aniridia Implants; downloaded from https://web.archive.org/web/20110824062840/http://www.morcher.com/nc/produkte/aniridiaimplants.html (Archived Aug. 24, 2011; printed on Feb. 5, 2015).
Guyton A.C., Textbook of Medical Physiology, 7th Edition, W.B. Saunders Company, Jan. 1986: Chapter 58, in 13 pages.
Lu Xuequan, et al. “Radiation preparation and thermo-response swelling of interpenetrating polymer network hydrogel composed of PNIPAAm and PMMA”, Radiation Physics and Chemistry, vol. 57, Mar. 2000, pp. 477-480, XP002473596.
Patel, C.K., et al. “Imaging the macula through a black occlusive intraocular lens”. Arch. Ophthalmol. Oct. 2010; 128(10):1374-1376.
Reper-NN LTD, Instruction for Use. MOIL-Iris Iris-intaocular polymer elastic lenses, dated Aug. 2017, in 8 pages.
Yusuf, et al., “Inability to perform posterior segment monitoring by scanning laser ophthalmoscopy or optical coherence tomography with some occlusive intraocular lenses in clinical use”, J. Cataract Refract. Surg., Mar. 2012, 38: 513-518.
Yusuf, et al., “Occlusive IOLs for Intractable Diplopia Demonstrate a Novel Near-Infrared Window of Transmission for SLO/OCT Imaging and Clinical Assessment”. Investigative Ophthalmology & Visual Science, May 2011, 52(6): 3737-3743.
International Search Report and Written Opinion of PCT/US2019/031189, dated Aug. 9, 2019, in 11 pages.
Related Publications (1)
Number Date Country
20210137674 A1 May 2021 US
Provisional Applications (1)
Number Date Country
62669295 May 2018 US